
Algorithms [April 24, 2018] Spring 2018

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Prove by induction that, for a complete binary tree, one of the two subtrees under
the root is a full binary tree and the other is a complete binary tree. An empty
tree may be considered a full binary tree and also a complete binary tree. (Note:
full binary trees are special cases of complete binary trees.)

2. Consider bounding summations by integrals. We already know that, if f(x) is
monotonically increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1
f(x)dx.

(a) The sum may also be bounded from below as follows:

∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

(b) Prove, using this bounding technique, that
∑n

i=1
1
i

= Θ(log n). Note that 1
i

actually decreases when i increases.

3. Consider the problem of merging two skylines, which is a useful building block
for computing the skyline of a number of buildings. A skyline is an alternating
sequence of x coordinates and y coordinates (heights), ending with an x coordinate
(as discussed in class). The sequence of coordinates may be coveniently stored in
an array, say A, with A[0] storing the first x coordinate, A[1] the first y coordinate,
A[2] the second x coordinate, etc.

Design a linear-time procedure that prints out the resulting skyline from merging
two given skylines. Please present the procedure in suitable pseudocode. The proce-
dure should be named merge_skylines and invoked by merge_skylines(A,m,B,n),
where A and B are the two input skylines and A[m] and B[n] store the final x coor-
dinate of skyline A and that of skyline B respectively.

4. The Knapsack Problem that we discussed in class is defined as follows: Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a

1



subset of the items whose sizes sum to exactly K or determine that no such subset
exists.

We have described in class an algorithm (see the Appendix) to solve the problem.
Modify the algorithm to solve a variation of the knapsack problem where each item
has an unlimited supply. In your algorithm, please change the type of P [i, k].belong
into integer and use it to record the number of copies of item i needed. Give an
analysis of its time complexity. The more efficient your algorithm is, the more
points you will get for this problem.

5. Show all intermediate and the final AVL trees formed by inserting the numbers 5,
7, 1, 2, 4, 3, and 6 (in this order) into an empty tree. Please use the following
ordering convention: the key of an internal node is larger than that of its left child
and smaller than that of its right child. If re-balancing operations are performed,
please also show the tree before re-balancing and indicate what type of rotation is
used in the re-balancing.

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left, Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d1

2
(Left + Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle, Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that each entry of TEMP has been initialized
to 0 when the algorithm starts.

2



1 2 3 4 5 6 7 8 9 10 11 12

7 6 3 8 5 10 11 2 1 12 4 9

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot
and divide the input array A[1..n] into two parts such that, when the pivot is
properly placed in A[i], the entries in A[1..(i − 1)] are less than or equal to A[i]
and the entries in A[(i + 1)..n] are greater than or equal to A[i]. Please design an
extension of the partition procedure so that it chooses two pivots and divides the
input array into three parts. Assuming the two pivots are eventually placed in A[i]
and A[j] (i < j) respectively, the entries in A[1..(i − 1)] are less than or equal to
A[i], the entries in A[(i+ 1)..(j− 1)] are greater than or equal to A[i] and less than
or equal to A[j], and the entries in A[(j + 1)..n] are greater than or equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wher-
ever necessary. Give an analysis of its time complexity. The more efficient your
algorithm is, the more points you will be credited for this problem.

8. Below is a variant of the insertion sort algorithm.

Algorithm Insertion Sort (A, n);
begin

for i := 2 to n do
x := A[i];
j := i;
while j > 1 and A[j − 1] > x do

A[j] := A[j − 1];
j := j − 1;

end while
A[j] := x;

end for
end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the
decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the sorting result in each leaf. Please
use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array.

9. Consider the text data compression problem we have discussed in class; the problem
statement is given below.

Given a text (a sequence of characters), find an encoding for the char-
acters that satisfies the prefix constraint and that minimizes the total
number of bits needed to encode the text.

Prove that the two characters with the lowest frequencies must be among the deep-
est leaves (farthest from the root) in the final code tree.

3



10. The next table is a precomputed table that plays a critical role in the KMP algo-
rithm. For every position j of the second input string b1b2 . . . bm (to be matched
against the first input string), the value of next [j] tells the length of the longest
proper prefix that is equal to a suffix of b1b2 . . . bj−1; the value of next [0] is set to
−1 to fit in the KMP algroithm. For each of the following instances of next , give
a string of letters a and b that gives rise to the table or argue that no string can
possibly produce the table.

(a)

1 2 3 4 5 6 7 8 9
−1 0 0 1 1 2 3 4 5

(b)

1 2 3 4 5 6 7 8 9
−1 0 1 2 3 5 1 2 3

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

4



if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

• The algorithm for computing the next table in the KMP algorithm is as follows.

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

5


