Equivalence, Simulation, and Abstraction

Yih-Kuen Tsay
(original created by Yu-Fang Chen)
Dept. of Information Management National Taiwan University

Introduction: The Need to Abstract

- Abstraction is perhaps the most important technique for alleviating the state-explosion problem.
Traditionally, finite-state verification methods are geared towards control-oriented systems.
When nontrivial data manipulations are involved, the complexity of verification is often very high.
- Fortunately, many verification tasks do not require complete information about the system (e.g., whether the value of a variable is odd or even).
- The main idea is to map the set of actual data values to a small set of abstract values.
- An abstract version of the actual system thus obtained is smaller and easier to verify.

Outline

- Preliminaries

Bisimulation Equivalence

- Simulation Preorder
- Cone of Influence Reduction
- Data Abstraction
e. Approximation

Exact Approximation

Bisimulation Relation

Let $M=\left\langle A P, S, S_{0}, R, L\right\rangle$ and $M^{\prime}=\left\langle A P, S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right\rangle$ be two Kripke structures with the same set $A P$ of atomic propositions.

- A relation $B \subseteq S \times S^{\prime}$ is a bisimulation relation between M and M^{\prime} iff, for all s and s^{\prime}, if $B\left(s, s^{\prime}\right)$ then the following conditions hold:
嚐 $L(s)=L^{\prime}\left(s^{\prime}\right)$.
* For every state s_{1} satisfying $R\left(s, s_{1}\right)$, there is s_{1}^{\prime} such that $R^{\prime}\left(s^{\prime}, s_{1}^{\prime}\right)$ and $B\left(s_{1}, s_{1}^{\prime}\right)$.
For every state s_{1}^{\prime} satisfying $R\left(s^{\prime}, s_{1}^{\prime}\right)$, there is s_{1} such that $R^{\prime}\left(s, s_{1}\right)$ and $B\left(s_{1}, s_{1}^{\prime}\right)$.

Bisimulation Equivalence

Two structures M and M^{\prime} are bisimulation equivalent, denoted $M \equiv M^{\prime}$, if there exists a bisimulation relation B between M and M^{\prime} such that:
. for every $s_{0} \in S_{0}$ there is an $s_{0}^{\prime} \in S_{0}^{\prime}$ such that $B\left(S_{0}, S_{0}^{\prime}\right)$, and
. for every $s_{0}^{\prime} \in S_{0}^{\prime}$ there is an $s_{0} \in S_{0}$ such that $B\left(S_{0}, S_{0}^{\prime}\right)$.

- Unwinding preserves bisimulation.

Bisimulation Equivalence (cont.)

Duplication preserves bisimulation.

- Two states related by a bisimulation relation is said to be bisimular.

Bisimulation Equivalence (cont.)

These two structures are not bisimulation equivalent:

Relating CTL* and Bisimulation

Theorem: If $M \equiv M^{\prime}$ then, for every CTL* formula f, $M \vDash f \Leftrightarrow M^{\prime} \vDash f$.
This can be proven with the following two lemmas.

- We say that two paths $\pi=s_{0} s_{1} \ldots$ in M and $\pi^{\prime}=s_{0}^{\prime} s_{1}^{\prime} \ldots$ in M^{\prime} correspond iff, for every $i \geq 0, B\left(s_{i}, s_{i}^{\prime}\right)$.
Lemma: Let s and s^{\prime} be two states such that $B\left(s, s^{\prime}\right)$. Then for every path starting from s there is a corresponding path starting from s^{\prime} and vice versa.
- Lemma: Let f be either a state formula or a path formula. Assume that s and s^{\prime} are bisimilar states and that π and π^{\prime} are corresponding paths. Then,

Relating CTL* and Bisimulation (cont.)

Lemma: Let f be either a state formula or a path formula. Assume that s and s^{\prime} are bisimilar states and that π and π^{\prime} are corresponding paths. Then,
e if f is a state formula, then $s \vDash f \Leftrightarrow s^{\prime} \vDash f$, and
e if f is a path formula, then $\pi \vDash f \Leftrightarrow \pi^{\prime} \vDash f$.
Base: $f=p \in A P$. Since $B\left(s, s^{\prime}\right), L(s)=L^{\prime}\left(s^{\prime}\right)$. Thus, $s \vDash p \Leftrightarrow s^{\prime} \vDash p$.

