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Finite Automata

A finite automaton is a mathematical model of a device
that has a constant amount of memory, independent of
the size of its input.

Formally, a finite automaton (FA) is a 5-tuple
(Σ, Q,∆, q0, F ), where
1. Σ is a finite set of symbols (the alphabet),
2. Q is a finite set of states,
3. ∆ ⊆ Q× Σ ×Q is the transition relation,
4. q0 ∈ Q is the start state (sometimes we allow multiple

start states, indicated by Q0 or Q0), and
5. F ⊆ Q is the set of final (or accepting) states.
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Finite Automata (cont.)

Let M = (Σ, Q,∆, q0, F ) be an FA and w = w1w2 . . . wn be
a string (or word) over Σ.

A run of M over w is a sequence of states r0, r1, . . . , rn
such that
1. r0 = q0 and
2. (ri, wi+1, ri+1) ∈ ∆ for i = 0, 1, . . . , n− 1.

A run is accepting if it ends in a final state.

We say that M accepts w if it has an accepting run over
w.

The language of M , denoted L(M), is the set of all
words that are accepted by M .
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An Example Finite Automaton

a

b

b

a

q0 q1

This FA accepts the empty string or strings over {a, b}
that end with an a.

Using a regular expression, its language is expressed
as ε+ (a+ b)∗a.
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Büchi Automata

To model non-terminating systems, we interpret finite
automata over infinite words.

The simplest finite automata over infinite words are
Büchi automata (BA).

A BA has the same structure as an FA and is also given
by a 5-tuple (Σ, Q,∆, q0, F ).

Runs of a BA over infinite words are defined similarly.

An infinite word w ∈ Σω is accepted by a BA B if there
exists a run ρ of B over w satisfying the condition:

inf (ρ) ∩ F 6= ∅,

where inf (ρ) denotes the set of states occurring
infinitely many times in ρ.
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Büchi Automata (cont.)

Büchi automata are a member of a larger family of the
so-called ω-automata, which all have the same structure
as finite automata but with different forms of acceptance
conditions for the input words.

Unlike FAs, non-determinism adds expressive power to
BAs.

Every LTL formula has an equivalent BA (but not vice
versa), when infinite words are seen as models for
temporal formulae.

BAs are expressively equivalent to QPTL, a variant of
LTL with quantification over atomic propositions.
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An Example Finite Automaton

a

b

b

a

q0 q1

This Büchi automaton accepts infinite words over {a, b}
that have infinitely many a’s.

Using an ω-regular expression, its language is
expressed as (b∗a)ω.
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Modeling Concurrent Systems

Let AP be a set of atomic propositions.

A Kripke structure M over AP is a four-tuple
M = (S,R, S0, L):
1. S is a finite set of states.
2. R ⊆ S × S is a transition relation that must be total,

that is, for every state s ∈ S there is a state s′ ∈ S

such that R(s, s′).
3. S0 ⊆ S is the set of initial states.
4. L : S → 2AP is a function that labels each state with

the set of atomic propositions true in that state.
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Modeling Concurrent Systems (cont.)

Finite automata can be used to model concurrent and
interactive systems.

One of the main advantages of using automata for
model checking is that both the modeled system and
the specification are represented in the same way.

A Kripke structure directly corresponds to a Büchi
automaton, where all the states are accepting.

A Kripke structure (S,R, S0, L) can be transformed into
an automaton A = (Σ, S ∪ {ι},∆, {ι}, S ∪ {ι}) with Σ = 2AP

where
(s, α, s′) ∈ ∆ for s, s′ ∈ S iff (s, s′) ∈ R and α = L(s′) and
(ι, α, s) ∈ ∆ iff s ∈ S0 and α = L(s).
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Model Checking Using Automata

The given (finite-state) system is modeled as a Büchi
automaton A.

A desired property is given by a linear temporal formula
f .

Let Bf (resp. B¬f ) denote a Büchi automaton equivalent
to f (resp. ¬f).

