
Algorithms 2022: Dynamic Programming

(Based on [Cormen et al. 2009])

Yih-Kuen Tsay

November 28, 2022

1 Design Methods

Design Methods

• Greedy

/* A greedy algorithm starts with an initial solution set and then attempts to expand the solution step
by step until its completion. In each step, one element is added to the solution by making the locally
optimal choice (the choice is “local” as seen from the current solution). */

– Huffman’s encoding algorithm, Dijkstra’s algorithm, Prim’s algorithm, etc.

• Divide-and-Conquer

– Binary search, merge sort, quick sort, etc.

• Dynamic Programming

• Branch-and-Bound

• . . .

2 Dynamic Programming

Principles of Dynamic Programming

• Property of Optimal Substructure (Principle of Optimality):

An optimal solution to a problem contains optimal solutions to its subproblems.

• A particular subproblem or subsubproblem typically recurs while one tries different decompositions of
the original problem.

• To reduce running time, optimal solutions to subproblems are computed only once and stored (in an
array) for subsequent uses.

Development by Dynamic Programming

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

1



3 Matrix-Chain Multiplication

Matrix-Chain Multiplication

Problem 1. Given a chain A1, A2, · · · , An of matrices where Ai, 1 ≤ i ≤ n, has dimension pi−1 × pi,
fully parenthesize (i.e., find a way to evaluate) the product A1A2 · · ·An such that the number of scalar
multiplications is minimum.

/* Different orders in evaluating the product may require different numbers of scalar multiplications. Con-
sider three matrices A1, A2, and A3 with dimensions 10× 20, 20× 30, and 30× 10 respectively. There are
two ways to evaulate A1A2A3:

1. (A1A2)A3: 10× 20× 30 + 10× 30× 10 = 9000 scalar multiplications.

2. A1(A2A3): 20× 30× 10 + 10× 20× 10 = 8000 scalar multiplications.

*/

• Why is dynamic programming a feasible approach?

• To evaluate A1A2 · · ·An, one first has to evaluate A1A2 · · ·Ak and Ak+1Ak+2 · · ·An for some k and
then multiply the two resulting matrices.

• An optimal way for evaluating A1A2 · · ·An must contain optimal ways for evaluating A1A2 · · ·Ak and
Ak+1Ak+2 · · ·An for some k.

Matrix-Chain Multiplication (cont.)
Let m[i, j] be the minimum number of scalar multiplications needed to compute AiAi+1 · · ·Aj , where

1 ≤ i ≤ j ≤ n.

m[i, j] =

{
0 if i = j
min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

Matrix-Chain Multiplication (cont.)

Algorithm Matrix Chain Order(n, p);
begin

for i := 1 to n do
m[i, i] := 0;

for l := 2 to n do { l is the chain length }
for i := 1 to (n− l + 1) do

j := i + l − 1;
m[i, j] := ∞;
for k := i to (j − 1) do

if m[i, k] + m[k + 1, j] + p[i− 1]p[k]p[j] < m[i, j] then
m[i, j] := m[i, k] + m[k + 1, j] + p[i− 1]p[k]p[j]

end

2



Recursive Implementation

Algorithm Recursive Matrix Chain(p, i, j);
begin

if i = j then return 0;
m[i, j] := ∞;
for k := i to (j − 1) do

q := Recursive Matrix Chain(p, i, k)+
Recursive Matrix Chain(p, k + 1, j) + p[i− 1]p[k]p[j];

if q < m[i, j] then
m[i, j] := q;

return m[i, j]
end

Recursive Implementation (cont.)

1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

Figure: The recursion tree for the computation of Recursive Matrix Chain(p, 1, 4). The computations
performed in a shaded subtree are replaced by a table lookup.

Source: redrawn from [Cormen et al. 2006, Figure 15.5].

Recursion with Memoization

Algorithm Memoized Matrix Chain(n, p);
begin

for i := 1 to n do
for j := i to n do

m[i, j] := ∞;
return Lookup Matrix Chain(p, i, n)

end

Recursion with Memoization (cont.)

Function Lookup Matrix Chain(p, i, j);
begin

if m[i, j] <∞ then return m[i, j];
if i = j then

m[i, j] := 0;
else

for k := i to (j − 1) do
q := Lookup Matrix Chain(p, i, k)+

3



Lookup Matrix Chain(p, k + 1, j) + p[i− 1]p[k]p[j];
if q < m[i, j] then

m[i, j] := q;
return m[i, j]

end

4 Single-Source Shortest Paths

Single-Source Shortest Paths

Problem 2. Given a weighted directed graph G = (V,E) with no negative-weight cycles and a vertex v, find
(the lengths of) the shortest paths from v to all other vertices.