- Induction (partial): $f=\mathbf{E} f_{1}$, a state formula.

If $s \vDash f$ then there is a path π from s s.t. $\pi \vDash f_{1}$.
From the previous lemma, there is a corresponding path π^{\prime} starting from s^{\prime}.

* From the induction hypothesis, $\pi \vDash f_{1} \Leftrightarrow \pi^{\prime} \vDash f_{1}$. Therefore, $s^{\prime} \vDash \mathbf{E} f_{1}$.

Simulation Relation

Let $M=\left\langle A P, S, S_{0}, R, L\right\rangle$ and $M^{\prime}=\left\langle A P^{\prime}, S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right\rangle$ be two structures with $A P \supseteq A P^{\prime}$.

- A relation $H \subseteq S \times S^{\prime}$ is a simulation relation between M and M^{\prime} iff, for all s and s^{\prime}, if $H\left(s, s^{\prime}\right)$ then the following conditions hold:
e $L(s) \cap A P^{\prime}=L^{\prime}\left(s^{\prime}\right)$.
For every state s_{1} satisfying $R\left(s, s_{1}\right)$ there is s_{1}^{\prime} such that $R^{\prime}\left(s^{\prime}, s_{1}^{\prime}\right)$ and $H\left(s_{1}, s_{1}^{\prime}\right)$.
- We say that M^{\prime} simulates M or M is simulated by M^{\prime}, denoted $M \preceq M^{\prime}$, if there exists a simulation relation H such that for every $s_{0} \in S$ there is an $s_{0}^{\prime} \in M^{\prime}$ for which $H\left(s_{0}, s_{0}^{\prime}\right)$ holds.

Relating ACTL* and Simulation

Theorem: Suppose $M \preceq M^{\prime}$. Then for every ACTL* formula f (with atomic propositions in $A P^{\prime}$), $M^{\prime} \vDash f \Rightarrow M \vDash f$.
** Formulae in ACTL* describe properties that are quantified over all possible behaviors of a structure.
Because every behavior of M is a behavior of M^{\prime}, every formula of ACTL* that is true in M^{\prime} must also be true in M.

- The theorem does not hold for CTL* formulae.
- In the example on the next slide, M simulates M^{\prime}; however, $\mathbf{A G}(b \rightarrow \mathbf{E X} c)$ is true in M but false in M^{\prime}.

Compare Bisimulation and Simulation

- Consider these two structures:

- M and M^{\prime} are not bisimulation equivalent, but each simulates the other.
$\mathbf{A G}(b \rightarrow \mathbf{E X} c)$ is true in M, but false in M^{\prime}.

Cone of Influence Reduction

- The cone of influence reduction attempts to decrease the size of a state transition graph by focusing on the variables of the system that are referred to in the desired property specification.
- The reduction is obtained by eliminating variables that do not influence the variables in the specification.
- In this way, the checked properties are preserved, but the size of the model that needs to be verified is smaller.

Cone of Influence Reduction (cont.)

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of Boolean variables of a given structure $M=\left(S, R, S_{0}, L\right)$.
The transition relation R is specified by $\bigwedge_{i=1}^{n}\left[v_{i}^{\prime}=f_{i}(V)\right]$.

- Suppose we are given a set of variables $V^{\prime} \subseteq V$ that are of interest w.r.t. the property specification.
- The cone of influence C of V^{\prime} is the minimal set of variables such that
$V^{\prime} \subseteq C$
if for some $v_{l} \in C$ its f_{l} depends on v_{j}, then $v_{j} \in C$.
- We construct a new (reduced) structure by removing all the clauses in R whose left hand side variables do not appear in C and using C to construct states.

An Example

Let $V=\left\{v_{0}, v_{1}, v_{2}\right\}$ and $M=\left(S, R, S_{0}, L\right)$ a structure over
V, where $R=\left(v_{0}^{\prime}=\neg v_{0}\right) \wedge\left(v_{1}^{\prime}=v_{0} \oplus v_{1}\right) \wedge\left(v_{2}^{\prime}=v_{1} \oplus v_{2}\right)$.
. If $V^{\prime}=\left\{v_{0}\right\}$ then $C=\left\{v_{0}\right\}$, since $f_{0}=\neg v_{0}$ does not depend on any variable other than v_{0}.
If $V^{\prime}=\left\{v_{1}\right\}$ then $C=\left\{v_{0}, v_{1}\right\}$, since $f_{1}=v_{0} \oplus v_{1}$ depends on both variables.
. If $V^{\prime}=\left\{v_{2}\right\}$ then $C=\left\{v_{0}, v_{1}, v_{2}\right\}$, since $f_{2}=v_{1} \oplus v_{2}$ depends on v_{1}, v_{2} and $f_{1}=v_{0} \oplus v_{1}$ depends on v_{0}, v_{1} (because v_{1} is in C).