The model checking problem A |= f is equivalent to
asking whether

L(A) ⊆ L(Bf ) or L(A) ∩ L(B¬f ) = ∅.

The well-used model checker SPIN, for example,
adopts this automata-theoretic approach.
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Intersection of Büchi Automata

Let B1 = (Σ, Q1,∆1, Q
0
1, F1) and B2 = (Σ, Q2,∆2, Q

0
2, F2).

We can build an automaton for L(B1) ∩ L(B2) as follows.

B1 ∩ B2 =
(Σ, Q1 ×Q2 × {0, 1, 2},∆, Q0

1 ×Q0
2 × {0}, Q1 ×Q2 × {2}).

We have (〈r, q, x〉, a, 〈r′, q′, y〉) ∈ ∆ iff the following
conditions hold:

(r, a, r′) ∈ ∆1 and (q, a, q′) ∈ ∆2.
The third component is affected by the accepting
conditions of B1 and B2.

If x = 0 and r′ ∈ F1, then y = 1.
If x = 1 and q′ ∈ F2, then y = 2.
If x = 2, then y = 0.
Otherwise, y = x.
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Intersection of Büchi Automata (cont.)

The third component is responsible for guaranteeing
that accepting states from both B1 and B2 appear
infinitely often (need not be at the same time).

A simpler intersection may be obtained when all of the
states of one of the automata are accepting.

Assuming all states of B1 are accepting and that the
acceptance set of B2 is F2, their intersection can be
defined as follows:

B1 ∩ B2 = (Σ, Q1 ×Q2,∆
′, Q0

1 ×Q0
2, Q1 × F2)

where (〈r, q〉, a, 〈r′, q′〉) ∈ ∆′ iff (r, a, r′) ∈ ∆1 and
(q, a, q′) ∈ ∆2.
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Generalized Büchi Automata

A generalized Büchi automaton (GBA) has an
acceptance component of the form
F = {F1, F2, · · · , Fn} ⊆ 2Q.

A run ρ of a GBA is accepting if for each Fi ∈ F ,
inf (ρ) ∩ Fi 6= ∅.

There is a simple translation from a GBA to a Büchi
automaton.
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Generalized Büchi Automata (cont.)

Let B = (Σ, Q,∆, Q0, F ), where F = {F1, · · · , Fn}, be a
GBA.

Construct B′ = (Σ, Q× {0, · · · , n},∆′, Q0 × {0}, Q× {n}).

The transition relation ∆′ is constructed such that
(〈q, x〉, a, 〈q′, y〉) ∈ ∆′ when (q, a, q′) ∈ ∆ and x and y are
defined according to the following rules:

If q′ ∈ Fi and x = i− 1, then y = i.
If x = n, then y = 0.
Otherwise, y = x.
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Checking Emptiness

Let ρ be an accepting run of a Büchi automaton
B = (Σ, Q,∆, Q0, F ).

Then, ρ contains infinitely many accepting states from
F .

Since Q is finite, there is some suffix ρ′ of ρ such that
every state on it appears infinitely many times.

Each state on ρ′ is reachable from any other state on ρ′.

Hence, the states in ρ′ are included in a strongly
connected component.

This component is reachable from an initial state and
contains an accepting state.
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Checking Emptiness (cont.)

Conversely, any strongly connected component that is
reachable from an initial state and contains an
accepting state generates an accepting run of the
automaton.

Thus, checking nonemptiness of L(B) is equivalent to
finding a strongly connected component that is
reachable from an initial state and contains an
accepting state.

That is, the language L(B) is nonempty iff there is a
reachable accepting state with a cycle back to itself.
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Double DFS Algorithm

procedure emptiness

for all q0 ∈ Q0 do
dfs1 (q0);

terminate(True);
end procedure

procedure dfs1 (q)
local q′;
hash(q);
for all successors q′ of q do

if q′ not in the hash table then dfs1 (q′);
if accept(q) then dfs2 (q);

end procedure
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Double DFS Algorithm (cont.)

procedure dfs2 (q)
local q′;
flag(q);
for all successors q′ of q do

if q′ on dfs1 stack then terminate(False);
else if q′ not flagged then dfs2 (q′);
end if ;

end procedure
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Correctness of the Algorithm

Lemma 23
Let q be a node that does not appear on any cycle.
Then the DFS algorithm will backtrack from q only after
all the nodes that are reachable from q have been
explored and backtracked from.

