Equivalence, Simulation, and Abstraction

Yih-Kuen Tsay (original created by Yu-Fang Chen)

Dept. of Information Management National Taiwan University

Automatic Verification 2009: Equivalence, Simulation, and Abstraction – 1/36

Introduction: The Need to Abstract

- Abstraction is perhaps the most important technique for alleviating the state-explosion problem.
- Traditionally, finite-state verification methods are geared towards control-oriented systems.
- When nontrivial data manipulations are involved, the complexity of verification is often very high.
- Fortunately, many verification tasks do not require complete information about the system (e.g., whether the value of a variable is odd or even).
- The main idea is to map the set of actual data values to a small set of abstract values.
- An abstract version of the actual system thus obtained is smaller and easier to verify.

Outline

Preliminaries

- Bisimulation Equivalence
- Simulation Preorder
- Cone of Influence Reduction
- Data Abstraction
 - Approximation
 - Exact Approximation

Bisimulation Relation

- Solution Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP, S', S'_0, R', L' \rangle$ be two Kripke structures with the same set AP of atomic propositions.
- A relation $B \subseteq S \times S'$ is a bisimulation relation between M and M' iff, for all s and s', if B(s, s') then the following conditions hold:
 - $\stackrel{\text{\tiny{(s)}}}{=} L(s) = L'(s').$
 - * For every state s_1 satisfying $R(s, s_1)$, there is s'_1 such that $R'(s', s'_1)$ and $B(s_1, s'_1)$.
 - ***** For every state s'_1 satisfying $R(s', s'_1)$, there is s_1 such that $R'(s, s_1)$ and $B(s_1, s'_1)$.

Bisimulation Equivalence

- Two structures M and M' are bisimulation equivalent, denoted $M \equiv M'$, if there exists a bisimulation relation Bbetween M and M' such that:
 - ♦ for every $s_0 \in S_0$ there is an $s'_0 \in S'_0$ such that $B(S_0, S'_0), \text{ and }$
 - ♦ for every $s'_0 \in S'_0$ there is an $s_0 \in S_0$ such that $B(S_0, S'_0)$.
- Unwinding preserves bisimulation.

Bisimulation Equivalence (cont.)

Duplication preserves bisimulation.

Two states related by a bisimulation relation is said to be bisimular.

Bisimulation Equivalence (cont.)

These two structures are not bisimulation equivalent:

Relating CTL* and Bisimulation

- **Theorem**: If $M \equiv M'$ then, for every CTL* formula f, $M \vDash f \Leftrightarrow M' \vDash f$.
- This can be proven with the following two lemmas.
- We say that two paths $\pi = s_0 s_1 \dots$ in M and $\pi' = s'_0 s'_1 \dots$ in M' correspond iff, for every $i \ge 0$, $B(s_i, s'_i)$.
- Solution Lemma: Let s and s' be two states such that B(s, s'). Then for every path starting from s there is a corresponding path starting from s' and vice versa.
- Lemma: Let f be either a state formula or a path formula. Assume that s and s' are bisimilar states and that π and π' are corresponding paths. Then,

Relating CTL* and Bisimulation (cont.)

Lemma: Let f be either a state formula or a path formula. Assume that s and s' are bisimilar states and that π and π' are corresponding paths. Then,

* if *f* is a state formula, then $s \vDash f \Leftrightarrow s' \vDash f$, and if *f* is a path formula, then $\pi \vDash f \Leftrightarrow \pi' \vDash f$.

- Solution Base: $f = p \in AP$. Since B(s, s'), L(s) = L'(s'). Thus, $s \models p \Leftrightarrow s' \models p$.
- Solution (partial): $f = \mathbf{E}f_1$, a state formula.
 - **i** If $s \vDash f$ then there is a path π from s s.t. $\pi \vDash f_1$.
 - * From the previous lemma, there is a corresponding path π' starting from s'.
 - **From the induction hypothesis,** $\pi \vDash f_1 \Leftrightarrow \pi' \vDash f_1$.
 - ***** Therefore, $s' \models \mathbf{E}f_1$.