The Reduced Model

- Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
- $M=\left(S, R, S_{0}, L\right)$ is a structure over V :

级 $S=\{0,1\}^{n}$ is the set of all valuations of V.
$R=\bigwedge_{i=1}^{n}\left[v_{i}^{\prime}=f_{i}(V)\right]$.
$L(s)=\left\{v_{i} \mid s\left(v_{i}\right)=1\right.$ for $\left.1 \leq i \leq n\right\}$.
$S_{0} \subseteq S$.

The Reduced Model (cont.)

- The reduced model $\widehat{M}=\left(\widehat{S}, \widehat{R}, \widehat{S_{0}}, \widehat{L}\right)$ w.r.t.
$C=\left\{v_{1}, \ldots, v_{k}\right\}$ for some $k \leq n$:
, $\widehat{S}=\{0,1\}^{k}$ is the set of all valuations of C.
, $\widehat{R}=\bigwedge_{i=1}^{k}\left[v_{i}^{\prime}=f_{i}(V)\right]$.
, $\widehat{L}(\widehat{s})=\left\{v_{i} \mid \widehat{s}\left(v_{i}\right)=1\right.$ for $\left.1 \leq i \leq k\right\}$.
, $\widehat{S_{0}}=\left\{\left(\widehat{d_{1}}, \ldots, \widehat{d_{k}}\right) \mid\right.$ there is a state $\left(d_{1}, \ldots, d_{n}\right) \in S_{0}$ s.t.
$\left.\widehat{d_{1}}=d_{1} \wedge \cdots \wedge \widehat{d_{k}}=d_{k}\right\}$.

Bisimulation Equivalence Between Models

- Let $B \subseteq S \times \widehat{S}$ be the relation defined as follows: $\left(\left(d_{1}, \ldots, d_{n}\right),\left(\widehat{d_{1}}, \ldots, \widehat{d_{k}}\right)\right) \in B \Leftrightarrow d_{i}=\widehat{d_{i}}$ for all $1 \leq i \leq k$.
We show that B is a bisimulation relation between M and $\widehat{M}(M \equiv \widehat{M})$.
* For every $s_{0} \in S$ there is a corresponding $\widehat{s_{0}} \in \widehat{S}$ and vice versa.
Let $s=\left(d_{1}, \ldots, d_{n}\right)$ and $\widehat{s}=\left(\widehat{d_{1}}, \ldots, \widehat{d_{k}}\right)$ s.t. $(s, \widehat{s}) \in B$.
, $L(s) \cap C=\widehat{L}(\widehat{s})$.
e If $s \rightarrow t$ is a transition in M, then there is a transition $\widehat{s} \rightarrow \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$.
If $\widehat{s} \rightarrow \widehat{t}$ is a transition in \widehat{M}, then there is a transition $s \rightarrow t$ in M s.t. $(t, \widehat{t}) \in B$.

Bisimulation Equiv. Between Models (cont.)

- Let $s \rightarrow t$ be a transition in M.

There is a transition $\widehat{s} \rightarrow \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$.

1. For $1 \leq i \leq n, v_{i}^{\prime}=f_{i}(V)$. (Transition relation)
2. For $1 \leq i \leq k, v_{i}$ depends only on variables in C, hence $v_{i}^{\prime}=f_{i}(C)$. (Definition of C)
3. $(s, \widehat{s}) \in B$ implies $\bigwedge_{i=1}^{k}\left(d_{i}=\widehat{d}_{i}\right)$. (Bisimilar states)
4. Let $t=\left(e_{1}, \ldots, e_{k}\right)$. For every $1 \leq i \leq k$,
$e_{i}=f_{i}\left(d_{1}, \ldots, d_{k}\right)=f_{i}\left(\widehat{d_{1}}, \ldots, \widehat{d_{k}}\right) .($ From 2,3$)$
5. If we choose $\widehat{t}=\left(e_{1}, \ldots, e_{k}\right)$, then $\widehat{s} \rightarrow \widehat{t}$ and $(t, \widehat{t}) \in B$ as required.
Theorem: Let f be a CTL* formula with atomic propositions in C. Then $M \vDash f \Leftrightarrow \widehat{M} \vDash f$.