Theorem 7
The double DFS algorithm returns a counterexample for
the emptiness of the checked automaton B exactly
when the language L(B) is not empty.
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Proof of Theorem 7

Suppose a second DFS is started from a state q and
there is a path from q to some state p on the search
stack of the first DFS.

There are two cases:

There exists a path from q to a state on the search
stack of the first DFS that contains only unflagged
nodes when the second DFS is started from q.
On every path from q to a state on the search stack
of the first DFS there exists a state r that is already
flagged.

The algorithm will find a cycle in the first case.

We show that the second case is impossible.
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Proof of Theorem 7 (cont.)

Suppose the contrary: On every path from q to a state
on the search stack of the first DFS there exists a state
r that is already flagged.

Then there is an accepting state from which a second
DFS starts but fails to find a cycle even though one
exists.

Let q be the first such state.
Let r be the first flagged state that is reached from q

during the second DFS and is on a cycle through q.
Let q′ be the accepting state that starts the second
DFS in which r was first encountered.

Thus, according to our assumptions, a second DFS was
started from q′ before a second DFS was started from q.
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Proof of Theorem 7 (cont.)

Case 1: The state q′ is reachable from q.
There is a cycle q′ → · · · → r → · · · → q → · · · → q′.
This cycle could not have been found previously.
This contradicts our assumption that q is the first
accepting state from which the second DFS missed
a cycle.

Case 2: The state q′ is not reachable from q.
q′ cannot appear on a cycle.
q is reachable from r and q′.
If q′ does not occur on a cycle, by Lemma 23 we
must have backtracked from q in the first DFS before
from q′.
This contradicts our assumption about the order of
doing the second DFS.
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PTL (LTL with Past)

(σ, i) |= ©p ⇐⇒ (σ, i+ 1) |= p.

(σ, i) |= 2p ⇐⇒ ∀k ≥ i : (σ, k) |= p.

(σ, i) |= 3p ⇐⇒ ∃k ≥ i : (σ, k) |= p.

(σ, i) |= p U q ⇐⇒ for some k ≥ i, (σ, k) |= q and (σ, j) |= p

for all j, i ≤ j ≤ k.

(σ, i) |= p W q ⇐⇒ for some k ≥ i, (σ, k) |= q and
(σ, j) |= p for all j, i ≤ j ≤ k, or (σ, j) |= p for all j ≥ i.

(σ, i) |= p R q ⇐⇒ for all j ≥ 0, (σ, i) 6|= p for every i < j

implies (σ, j) |= q.
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PTL (cont.)

(σ, i) |= ∼©p ⇐⇒ (i > 0) → ((σ, i− 1) |= p).

(σ, i) |= −©p ⇐⇒ i > 0 and (σ, i− 1) |= p.

(σ, i) |= −2p ⇐⇒ ∀k : 0 ≤ k ≤ i : (σ, k) |= p.

(σ, i) |= −3p ⇐⇒ ∃k : 0 ≤ k ≤ i : (σ, k) |= p.

(σ, i) |= p S q ⇐⇒ for some k ≤ i, (σ, k) |= q and (σ, j) |= p

for all j, k < j ≤ i.

(σ, i) |= p B q ⇐⇒ for some k ≤ i, (σ, k) |= q and (σ, j) |= p

for all j, k < j ≤ i, or (σ, j) |= p for all j ≤ i.
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Simple On-the-fly Translation

This is a tableau-based algorithm for obtaining an
automaton from an LTL formula.

The algorithm is geared towards being used in model
checking in an on-the-fly fashion:

It is possible to detect that a property does not
hold by only constructing part of the model and of
the automaton.