Simulation Relation

- Solution Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP', S', S'_0, R', L' \rangle$ be two structures with $AP \supseteq AP'$.
- A relation $H \subseteq S \times S'$ is a simulation relation between Mand M' iff, for all s and s', if H(s, s') then the following conditions hold:

$$\stackrel{\text{\tiny{\ast}}}{=} L(s) \cap AP' = L'(s').$$

- ***** For every state s_1 satisfying $R(s, s_1)$ there is s'_1 such that $R'(s', s'_1)$ and $H(s_1, s'_1)$.
- Solution We say that M' simulates M or M is simulated by M', denoted $M \leq M'$, if there exists a simulation relation Hsuch that for every $s_0 \in S$ there is an $s'_0 \in M'$ for which $H(s_0, s'_0)$ holds.

Relating ACTL* and Simulation

- Suppose $M \preceq M'$. Then for every ACTL* formula f (with atomic propositions in AP'), $M' \vDash f \Rightarrow M \vDash f$.
 - Formulae in ACTL* describe properties that are quantified over all possible behaviors of a structure.
 - **Solution** Because every behavior of M is a behavior of M', every formula of ACTL* that is true in M' must also be true in M.
- The theorem does not hold for CTL* formulae.
- In the example on the next slide, M simulates M'; however, $\mathbf{AG}(b \rightarrow \mathbf{EX} c)$ is true in M but false in M'.

Compare Bisimulation and Simulation

Consider these two structures:

- M and M' are not bisimulation equivalent, but each simulates the other.
- $AG(b \rightarrow EX c)$ is true in M, but false in M'.

Cone of Influence Reduction

- The cone of influence reduction attempts to decrease the size of a state transition graph by focusing on the variables of the system that are referred to in the desired property specification.
- The reduction is obtained by eliminating variables that do not influence the variables in the specification.
- In this way, the checked properties are preserved, but the size of the model that needs to be verified is smaller.

Cone of Influence Reduction (cont.)

- Solution Let $V = \{v_1, \ldots, v_n\}$ be the set of Boolean variables of a given structure $M = (S, R, S_0, L)$.
- Solution The transition relation R is specified by $\bigwedge_{i=1}^{n} [v'_i = f_i(V)]$.
- Suppose we are given a set of variables $V' \subseteq V$ that are of interest w.r.t. the property specification.
- The cone of influence C of V' is the minimal set of variables such that
 - $\circledast V' \subseteq C$
 - \circledast if for some $v_l \in C$ its f_l depends on v_j , then $v_j \in C$.
- We construct a new (reduced) structure by removing all the clauses in R whose left hand side variables do not appear in C and using C to construct states.

An Example

- Solution Solution Set *V* = {*v*₀, *v*₁, *v*₂} and *M* = (*S*, *R*, *S*₀, *L*) a structure over *V*, where *R* = ($v'_0 = \neg v_0$) ∧ ($v'_1 = v_0 \oplus v_1$) ∧ ($v'_2 = v_1 \oplus v_2$).
 If *V'* = {*v*₀} then *C* = {*v*₀}, since *f*₀ = ¬*v*₀ does not
 - depend on any variable other than v_0 .
 - If $V' = \{v_1\}$ then $C = \{v_0, v_1\}$, since $f_1 = v_0 \oplus v_1$ depends on both variables.
 - * If $V' = \{v_2\}$ then $C = \{v_0, v_1, v_2\}$, since $f_2 = v_1 \oplus v_2$ depends on v_1, v_2 and $f_1 = v_0 \oplus v_1$ depends on v_0, v_1 (because v_1 is in C).

The Reduced Model

• Let
$$V = \{v_1, \dots, v_n\}$$
.
• $M = (S, R, S_0, L)$ is a structure over V :
• $S = \{0, 1\}^n$ is the set of all valuations of V .
• $R = \bigwedge_{i=1}^n [v'_i = f_i(V)]$.
• $L(s) = \{v_i \mid s(v_i) = 1 \text{ for } 1 \le i \le n\}$.
• $S_0 \subseteq S$.

The Reduced Model (cont.)