Data Abstraction

- Data abstraction involves finding a mapping between the actual data values in the system and a small set of abstract data values.
- By extending this mapping to states and transitions, it is possible to obtain an abstract system that simulates the original system and is usually much smaller.
- Example: Assume we are interested in expressing a property involving the sign of x. We create a domain A_{x} of abstract values for x, with $\left\{a_{0}, a_{+}, a_{-}\right\}$, and define a mapping h_{x} from D_{x} to A_{x} as follows:

$$
h_{x}(d)= \begin{cases}a_{0} & \text { if } d=0 \\ a_{+} & \text {if } d>0 \\ a_{-} & \text {if } d<0\end{cases}
$$

Data Abstraction (cont.)

The abstract value of x can be expressed by three APs: " $\widehat{x}=a_{0}$ ", " $\widehat{x}=a_{+} "$, and " $\widehat{x}=a_{-} "$.
All states labelled with " $\widehat{x}=a_{+}$" will be collapsed into one state, that is, all states where $x>0$ are merged into one.

- If there is a transition between, e.g., states corresponding to $x=0$ and $x=5$, there must be a transition between states labelled $\widehat{x}=a_{0}$ and $\widehat{x}=a_{+}$.

The Reduced Model

Let h be a mapping form D to an abstract domain A.

- The mapping determines a set of abstract atomic propositions AP.
- We now obtain a new structure $M=\left(S, R, S_{0}, L\right)$ that is identical to the original one expect that L labels each state with a subset of $A P$.
- The structure M can be collapsed into a reduced structure M_{r} over $A P$ defined as follows:
$S_{r}=\{L(s) \mid s \in S\}$.
豍 $R_{r}\left(s_{r}, t_{r}\right)$ iff there exist s and t s.t. $s_{r}=L(s), t_{r}=L(t)$, and $R(s, t)$.
e $s_{r} \in S_{0}^{r}$ iff there exists an s s.t. $s_{r}=L(s)$ and $s \in S_{0}$.
$L_{r}\left(s_{r}\right)=s_{r}$ (each s_{r} is a set of atomic propositions).

The Reduced Model (cont.)

- M_{r} simulates the structure M.
- Every path that can be generated by M can also be generated by M_{r}.
Whatever ACTL* properties we can prove about M_{r} will be also hold in M.
- Note that using this technique it is only possible to determine whether formulae over $A P$ are true in M.

The Reduced Model (cont.)

$h($ red $)=$ stop $; h($ yellow $)=$ stop $; h($ green $)=$ go.

Approximation

- In many cases, M_{r} may still be too large to construct exactly.
- To further reduce the state space, an approximation M_{a} that simulates M_{r} is constructed.
- The goal here is to have M_{a} sufficiently close to M_{r} so that it is still possible to verify interesting properties.

The Model in FOL

We use the first order formulae \mathcal{S}_{0} and \mathcal{R} to define the Kripke structure $M=\left(S, R, S_{0}, L\right)$ with state set
$S=D \times \cdots \times D$.
S_{0} is the set of valuations satisfying \mathcal{S}_{0}.

- Similarly, R is derived from \mathcal{R}.
- L is defined over abstract atomic propositions, e.g.,
$\left\{" \widehat{x_{1}}=a_{1} ", " \widehat{x_{2}}=a_{2} ", \ldots, " \widehat{n_{n}}=a_{n} "\right\}$.

