
Algorithms [April 15, 2004] Spring 2004

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Below is an algorithm for solving a variant of the Towers of Hanoi puzzle with an

additional fourth peg D; Towers Hanoi is an algorithm for the original puzzle.

Algorithm Four_Towers_Hanoi(A,B,C,D,n);

begin

if n<=2 then

Towers_Hanoi(A,B,C,n);

else

Four_Towers_Hanoi(A,D,B,C,n-2);

Towers_Hanoi(A,B,C,2);

Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Let T (n) denote the number of moves needed for n disks. Write a recurrence relation

for T (n) and solve it.

2. Consider binary trees where each node stores a non-negative integer. Design an

algorithm that, given such a tree T and a non-negative integer k as input, determines

whether T contains a branch (from the root to a leaf) such that the sum of all

numbers stored on the nodes of the branch equals k. The more efficient your

algorithm is, the more points you will be credited for this problem. Is there a

possibility that your code may overflow? Have you avoided the problem? (15 points)

3. Modify the following code for determining the sum of the maximum consecutive

subsequence so that it also records the start and end indices of the subsequence.

1



Algorithm Max Consec Subseq (X, n);

begin

Global Max := 0;

Suffix Max := 0;

for i := 1 to n do

if x[i] + Suffix Max > Global Max then

Suffix Max := Suffix Max + x[i];

Global Max := Suffix Max

else if x[i] + Suffix Max > 0 then

Suffix Max := Suffix Max + x[i]

else Suffix Max := 0

end

4. Show all intermediate and the final AVL trees formed by inserting the numbers

4, 2, 1, 0, 7, 8, 9, 5, 6, and 3 (in this order) into an empty tree. Please use the

following ordering convention: the key of an internal node is larger than that of its

left child and smaller than that of its right child. If a rotation is performed during

an insertion, please also show the tree before the rotation. (15 points)

5. Please present the union-find algorithm with balancing and path compression in a

suitable pseudocode. (20 points)

6. Rearrange the following array into a (max) heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 5 10 9 15 7 6 4 1 13 8 14 12 11

Show the result after each element is added to the part of array that already satisfies

the heap property.

7. Design an algorithm that determines whether two sets of numbers (represented as

arrays) are disjoint; the more efficient your algorithm is, the more points you will

be credited for this problem. State the time complexity of your algorithm in terms

of the sizes m and n of the given sets. Be sure to consider the case where m is

substantially larger than n.

8. Draw a Huffman tree for a text with the following frequency distribution: A : 12,

B : 7, C : 6, D : 4, E : 15, F : 4, G : 3, and H : 2.

2