The reduced model
$$\widehat{M} = (\widehat{S}, \widehat{R}, \widehat{S_0}, \widehat{L})$$
 w.r.t.
$$C = \{v_1, \ldots, v_k\} \text{ for some } k \leq n:$$

$$\widehat{S} = \{0, 1\}^k \text{ is the set of all valuations of } C.$$

$$\widehat{R} = \bigwedge_{i=1}^k [v'_i = f_i(V)].$$

$$\widehat{L}(\widehat{s}) = \{v_i \mid \widehat{s}(v_i) = 1 \text{ for } 1 \leq i \leq k\}.$$

$$\widehat{S_0} = \{(\widehat{d_1}, \ldots, \widehat{d_k}) \mid \text{ there is a state } (d_1, \ldots, d_n) \in S_0 \text{ s.t.}$$

$$\widehat{d_1} = d_1 \land \cdots \land \widehat{d_k} = d_k\}.$$

Bisimulation Equivalence Between Models

- Let $B \subseteq S \times \widehat{S}$ be the relation defined as follows: $((d_1, \ldots, d_n), (\widehat{d_1}, \ldots, \widehat{d_k})) \in B \Leftrightarrow d_i = \widehat{d_i}$ for all $1 \le i \le k$.
- Solution We show that B is a bisimulation relation between M and \widehat{M} ($M \equiv \widehat{M}$).
 - ***** For every $s_0 \in S$ there is a corresponding $\widehat{s}_0 \in \widehat{S}$ and *vice versa*.
 - **Let** $s = (d_1, \ldots, d_n)$ and $\widehat{s} = (\widehat{d}_1, \ldots, \widehat{d}_k)$ s.t. $(s, \widehat{s}) \in B$. $E(s) \cap C = \widehat{L}(\widehat{s})$.
 - If s → t is a transition in M, then there is a transition $\widehat{s} \to \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$.
 - If $\widehat{s} \to \widehat{t}$ is a transition in \widehat{M} , then there is a transition *s* → *t* in *M* s.t. $(t, \widehat{t}) \in B$.

Bisimulation Equiv. Between Models (cont.)

Solution Let $s \to t$ be a transition in M.

- Solution $\widehat{s} \to \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$.
 - 1. For $1 \le i \le n, v'_i = f_i(V)$. (Transition relation)
 - 2. For $1 \le i \le k$, v_i depends only on variables in C, hence $v'_i = f_i(C)$. (Definition of C)
 - **3.** $(s, \hat{s}) \in B$ implies $\bigwedge_{i=1}^{k} (d_i = \hat{d}_i)$. (Bisimilar states)
 - **4.** Let $t = (e_1, ..., e_k)$. For every $1 \le i \le k$, $e_i = f_i(d_1, ..., d_k) = f_i(\widehat{d_1}, ..., \widehat{d_k})$. (From 2,3)
 - 5. If we choose $\hat{t} = (e_1, \dots, e_k)$, then $\hat{s} \to \hat{t}$ and $(t, \hat{t}) \in B$ as required.
- Solution Theorem: Let f be a CTL* formula with atomic propositions in C. Then $M \vDash f \Leftrightarrow \widehat{M} \vDash f$.

Data Abstraction

- Data abstraction involves finding a mapping between the actual data values in the system and a small set of abstract data values.
- By extending this mapping to states and transitions, it is possible to obtain an abstract system that simulates the original system and is usually much smaller.
- Solution Example: Assume we are interested in expressing a property involving the sign of x. We create a domain A_x of abstract values for x, with $\{a_0, a_+, a_-\}$, and define a mapping h_x from D_x to A_x as follows:

$$h_x(d) = \begin{cases} a_0 & \text{if } d = 0\\ a_+ & \text{if } d > 0\\ a_- & \text{if } d < 0 \end{cases}$$

Automatic Verification 2009: Equivalence, Simulation, and Abstraction – 20/36

Data Abstraction (cont.)

- Solution The abstract value of x can be expressed by three APs: " $\widehat{x} = a_0$ ", " $\widehat{x} = a_+$ ", and " $\widehat{x} = a_-$ ".
- Solution All states labelled with " $\hat{x} = a_+$ " will be collapsed into one state, that is, all states where x > 0 are merged into one.
- If there is a transition between, e.g., states corresponding to x = 0 and x = 5, there must be a transition between states labelled $\hat{x} = a_0$ and $\hat{x} = a_+$.

The Reduced Model

- Solution Let h be a mapping form D to an abstract domain A.
- The mapping determines a set of abstract atomic propositions AP.
- Solution We now obtain a new structure $M = (S, R, S_0, L)$ that is identical to the original one expect that *L* labels each state with a subset of *AP*.
- Solution The structure M can be collapsed into a reduced structure M_r over AP defined as follows:

$$\stackrel{\text{\tiny{(1)}}}{=} S_r = \{L(s) \mid s \in S\}.$$

- * $R_r(s_r, t_r)$ iff there exist s and t s.t. $s_r = L(s)$, $t_r = L(t)$, and R(s, t).
- $s_r \in S_0^r$ iff there exists an s s.t. $s_r = L(s)$ and $s \in S_0$.