The Reduced Model in FOL

- To produce M_{r} over the abstract state set $A \times \cdots \times A$, we construct formulae over $\widehat{x_{1}}, \ldots, \widehat{x_{n}}$ and ${\widehat{x_{1}}}^{\prime}, \ldots, \widehat{x_{n}}$ that will represent the initial states and transition relation of M_{r}.
$\widehat{\mathcal{S}_{0}}=\exists x_{1} \cdots \exists x_{n}\left(h\left(x_{1}\right)=\widehat{x_{1}} \wedge \cdots \wedge h\left(x_{n}\right)=\widehat{x_{n}} \wedge \mathcal{S}_{0}\left(x_{1}, \ldots, x_{n}\right)\right)$.
$\widehat{\mathcal{R}}=\exists x_{1} \cdots \exists x_{n} \exists x_{1}^{\prime} \cdots \exists x_{n}^{\prime}\left(h\left(x_{1}\right)=\widehat{x_{1}} \wedge \cdots \wedge h\left(x_{n}\right)=\widehat{x_{n}} \wedge\right.$ $\left.h\left(x_{1}^{\prime}\right)=\widehat{x_{1}}{ }^{\prime} \wedge \cdots \wedge h\left(x_{n}^{\prime}\right)=\widehat{x_{n}} \wedge \mathcal{R}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)$.

The Reduced Model in FOL (cont.)

- For conciseness, this existential abstraction operation is denoted by [.].
If ϕ depends on the free variables x_{1}, \ldots, x_{m}, then define $[\phi]\left(\widehat{x_{1}}, \ldots, \widehat{x_{m}}\right)=$ $\exists x_{1} \cdots \exists x_{m}\left(h\left(x_{1}\right)=\widehat{x_{1}} \wedge \cdots \wedge h\left(x_{m}\right)=\widehat{x_{m}} \wedge \phi\left(x_{1}, \ldots, x_{m}\right)\right)$
- So, $\widehat{\mathcal{S}_{0}}=\left[\mathcal{S}_{0}\right]$ and $\widehat{\mathcal{R}}=[\mathcal{R}]$.

Computing Approximation

- Ideally, we would like to extract S_{0}^{r} and R_{r} from $\left[\mathcal{S}_{0}\right]$ and $[\mathcal{R}]$. However, this is often computationally expensive.
- To circumvent this difficulty, we define a transformation \mathcal{A} on formula ϕ.
- The idea is to simplify the formulae to which [.] is applied ("pushing the abstractions inward").
- This will make it easier to extract the Kripke structure from the formulae.
- Example: consider $[\phi]\left(\widehat{x_{1}}, \ldots, \widehat{x_{m}}\right)=$ $\exists x_{1} \cdots \exists x_{m}\left(h\left(x_{1}\right)=\widehat{x_{1}} \wedge \cdots \wedge h\left(x_{m}\right)=\widehat{x_{m}} \wedge \phi\left(x_{1}, \ldots, x_{m}\right)\right)$. If $[\phi]\left(\widehat{x_{1}}, \ldots, \widehat{x_{m}}\right)=$ false, we have to evaluate $\phi\left(x_{1}, \ldots, x_{m}\right)$ with all possible valuations of x_{1}, \ldots, x_{m}.

Computing Approximation (cont.)

Assume ϕ is given in the negation normal form.

- $\mathcal{A}\left(P\left(x_{1}, \ldots, x_{m}\right)\right)=[P]\left(\widehat{x_{1}}, \ldots, \widehat{x_{m}}\right)$ if P is a primitive relation.

Similarly, $\mathcal{A}\left(\neg P\left(x_{1}, \ldots, x_{m}\right)\right)=[\neg P]\left(\widehat{x_{1}}, \ldots, \widehat{x_{m}}\right)$.$\mathcal{A}\left(\phi_{1} \wedge \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \wedge \mathcal{A}\left(\phi_{2}\right)$.

- $\mathcal{A}\left(\phi_{1} \vee \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \vee \mathcal{A}\left(\phi_{2}\right)$.
- $\mathcal{A}(\exists x \phi)=\exists \widehat{x} \mathcal{A}(\phi)$.
- $\mathcal{A}(\forall x \phi)=\forall \widehat{x} \mathcal{A}(\phi)$.

Computing Approximation (cont.)

The approximation Kripke structure $M_{a}=\left(S_{a}, s_{0}^{a}, R_{a}, L_{a}\right)$ can be derived from $\mathcal{A}\left(\mathcal{S}_{0}\right)$ and $\mathcal{A}(\mathcal{R})$.

- Let $s_{a}=\left(a_{1}, \ldots, a_{n}\right) \in S_{a}$. Then
$L_{a}\left(s_{a}\right)=\left\{" \widehat{x_{1}}=a_{1} ", " \widehat{x_{2}}=a_{2} ", \ldots, " \widehat{x_{n}}=a_{n} "\right\}$.
- Note that $s=\left(d_{1}, \ldots, d_{n}\right) \in S$ and s_{a} will be labeled identically if for all $i, h\left(d_{i}\right)=a_{i}$.

