
Algorithms [October 25, 2022] Fall 2022

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Prove by induction that every natural number greater than or equal to 12 is a non-
negative linear combination of 4 and 5, i.e., for every n ∈ N, if n ≥ 12, then there
exist a, b ∈ N s.t. n = 4a + 5b (where N is the set of all natural numbers, including
0).

2. The set of all full binary trees that store non-negative integer key values may be
defined inductively as follows.

(a) FBT (k,⊥,⊥, 0), for any non-negative integer k, is a full binary tree of height
0.

(b) If tl and tr are full binary trees of height h, then FBT (k, tl, tr, h + 1), for any
non-negative integer k, is a full binary tree of height h + 1.

Please give a similar inductive definition for the set of all complete binary trees (of
the form CBT (·, ·, ·, ·)) that store non-negative integer key values; you may reuse
FBT in parts of your definition. For instance, CBT (6,⊥,⊥, 0) is a single-node
complete binary tree storing key value 6 and CBT (8,CBT (6,⊥,⊥, 0),⊥, 1) is a
complete binary tree with two nodes — the root and its left child, storing key
values 8 and 6 repsectively. Pictorially, they may be depicted as below.

6

⊥⊥

8

⊥6

⊥⊥

3. Consider bounding summations by integrals. We already know that, if f(x) is
monotonically increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1

f(x)dx.

1



(a) The sum may also be bounded from below as follows:∫ n

0

f(x)dx ≤
n∑

i=1

f(i).

Show that this is indeed the case.

(b) Prove, using this bounding technique, that
∑n

i=1
1
i

= Θ(log n). Note that 1
i

actually decreases when i increases.

4. Show all intermediate and the final AVL trees formed by inserting the numbers 2,
6, 7, 1, 5, 3, and 4 (in this order) into an empty tree. Please use the following
ordering convention: the key of an internal node is larger than that of its left child
and smaller than that of its right child. If re-balancing operations are performed,
please also show the tree before re-balancing and indicate what type of rotation is
used in the re-balancing.

5. Below is the pseudocode of the binary search algorithm we discussed in class. Would
the code still be correct if we change the assignment “Middle := dLeft+Right

2
e” to

“Middle := bLeft+Right
2

c” for Middle to take instead the largest integer less than or

equal to Left+Right
2

? Please justify your answer. If the modified code is incorrect,
what other changes must be made accordingly?

function Find (z,Left ,Right) : integer ;
begin

if Left = Right then
if X[Left ] = z then Find := Left
else Find := 0

else

Middle := dLeft+Right
2

e;
if z < X[Middle] then

Find := Find(z,Left ,Middle − 1)
else

Find := Find(z,Middle,Right)
end

Algorithm Binary Search (X,n, z);
begin

Position := Find(z, 1, n);
end

6. Given the array below as input [to the Mergesort algorithm], what are the contents
of array TEMP after the merge part is executed for the first time and what are
the contents of TEMP when the algorithm terminates? Assume that each entry of
TEMP has been initialized to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12

8 3 2 6 5 9 10 7 1 12 4 11

2



7. Please present in suitable pseudocode the algorithm (discussed in class) for rear-
ranging an array A[1..n] of n integers into a max heap using the bottom-up approach.

8. We have studied in class an algorithm, outlined again below, for finding the mini-
mum and the maximum of a sequence of numbers.

Compare the first two numbers (assuming the input sequence is of even
length). Set min to be the smaller of the two and max the larger. Com-
pare the next pair of numbers and then compare the smaller with min
and the larger with max . Update min and max accordingly. Continue
until we have exhausted the sequence.

Draw a decision tree of the algorithm for the case of an input sequence of four
distinct numbers. In the decision tree, you must indicate (1) which two elements of
the original sequence are compared in each internal node and (2) the output (the
values of min and max respectively) in each leaf. Please use X1, X2, X3, X4 to refer
to the numbers (in this order) in the original input sequence.

9. Consider the text data compression problem we have discussed in class; the problem
statement is given below.

Given a text (a sequence of characters), find an encoding for the char-
acters that satisfies the prefix constraint and that minimizes the total
number of bits needed to encode the text.

Prove that the two characters with the lowest frequencies must be among the deep-
est leaves (farthest from the root) in the final code tree. (Hint: proof by contradic-
tion.)

10. Consider the next table as in the KMP algorithm for string B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9
a b a a b a b a a
−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is
being compared with a letter in A, say A[i], which is not an a and so the matching
fails. The algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also
an a, with A[i]. The matching is bound to fail for the same reason. This comparison
could have been avoided, as we know from B itself that B[6] equals B[3] and, if
B[6] does not match A[i], then B[3] certainly will not, either. B[5], B[8], and B[9]
all have the same problem, but B[7] does not.

Please adapt the computation of the next table, so that such wasted comparisons
can be avoided. Also, please give the values of the next table for the string B[1..9] =
abbaabbaa, according to the adaptation.

3



Appendix

• The Mergesort algorithm:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 12 (Left+Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left+ t] := TEMP [1 + t]
end

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

4