 $\stackrel{\text{\tiny{(1)}}}{=} L_r(s_r) = s_r$ (each s_r is a set of atomic propositions).

The Reduced Model (cont.)

- M_r simulates the structure M.
- Solution Every path that can be generated by M can also be generated by M_r .
- Solution Whatever ACTL* properties we can prove about M_r will be also hold in M.
- Note that using this technique it is only possible to determine whether formulae over AP are true in M.

The Reduced Model (cont.)

h(red) = stop; h(yellow) = stop; h(green) = go.

Automatic Verification 2009: Equivalence, Simulation, and Abstraction – 24/36

Approximation

- In many cases, M_r may still be too large to construct exactly.
- Solution To further reduce the state space, an approximation M_a that simulates M_r is constructed.
- Solution The goal here is to have M_a sufficiently close to M_r so that it is still possible to verify interesting properties.

The Model in FOL

- Solution We use the first order formulae S_0 and \mathcal{R} to define the Kripke structure $M = (S, R, S_0, L)$ with state set $S = D \times \cdots \times D$.
- \bigcirc S₀ is the set of valuations satisfying \mathcal{S}_0 .
- Similarly, R is derived from \mathcal{R} .
- *L* is defined over abstract atomic propositions, e.g., $\{ \hat{x}_1 = a_1, \hat{x}_2 = a_2, \dots, \hat{x}_n = a_n \}.$

The Reduced Model in FOL

• To produce M_r over the abstract state set $A \times \cdots \times A$, we construct formulae over $\widehat{x_1}, \ldots, \widehat{x_n}$ and $\widehat{x_1}', \ldots, \widehat{x_n}'$ that will represent the initial states and transition relation of M_r .

$$\widehat{\mathcal{S}}_0 = \exists x_1 \cdots \exists x_n (h(x_1) = \widehat{x_1} \wedge \cdots \wedge h(x_n) = \widehat{x_n} \wedge \mathcal{S}_0(x_1, \dots, x_n)).$$

$$\mathcal{R} = \exists x_1 \cdots \exists x_n \exists x'_1 \cdots \exists x'_n (h(x_1) = \widehat{x_1} \land \cdots \land h(x_n) = \widehat{x_n} \land h(x'_1) = \widehat{x_1}' \land \cdots \land h(x'_n) = \widehat{x_n}' \land \mathcal{R}(x_1, \dots, x_n, x'_1, \dots, x'_n)).$$

The Reduced Model in FOL (cont.)

- For conciseness, this existential abstraction operation is denoted by [·].
- If ϕ depends on the free variables x_1, \ldots, x_m , then define $[\phi](\widehat{x_1}, \ldots, \widehat{x_m}) =$ $\exists x_1 \cdots \exists x_m (h(x_1) = \widehat{x_1} \land \cdots \land h(x_m) = \widehat{x_m} \land \phi(x_1, \ldots, x_m))$

$$\reget$$
 So, $\widehat{\mathcal{S}_0}=[\mathcal{S}_0]$ and $\widehat{\mathcal{R}}=[\mathcal{R}].$

Computing Approximation

- Ideally, we would like to extract S_0^r and R_r from $[S_0]$ and $[\mathcal{R}]$. However, this is often computationally expensive.
- Solution To circumvent this difficulty, we define a transformation \mathcal{A} on formula ϕ .
- The idea is to simplify the formulae to which [·] is applied ("pushing the abstractions inward").
- This will make it easier to extract the Kripke structure from the formulae.
- Second Example: consider $[\phi](\widehat{x_1}, \dots, \widehat{x_m}) = \exists x_1 \dots \exists x_m (h(x_1) = \widehat{x_1} \wedge \dots \wedge h(x_m) = \widehat{x_m} \wedge \phi(x_1, \dots, x_m)).$ If $[\phi](\widehat{x_1}, \dots, \widehat{x_m}) = false$, we have to evaluate $\phi(x_1, \dots, x_m)$ with all possible valuations of x_1, \dots, x_m .

