
Algorithms [April 16, 2009] Spring 2009

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Prove by induction that the sum of the heights of all nodes in a full binary tree of

height h is 2h+1 − h− 2 and that the sum equals n− (h + 1), where n is the total

number of nodes in the tree. (Note: a single-node tree has height 0.)

2. The Partition procedure for the Quicksort algorithm discussed in class is as follows,

where Middle is a global variable.

Partition (X,Left ,Right);

begin

pivot := X[left ];

L := Left ; R := Right ;

while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;

while X[R] > pivot and R ≥ Left do R := R− 1;

if L < R then swap(X[L], X[R]);

Middle := R;

swap(X[Left ], X[Middle])

end

Find an adequate loop invariant for the main while loop, which is sufficient to show

that after the execution of the last two assignment statements the array is properly

partitioned by X[Middle]. Please express the loop invariant as precisely as possible,

using mathematical notation.

3. Find the asymptotic behavior of the function T (n) defined as follows:{
T (1) = 1
T (n) = T (n/2) +

√
n, n = 2i (i ≥ 1)

1



You should try to solve this problem without resorting to the general theorem for

divide-and-conquer relations (see the Appendix) discussed in class. The asymptotic

bound should be as tight as possible. (Hint: an effective way is to guess and verify

by induction. You may need to try a few choices.)

4. Consider a max heap represented as the following array which may store a maximum

of 15 elements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 12 13 11 10 9 7 6 8 1 2 4 3 5

(a) Show the resulting heap after Insert(14).

(b) Show the resulting heap after a Remove() operation (on the original heap).

5. Show all intermediate and the final AVL trees formed by inserting the numbers

3, 2, 1, 6, 5, and 4 (in this order) into an empty tree. Please use the following

ordering convention: the key of an internal node is larger than that of its left child

and smaller than that of its right child. If re-balancing operations are performed,

please also show the tree before re-balancing and indicate what type of rotation is

used in the re-balancing.

6. Let x1, x2, · · · , xn be a sequence of real numbers (not necessarily positive). Design

an O(n) algorithm to find the subsequence xi, xi+1, · · · , xj (of consecutive elements)

such that the product of the numbers in it is maximum over all consecutive subse-

quences. The product of the empty subsequence is defined to be 1.

Please present your algorithm in an adequate pseudo code and make assumptions

wherever necessary. Explain the intuition behind your algorithm so that its cor-

rectness becomes clear.

7. The Knapsack Problem is defined as follows: Given a set S of n items, where the

i-th item has an integer size S[i], and an integer K, find a subset of the items whose

sizes sum to exactly K or determine that no such subset exists.

Now consider a variant where we want the subset to be as large as possible (i.e.,

to be with as many items as possible). How will you adapt the algorithm (see the

Appendix) that we have studied in class? Your algorithm should collect at the end

the items in one of the best solutions if they exist. Please present your algorithm

in an adequate pseudo code and make assumptions wherever necessary (you may

reuse the code for the original Knapsack Problem). Give an analysis of its time

complexity. The more efficient your algorithm is, the more points you will get for

this problem.

2



8. Consider an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);

begin

pivot := X[left ];

i := Left ;

for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;

swap(X[i], X[j]);

Middle := i;

swap(X[Left ], X[Middle])

end

How does this algorithm compare to the algorithm we discussed in class? Please

point out the advantages and the disadvantages of this alternative with adequate

justification.

9. Apply the Quicksort algorithm to the following array. Show the contents of the

array after each partition operation. If you use a different partition algorithm

(from the one discussed in class), please describe it.

1 2 3 4 5 6 7 8 9 10 11 12

4 7 10 9 11 6 8 1 5 12 3 2

10. Your task is to design an in-place algorithm that sorts an array of numbers according

to a prescribed order. The input is a sequence of n numbers x1, x2, · · ·, xn and

another sequence a1, a2, · · ·, an of n distinct numbers between 1 and n (i.e., a1, a2,

· · ·, an is a permutation of 1, 2, · · ·, n), both represented as arrays. Your algorithm

should sort the first sequence according to the order imposed by the permutation

as prescribed by the second sequence. For each i, xi should appear in position ai

in the output array. As an example, if x = 23, 9, 5, 17 and a = 4, 1, 3, 2, then the

output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give

the pseudo code. Remember that the algorithm must be in-place, without using

any additional storage for the numbers to be sorted. Give an analysis of its time

complexity. The more efficient your algorithm is, the more points you will get for

this problem.

3



Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are

integer constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is an algorithm for determining whether a solution to the Knapsack Problem

exists.

Algorithm Knapsack (S,K);

begin

P [0, 0].exist := true;

for k := 1 to K do

P [0, k].exist := false;

for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;

if P [i− 1, k].exist then

P [i, k].exist := true;

P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;

P [i, k].belong := true

end

4