• Notice that edges with negative weights are permitted; so, Dijkstra’s algorithm does not work here.

• A shortest path from v to any other vertex u contains at most n− 1 edges.

• A shortest path from v to u with at most k (> 1) edges is either (1) a known shortest path from v to
u with at most k − 1 edges or (2) composed of a shortest path from v to u′ with at most k − 1 edges
and the edge from u′ to u, for some u′.

Single-Source Shortest Paths (cont.)
Denote by Dl(u) the length of a shortest path from v to u containing at most l edges; particularly,

Dn−1(u) is the length of a shortest path from v to u (with no restrictions).

D1(u) =

 length(v, u) if (v, u) ∈ E
0 if u = v
∞ otherwise

Dl(u) = min{Dl−1(u), min
(u′,u)∈E

{Dl−1(u′) + length(u′, u)}},

2 ≤ l ≤ n− 1

Single-Source Shortest Paths (cont.)

Algorithm Single Source Shortest Paths withL(length);
begin

D[1][v] := 0;
for all u 6= v do

if (v, u) ∈ E then
D[1][u] := length(v, u)

else D[1][u] := ∞;
for l := 2 to n− 1 do

for all u do
D[l][u] := D[l − 1][u];

for all u 6= v do
for all u′ such (u′, u) ∈ E do

if D[l − 1][u′] + length[u′, u] < D[l][u] then
D[l][u] := D[l − 1][u′] + length[u′, u]

end

4



Single-Source Shortest Paths (cont.)

Algorithm Single Source Shortest Paths(length);
begin

D[v] := 0;
for all u 6= v do

if (v, u) ∈ E then
D[u] := length(v, u)

else D[u] := ∞;
for l := 2 to n− 1 do

for all u 6= v do
for all u′ such (u′, u) ∈ E do

if D[u′] + length[u′, u] < D[u] then
D[u] := D[u′] + length[u′, u]

end

5 All-Pairs Shortest Paths

All-Pairs Shortest Paths

Problem 3. Given a weighted directed graph G = (V,E) with no negative-weight cycles, find (the lengths
of) the shortest paths between all pairs of vertices.

• Consider a shortest path from vi to vj and an arbitrary intermediate vertex vk (if any) on this path.

• The subpath from vi to vk must also be a shortest path from vi to vk; analogously for the subpath
from vk to vj .

All-Pairs Shortest Paths (cont.)
Index the vertices from 1 through n.
Denote by W k(i, j) the length of a shortest path from vi to vj going through no vertex of index greater

than k, where 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; particularly, Wn(i, j) is the length of a shortest path from vi to
vj .

W 0(i, j) =

 length(i, j) if (i, j) ∈ E
0 if i = j
∞ otherwise

W k(i, j) = min{W k−1(i, j), W k−1(i, k) + W k−1(k, j)}, 1 ≤ k ≤ n

Note: W k(i, j) is the length of the shortest (≤ k)-path from vi to vj (see the slides for basic graph
algorithms).

All-Pairs Shortest Paths (cont.)

Algorithm All Pairs Shortest Paths withK(length);
begin

for i := 1 to n do
for j := 1 to n do

if (i, j) ∈ E then W [0][i, j] := length(i, j)
else W [0][i, j] := ∞;

for i := 1 to n do W [0][i, i] := 0;
for k := 1 to n do

5



for i := 1 to n do
for j := 1 to n do

W [k][i, j] := W [k − 1][i, j];
for i := 1 to n do

for j := 1 to n do
if W [k − 1][i, k] + W [k − 1][k, j] < W [k][i, j] then

W [k][i, j] := W [k − 1][i, k] + W [k − 1][k, j]
end

All-Pairs Shortest Paths (cont.)

Algorithm All Pairs Shortest Paths(length);
begin

for i := 1 to n do
for j := 1 to n do

if (i, j) ∈ E then W [i, j] := length(i, j)
else W [i, j] := ∞;

for i := 1 to n do W [i, i] := 0;
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

if W [i, k] + W [k, j] < W [i, j] then
W [i, j] := W [i, k] + W [k, j]

end

6