- Solution ϕ is given in the negation normal form.
- $\mathcal{A}(P(x_1, \ldots, x_m)) = [P](\widehat{x_1}, \ldots, \widehat{x_m})$ if *P* is a primitive relation.
- Similarly, $\mathcal{A}(\neg P(x_1, \ldots, x_m)) = [\neg P](\widehat{x_1}, \ldots, \widehat{x_m}).$

- $\blacklozenge \ \mathcal{A}(\exists x\phi) = \exists \widehat{x}\mathcal{A}(\phi).$

• The approximation Kripke structure $M_a = (S_a, s_0^a, R_a, L_a)$ can be derived from $\mathcal{A}(\mathcal{S}_0)$ and $\mathcal{A}(\mathcal{R})$.

• Let
$$s_a = (a_1, \ldots, a_n) \in S_a$$
. Then
 $L_a(s_a) = \{ \hat{x}_1 = a_1, \hat{x}_2 = a_2, \ldots, \hat{x}_n = a_n \}.$

Solution Note that $s = (d_1, \ldots, d_n) \in S$ and s_a will be labeled identically if for all i, $h(d_i) = a_i$.

- The price for the approximation is that it may be necessary to add extra initial states and transitions to the corresponding structure.
- Solution This is because $[\phi]$ implies $\mathcal{A}(\phi)$, but the converse may not be true.
- In particular, $[\mathcal{S}_0] \to \mathcal{A}(\mathcal{S}_0)$ and $[\mathcal{R}] \to \mathcal{A}(\mathcal{R})$.
- **Theorem**: $[\phi]$ implies $\mathcal{A}(\phi)$.

- Solution The proof is by induction on the structure of ϕ .
- We show the case $\phi(x_1, \ldots, x_m) = \forall x \phi_1$ only.

 $\begin{bmatrix} \forall x \phi_1 \end{bmatrix}$ $= \exists x_1 \cdots \exists x_m (\bigwedge h(x_i) = \hat{x_i} \land \forall x \phi_1(x, x_1, \dots, x_m))$ $= \exists x_1 \cdots \exists x_m \forall x (\bigwedge h(x_i) = \hat{x_i} \land \phi_1(x, x_1, \dots, x_m))$ $\rightarrow \forall x \exists x_1 \cdots \exists x_m (\bigwedge h(x_i) = \hat{x_i} \land \phi_1(x, x_1, \dots, x_m))$ $\rightarrow \forall \hat{x} \exists x [\exists x_1 \cdots \exists x_m (h(x) = \hat{x} \land \bigwedge h(x_i) = \hat{x_i} \land \phi_1(x, x_1, \dots, x_m))]$ $= \forall \hat{x} [\phi_1]$

- $\rightarrow \forall \widehat{x} \mathcal{A}(\phi_1)$
- $= \mathcal{A}(\forall x \phi_1)$

- Theorem: $M \preceq M_a$.
- Proof:
 - 1. Because the approximation M_a only adds extra initial states and transitions to the reduced model M_r , all paths in the M_r are reserved. So, $M_r \leq M_a$.
 - 2. Since $M \preceq M_r$ and \preceq is transitive, $M \preceq M_a$.
- Solution Corollary: Every ACTL* formula that holds in M_a also holds in M.

Exact Approximation

- We consider some additional conditions that allow us to show that M is bisimulation equivalent to M_a .
- Solution Each abstraction mapping h_x for variable x induces an equivalence relation \sim_x :
 - \clubsuit Let d_1 and d_2 be in D_x .
 - $ightharpoonup d_1 \sim_x d_2$ iff $h_x(d_1) = h_x(d_2)$.
- The equivalence relation \sim_{x_i} is a congruence with respect to a primitive relation *P* iff

$$\forall d_1 \cdots \forall d_m \forall e_1 \cdots \forall e_m \\ (\bigwedge_{i=1}^m d_i \sim_{x_i} e_i \to (P(d_1, \dots, d_m) \Leftrightarrow P(e_1, \dots, e_m)))$$

Exact Approximation (cont.)

- Solution Theorem: If the \sim_{x_i} are congruences with respect to the primitive relations and ϕ is a formula defined over these relations, then $[\phi] \Leftrightarrow \mathcal{A}(\phi)$, i.e., $M_a \equiv M_r$.
- Solution Theorem: If \sim_{x_i} are congruences with respect to the primitive relations, then $M \equiv M_a$.

