
Algorithms [December 20, 2022] Fall 2022

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider the next table as in the KMP algorithm for string B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9
a b a a b a b a a
−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is
being compared with a letter in A, say A[i], which is not an a and so the matching
fails. The algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also
an a, with A[i]. The matching is bound to fail for the same reason. This comparison
could have been avoided, as we know from B itself that B[6] equals B[3] and, if
B[6] does not match A[i], then B[3] certainly will not, either. B[5], B[8], and B[9]
all have the same problem, but B[7] does not.

Please adapt the computation of the next table, so that such wasted comparisons
can be avoided. Also, please give the values of the next table for the same string
B[1..9] = abaababaa, according to the adaptation.

2. Please give a binary de Bruijn sequence of 24 bits, which is a cyclic sequence of 16
bits a1a2 · · · a16 such that each binary sequence of size 4 appears somewhere in the
sequence. Explain how you can systematically produce the de Bruijn sequence.

3. Design an algorithm that, given a weighted directed graph, detects the existence
of a negative-weight cycle (the sum of the weights of its edges is negative). Please
present your algorithm in adequate pseudocode and make assumptions wherever
necessary. Explain why your algorithm is correct and give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will be
credited for this problem.

4. What is wrong with the following algorithm for computing the minimum-cost span-
ning tree of a given weighted undirected graph (assumed to be connected)?

If the input is just a single-node graph, return the single node. Otherwise,
divide the graph into two subgraphs, recursively compute their minimum-
cost spanning trees, and then connect the two spanning trees with an edge
between the two subgraphs that has the minimum weight.

1

5. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G
is increased ; {u, v} may or may not belong to T . Design an algorithm either to
find a new MCST or to determine that T is still an MCST. Explain why your
algorithm is correct and give an analysis of its time complexity. The more efficient
your algorithm is, the more points you will be credited for this problem.

6. In the computation of SCCs by DFS, groups of vertices are discovered as SCCs
one after another. The order of discovery depends on the vertex from which the
search starts and the order via which the edges are considered from a vertex. Those
vertices getting 1 as their component number are considered discovered first, those
getting 2 are second, and so on.

(a) Draw a directed graph with three SCCs, for which it is possible to produce
any order of discovery via a DFS that always starts from the same SCC but
may try the edges in different orders.

(b) Show all 6 (= 3!) different orders of discovery by drawing 6 different DFS
numberings of the graph, each of which starts from the same SCC (but maybe
from a different vertex).

7. The most common approach to finding an augmenting path (if one exists) in a
network with some given flow is breadth-first search (BFS). Please present such an
algorithm in suitable pseudocode.

8. The cost of finding a key value in a binary search tree is linearly proportional to
the depth/level of the node where the key value is stored, with the root considered
to be at level 0. Obviously, for a key value that is known to be looked up more
frequently, it is better stored in a node at a smaller level.

Consider designing by dynamic programming an algorithm that, given the look-up
frequencies of n key values, determines the least total cost for performing all the
look-ups on an optimal binary search tree.

(a) Formulate the solution using recurrence relations; let F [1..n] be the look-up
frequencies of the n key values K[1..n], which are in sorted order.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

9. The bipartite matching problem (the maximum-cardinality matching problem for
bipartite graphs) can be reduced to the network flow problem, which in turn can be
reduced to the linear programming problem. Please illustrate the reductions, using
the graph below as input to the bipartite matching problem.

u1

u2

u3

v1

v2

v3

2

(a) Draw the network resulted from the conversion of the bipartite graph and show
a maximum flow of the resulting network.

(b) Give the linear-programming objective function and constraints for the net-
work.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
I will randomly pick one of them to grade.)

(a) The hitting set problem is as follows.

Given a collection C of subsets of a set S and a positive integer k,
does S contain a hitting set for C of size k or smaller, that is, a subset
S ′ ⊆ S with |S ′| ≤ k such that S ′ contains at least one element from
each subset in C?

Prove that the hitting set problem is NP-complete.

(b) The traveling salesman problem is as follows.

Given a weighted complete graph G = (V,E) (representing a set of
cities and the distances between all pairs of cities) and a number D,
does there exist a circuit (traveling-salesman tour) that includes all
the vertices (cities) and has a total length ≤ D?

Prove that the traveling salesman problem is NP-complete.

Appendix

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

3

• Below is a theorem useful for discovering an MCST of a connected weighted undi-
rected graph G = (V,E):

Let V1 and V2 be a partition of V and E(V1, V2) be the set of edges connecting
nodes in V1 to nodes in V2. An edge with the minimum weight in E(V1, V2) must
be in an MCST of the given G.

• We say that problem/language L1 is polynomially reducible to problem/language
L2 if there exists a conversion algorithm AC satisfying the following conditions:

1. AC runs in polynomial time (deterministically).

2. u1 ∈ L1 if and only if AC(u1) = u2 ∈ L2.

• The vertex cover problem: given an undirected graph G = (V,E) and an integer k,
determine whether G has a vertex cover containing ≤ k vertices. (A vertex cover
of G is a subset C of vertices such that every edge in G is incident to at least one
of the vertices in C.)

The vertex cover problem is NP-complete.

• The Hamiltonian cycle problem: given an undirected graph G, does G have a
Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each
vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.

4

