Algorithms Spring 2001

Suggested Solutions to Midterm Problems
(Compiled on February 27, 2002)

1. Find an open Gray code of length [log, 13] (= 4) for 13 objects. Show how the Gray code is

constructed systematically from Gray codes of smaller lengths.

Solution. Let (cy,ca, .. .,cn)R denote the list ¢,, c,_1,...,c1.

Code of length 1 for 2 objects: 0, 1.

Code of length 2 for 2 objects: 00,01.

11 has not been used and differs from 01 by 1 bit.

Code of length 2 for 3 objects: 00,01,11 (which is open).

Code #1 of length 3 for 3 objects: 000,001,011.

Code #2 of length 3 for 3 objects: 100,101, 111.

Code of length 3 for 6 objects: 000,001,011, (100,101, 111)%.

Code #1 of length 4 for 6 objects: 0000,0001,0011,0111,0101,0100.
Code #2 of length 4 for 6 objects: 1000,1001,1011,1111,1101, 1100.
Code of length 4 for 12 objects:

0000, 0001,0011,0111,0101, 0100, (1000, 1001,1011,1111,1101,1100)"
= 0000, 0001,0011,0111,0101,0100,1100,1101, 1111, 1011, 1001, 1000.
1010 has not been used and differs from 1000 by 1 bit.

Code of length 4 for 13 objects:

0000, 0001,0011,0111,0101,0100,1100,1101, 1111, 1011, 1001, 1000, 1010 (which is open). O

2. Let a1, as,- -+, a, be positive real numbers such that ayas---a, = 1. Prove by induction that
(I1+a1)(14az)---(14a,) > 2" (Hint: In the inductive step, try introducing a new variable

that replaces two chosen numbers from the sequence.)

Solution. The proof is by induction on n.
Base case (n = 1): a; = 1. So, (1 +a1) =2 > 2.

Inductive step (n > 1): In any sequence ay,ag,---,a, (n > 1) of positive real numbers
where ajay - - -a, = 1, there must exist two numbers a; and a; such that a; > 1 and a; < 1.
Without loss of generality, we assume that the two numbers are a,,_1 and a,, (this can always
be achieved by swapping numbers in the sequence). As (1 —a,_1)(1 —a,) < 0, it follows that
Un-1+ an > 14 ay_1a,. Let a,,_; be the number equal to a,_ja, (which is also a positive

real number) so that ajag---a,—2al,_; = aray---ay_za,_1a, = 1.

(I4+a)(14ag) - (14+an—2)1+a,_1)(1+a,)=0+a)(1+az) -1+ an—2)(1+an_1+
ap+ an_1ay) > (1+a)(14az) - (1 +an—2)((1 4 an_1a,) + (1 + ap_1a,)) =2(1+ a1)(1 +

az) (1 + an—2)(1 + ap_1a,) =21+ a1)(1 4+ a2) -+ (1 + an—2)(1 + aj,_;), which from the
induction hypothesis is > 2 x 277! = 27, O

3. Below is an algorithm for solving a variant of the Towers of Hanoi puzzle with an additional

fourth peg D; Towers Hanoi is an algorithm for the original puzzle.

Algorithm Four_Towers_Hanoi(4,B,C,D,n);

begin

if n<=2 then

Towers_Hanoi(4,B,C,n);

else

Four_Towers_Hanoi(A,D,B,C,n-2);

Towers_Hanoi(4,B,C,2);

Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Let T'(n) denote the number of moves needed for n disks. Write a recurrence relation for
T(n) and solve it.

Solution.

Towers_Hanoi(A,B,C,1) takes 1 move, while Towers Hanoi(A,B,C,2) takes 3

moves. A recurrence relation for 7'(n) is the following:

T1)=1
T2)=3
T(n)=2T(n—-2)+3,forn >3

We solve the recurrence relation by considering odd and even n’s separately.

When n (>

When n (>

3) is odd,
T'(n)

2T(n—2) =

22T (n—4) =

"TT(3)

2T'(n—2)+3
22T(n—4)+3)=22T(n—4)+2x 3
22(2T(n—6) +3)=23T(n—6)+22x3

25" (2T()+3)—2 T 4+2"7 %3

T(n)

3) is even,

T(n)

2T(n—2) =

22T (n — 4)

22 —}—3)((2—1)
=3

[\')

2T (n—2)+3
22T(n—4)+3)=2°T(n—4)+2x 3
22(2T(n —6) +3) = 2°T'(n — 6) + 22 x 3

";(()+3)_3><2 S 42" x 3

3x 27 +3x (2" — 1)
3x 2% -3

a

4. Show all intermediate and the final AVL trees formed by inserting the numbers 1, 7, 2, 6, 3,
5, and 4 (in this order). If a rotation is performed during an insertion, please also show the

tree before the rotation.

