Algorithms [January 11, 2022] Fall 2021

Final

Note
This is a closed-book exam. KEach problem accounts for 10 points, unless otherwise
marked.
Problems
1. The next table is a precomputed table (for B = bybs - - - by,,) that plays a critical role

in the KMP algorithm. Under what condition regarding b0y - - - b;, 2 < @ < m, will
next[i] get a 0 in the preprocessing? And under what condition can it be safely set
to —1 (without missing a potential match when searching for B in another input
string)?

Design an algorithm for finding an Eulerian circuit in an undirected graph. Please
present your algorithm in adequate pseudocode and make assumptions wherever
necessary. Explain why your algorithm is correct and give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will be cred-
ited for this problem. (Hint: the discovery of a cycle and that of the Eulerian circuits
in individual connected components with the cycle removed, in the induction step,
can be interweaved.)

Design an algorithm that, given a weighted directed graph, detects the existence
of a negative-weight cycle (the sum of the weights of its edges is negative). Please
present your algorithm in adequate pseudocode and make assumptions wherever
necessary. Explain why your algorithm is correct and give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will be
credited for this problem.

Let G = (V, E) be a connected weighted undirected graph and 7" be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u,v} in G is
updated; {u,v} may or may not belong to T'. Prove that T is still an MCST of G
under any of the following two conditions:

(a) {u,v} belongs to T and its cost decreases or
(b) {u,v} does not belong to T" and its cost increases.

You may assume that the costs of all edges are distinct before and after the cost
update to {u,v}.

The most common approach to finding an augmenting path (if one exists) in a
network with some given flow is breadth-first search (BFS). Please present such an
algorithm in suitable pseudocode.

Yih-Kuen Tsay

6. Below is an algorithm, based on the dynamic programming approach, for solving
the single-source shortest path problem.

Algorithm Single_Source_Shortest_Paths(length);
begin
Dlv] := 0;
for all u # v do
if (v,u) € £ then
Dlu] := length(v,u)
else D[u| := oc;
forl:=2ton—1do
for all u # v do
for all «' such (v',u) € FE do

if D[u/] + length[u',u] < D[u] then
Dlu] :¥ D[] + length[u', u]

Denote bthe length of a shortest path from v (the source) to u containing
at most | edges; particularly, D" 1(u) is the length of a shortest path from v to u
(wit restrictions).

@gr loop with index [iteratin;rom 2 ton — 1, it is possible that, for certain
=k,

end

[u] acquires the value of D*[u], where k < k’. Why? Please explain with
all example.

7. Consider designing an algorithm by dynamic programming to determine the length
of a longest common subsequence of two strings (sequences of letters). For example,
“abbcc” is a longest common subsequence of “abcabcabc” and “aaabbbecec”, and
so is “abcec”.

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

8. Every problem in P is polynomially reducible to any other non-trivial problem in
P. Why? Please explain. (Note: a decision problem is non-trivial if there exists
an input such that the answer is yes and there also exists an input such that the
answer is no. In other words, a decision problem is non-trivial if its corresponding
language is neither the universe nor the empty set.)

9. In the proof (discussed in class) of the NP-hardness of the 3SAT problem by reduc-
tion from the SAT problem, we convert an arbitrary Boolean expression in CNF
(input of the SAT problem) to a Boolean expression in 3CNF (where each clause
has exactly three literals).

(a) Please illustrate the conversion by giving the Boolean expression that will be
obtained from the following Boolean expression:

(w+7) (v+w+r+y+2) (w+z+7+32).

2

Yih-Kuen Tsay

Yih-Kuen Tsay

Yih-Kuen Tsay

Yih-Kuen Tsay

Yih-Kuen Tsay

Yih-Kuen Tsay

Yih-Kuen Tsay

(b) The original Boolean expression is satisfiable. As a demonstration of why the
reduction is correct, please use the resulting Boolean expression to show that
it is indeed the case.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
I will randomly pick one of them to grade.)

(a) The independent set problem is as follows.

An independent set in an undirected graph is a set of vertices no two
of which are adjacent. The problem is to determine, given a graph G
and an integer k, whether GG contains an independent set with > k
vertices.

Prove that the independent set problem is NP-complete.
(b) The subset sum problem (a variant of the knapsack problem) is as follows.

The input is a multiset of numbers {ay, as, - - -, a,} and another num-
ber k. The problem is to determine whether the multiset contains a
subset such that the sum of numbers in the subset is exactly k.

Prove that the subset sum problem is NP-complete.

Appendix
e The KMP algorithm (assuming next):

Algorithm String Match (4, n, B, m);

begin
ji=1 1:=1
Start := 0;

while Start =0 and i <n do
if B[j] = A[i] then
ji=73+1 1:=14+1
else
J = next[j] + 1;
if 7 =0 then
ji=1 1:=i4+1;
if j =m+ 1 then Start :=i—m
end

e Below is a theorem useful for discovering an MCST of a connected weighted undi-
rected graph G = (V, E):

Let V1 and V5 be a partition of V' and E(Vi,V,) be the set of edges connecting
nodes in V; to nodes in V5. An edge with the minimum weight in E(V;, V) must
be in an MCST of the given G.

e We say that problem/language L is polynomially reducible to problem/language
L, if there exists a conversion algorithm AC' satisfying the following conditions:

1. AC runs in polynomial time (deterministically).
2. uy € Ly if and only if AC(u1) = ug € Lo.

3

e The clique problem: given an undirected graph G = (V, E) and an integer k,
determine whether G contains a clique of size > k. (A clique of G is a subgraph C'
of G such that every vertex in C' is adjacent to all other vertices in C.)

The clique problem is NP-complete.
e The partition problem: given a set X where each element z € X has an associated

size s(z), is it possible to partition the set into two subsets with exactly the same
total size?

The partition problem is NP-complete.