Computing Approximation (cont.)

- The price for the approximation is that it may be necessary to add extra initial states and transitions to the corresponding structure.
- This is because $[\phi]$ implies $\mathcal{A}(\phi)$, but the converse may not be true.
In particular, $\left[\mathcal{S}_{0}\right] \rightarrow \mathcal{A}\left(\mathcal{S}_{0}\right)$ and $[\mathcal{R}] \rightarrow \mathcal{A}(\mathcal{R})$.
- Theorem: [ϕ] implies $\mathcal{A}(\phi)$.

Computing Approximation (cont.)

The proof is by induction on the structure of ϕ.
We show the case $\phi\left(x_{1}, \ldots, x_{m}\right)=\forall x \phi_{1}$ only.

$$
\begin{aligned}
& {\left[\forall x \phi_{1}\right] } \\
= & \exists x_{1} \cdots \exists x_{m}\left(\bigwedge h\left(x_{i}\right)=\widehat{x_{i}} \wedge \forall x \phi_{1}\left(x, x_{1}, \ldots, x_{m}\right)\right) \\
= & \exists x_{1} \cdots \exists x_{m} \forall x\left(\bigwedge h\left(x_{i}\right)=\widehat{x_{i}} \wedge \phi_{1}\left(x, x_{1}, \ldots, x_{m}\right)\right) \\
\rightarrow & \forall x \exists x_{1} \cdots \exists x_{m}\left(\bigwedge h\left(x_{i}\right)=\widehat{x_{i}} \wedge \phi_{1}\left(x, x_{1}, \ldots, x_{m}\right)\right) \\
\rightarrow & \forall \widehat{x} \exists x\left[\exists x_{1} \cdots \exists x_{m}\left(h(x)=\widehat{x} \wedge \bigwedge h\left(x_{i}\right)=\widehat{x_{i}} \wedge \phi_{1}\left(x, x_{1}, \ldots, x_{m}\right)\right)\right. \\
= & \forall \widehat{x}\left[\phi_{1}\right] \\
\rightarrow & \forall \widehat{x} \mathcal{A}\left(\phi_{1}\right) \\
= & \mathcal{A}\left(\forall x \phi_{1}\right)
\end{aligned}
$$

Computing Approximation (cont.)

Theorem: $M \preceq M_{a}$.

- Proof:

1. Because the approximation M_{a} only adds extra initial states and transitions to the reduced model M_{r}, all paths in the M_{r} are reserved. So, $M_{r} \preceq M_{a}$.
2. Since $M \preceq M_{r}$ and \preceq is transitive, $M \preceq M_{a}$.

- Corollary: Every ACTL* formula that holds in M_{a} also holds in M.

Exact Approximation

- We consider some additional conditions that allow us to show that M is bisimulation equivalent to M_{a}.
- Each abstraction mapping h_{x} for variable x induces an equivalence relation \sim_{x} :
Let d_{1} and d_{2} be in D_{x}.
数 $d_{1} \sim_{x} d_{2}$ iff $h_{x}\left(d_{1}\right)=h_{x}\left(d_{2}\right)$.
The equivalence relation $\sim_{x_{i}}$ is a congruence with respect to a primitive relation P iff

$$
\begin{aligned}
& \forall d_{1} \cdots \forall d_{m} \forall e_{1} \cdots \forall e_{m} \\
& \left(\bigwedge_{i=1}^{m} d_{i} \sim_{x_{i}} e_{i} \rightarrow\left(P\left(d_{1}, \ldots, d_{m}\right) \Leftrightarrow P\left(e_{1}, \ldots, e_{m}\right)\right)\right)
\end{aligned}
$$

Exact Approximation (cont.)

Theorem: If the $\sim_{x_{i}}$ are congruences with respect to the primitive relations and ϕ is a formula defined over these relations, then $[\phi] \Leftrightarrow \mathcal{A}(\phi)$, i.e., $M_{a} \equiv M_{r}$.
Theorem: If $\sim_{x_{i}}$ are congruences with respect to the primitive relations, then $M \equiv M_{a}$.