Solution. See the attached. O

5. The Knapsack Problem is defined as follows: Given a set S of n items, where the 7th item has
an integer size S[i], and an integer K, find a subset of the items whose sizes sum to exactly

K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (S5, K);
begin
P[0, 0].exist := true;
for £ :=1to K do
P[0, k].exist := false;
for i := 1ton do
for £ := 0 to K do
Pli, k).exist := false;
if P[i —1,k].exist then
Pli, k].exist := true;
P[i, k].belong := false
else if k£ — S[i] > 0 then
if Pli — 1,k — S[i]].exist then
Pli, k].exist := true;
Pli, k].belong = true

end

(a) Modify the algorithm to solve a variation of the knapsack problem where each item has
an unlimited supply. In your algorithm, please change the type of P[i, k].belong into integer

and use it to record the number of copies of item 2 needed.

Solution. 1t suffices to modify the last five lines before “end” as follows:

Pli, k].belong := 0;
else P[i, k].belong := 0;
J=1
while £ — S[i] x 7 > 0 do
if P[i — 1,k — S[i] x j].exist then

Pli, k].exist := true;
Pli, k].belong := j;
break;

Ji=0+1

a

(b) Design an algorithm to recover the solution recorded in the array P of the algorithm in
(a).

Solution.

Procedure Print_Solution (S, P, n, K);
begin
if =P[n, K].exist then
print “no solution”
else 7 := n;
k= K;
while £ > 0 do
if P[i, k].belong > 0 then
print i, P[i, k].belong;
k =k — S[i] x Pli, k].belong;
1i=1—1

end

a

. Given as input two sorted arrays A and B, each of n numbers (in an increasing order), and
another number z, design an algorithm with running time O(n) to determine whether there
exist an element in A and an element in B whose sum is exactly z. (Hint: Recall the ideas
of the O(n) soluton to the Celebrity Problem discussed in class.)

Solution. The basic idea is the following: If A[1]+ B[n] < z, then A[1] cannot be the number
in A we are looking for, as A[1] + B[j] will be smaller than z for any j < n. On the other
hand, if A[1]+ B[n] > z, then B[n] cannot be the number in B we are looking for. In either

case, we eliminated one element from either array.

Algorithm Find_Sum (A, B, n, z);

begin
1:=1;
ji=n

while i < n and j > 1 do
if A[i] + B[j] = = then
break;
if A7l + A[j] < z then
1:=14+1
else j := 5 — 1;
if i <mnandj>1then
print “yes”
else print “no”

end

The while loop will be executed at most 2n — 1 times, hence the running time of the algorithm

is O(n). o

. Apply the quicksort algorithm to the following array. Show the contents of the array after

each partition operation.

(5]1[8]11[2]12][7]3][6]10]4]9

Solution.

(sl |8[1]2]12]7[3]6]10]4]09]

(2|1]4[3|5]12]7]11]6]10] 8] 9 |
(1]2]4[3|5]12]7]11][6]10]8]9 |
(1]2]3[4|5]12]7]11]6]10]8]9 |
(1]2[3[4|5]9[7]11]6]10] 8 [12
[1]2]3[4|5]6[7][8]9]10]11]12]

[1]2[3]4|5]6 |78 [9]10]11]12]
[1]2]3[4|5]6[7][8]9]10]11]12]
(1]2]3[4|5]6[7][8[9]10]11]12]

a
. Below is a variation of the n-coins problem.
You are given a set of n coins {cy,cq,...,¢,}, among which at least n — 1 are

identical “true” coins and at most one coin is “false”. A false coin is lighter or
heavier than a true coin. Also, you are given a balance scale, which you may use
to compare the total weight of any m coins with that of any other m coins. The
problem is to find the “false” coin, or show that there is no such coin, by making

some sequence of comparisons using the balance scale.

Show that in the worst case it is impossible to solve the n-coins problem with & comparisons

3k—1)

(for any n and k) if n > (T (Hint: Think about decision trees and how many possible

outcomes there can be for the problem.)

Solution. Fach use of the balance scale may produce three possible results. Solutions to the
n-coins problem fall within the model of decision trees where each internal node has three
branches. Any such tree of height & can contain at most 3* leaves, representing at most 3%

different outcomes.

For n coins, there are 2n+1 possible outcomes: (a) one of the n coins is lighter (n possibilities),
(b) one of the n coins is heavier (another n possibilities), and (c) none of the coins is false
(one possibility). Therefore, 3¥ must be greater than or equal to 2n + 1 for a solution with k&
comparisons to exist. In other words, no solution with k& comparisons exists if 2n + 1 > 3%,

k_
fe.if n> G2 O

. Draw a Huffman tree for a text that contains eight characters A, B, C', D, F, F, G, and H
with frequencies 8, 2, 5, 6, 14, 3, 2, and 4, respectively.

Solution. See the attached. O