The algorithm can also be used to check the validity of
a temporal logic assertion.
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Preprocessing of Formulae

To apply the translation algorithm, we first put the formula ϕ

into negation normal form:

3p = True U p

2p = False R p

¬(p U q) = (¬p) R (¬q)

¬(p R q) = (¬p) U (¬q)

¬©p = ©¬p
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Data Structure of an Automaton Node

ID: A string that identifies the node.

Incoming: The incoming edges represented by the IDs
of the nodes with an outgoing edge leading to the
current node.

New : A set of subformulae that must hold at the current
state and have not yet been processed.

Old : The subformulae that must hold in the node and
have already been processed.

Next : The subformulae that must hold in all states that
are immediate successors of states satisfying the
properties in Old.
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The Algorithm

The algorithm starts with a single node, which has a
single incoming edge labeled init (i.e., from an initial
node) and expands the nodes in an DFS manner.

This starting node has initially one new obligation in
New, namely ϕ, and Old and Next are initially empty.

With the current node N , the algorithm checks if there
are unprocessed obligations left in New .

If not, the current node is fully processed and ready to
be added to Nodes.

If there already is a node in Nodes with the same
obligations in both its Old and Next fields, the incoming
edges of N are incorporated into those of the existing
node.
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The Algorithm (cont.)

If no such node exists in Nodes, then the current node
N is added to this list, and a new current node is formed
for its successor as follows:

1. There is initially one edge from N to the new node.
2. New is set initially to the Next field of N .
3. Old and Next of the new node are initially empty.

When processing the current node, a formula η in New
is removed from this list.

In the case that η is a literal (a proposition or the
negation of a proposition), then

if ¬η is in Old, the current node is discarded;
otherwise, η is added to Old .
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The Algorithm (cont.)

When η is not a literal, the current node can be split into
two or not split, and new formulae can be added to the
fields New and Next.

The exact actions depend on the form of η:
η = p ∧ q, then both p and q are added to New .
η = p ∨ q, then the node is split, adding p to New of
one copy, and q to the other.
η = p U q (∼= q ∨ (p ∧©(p R q))), then the node is split.
For the first copy, p is added to New and p U q to
Next .
For the other copy, q is added to New .
η = p R q (∼= (q ∧ p) ∨ (q ∧©(p R q))), similar to U .
η = ©p, then p is added to Next .
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Nodes to GBA

The list of nodes in Nodes can now be converted into a
generalized Büchi automaton B = (Σ, Q, q0,∆, F ):

1. Σ consists of sets of propositions from AP .

2. The set of states Q includes the nodes in Nodes and
the additional initial state q0.

3. (r, α, r′) ∈ ∆ iff r ∈ Incoming(r′) and α satisfies the
conjunction of the negated and nonnegated
propositions in Old(r′)

4. q0 is the initial state, playing the role of init .

5. F contains a separate set Fi of states for each
subformula of the form p U q; Fi contains all the states r
such that either q ∈ Old(r) or p U q 6∈ Old(r).
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Tableau Construction

We next study the Tableau Construction as described in
[Manna and Pnueli 1995], which handles both future
and past temporal operators.

More efficient constructions exist, but this construction
is relatively easy to understand.

A tableau is a graphical representation of all
models/sequences that satisfy the given temporal logic
formula.

The construction results in essentially a GBA, but
leaving propositions on the states (rather than moving
them to the incoming edges of a state).

Our presentation will be slightly different, to make the
resulting GBA more apparent.
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Expansion Formulae

The requirement that a temporal formula holds at a
position j of a model can often be decomposed into
requirements that

a simpler formula holds at the same position and
some other formula holds either at j + 1 or j − 1.

For this decomposition, we have the following
expansion formulae:

2p ∼= p ∧©2p −2p ∼= p ∧ ∼© −2p

3p ∼= p ∨©3p −3p ∼= p ∨ −© −3p

p U q ∼= q ∨ (p ∧©(p U q)) p S q ∼= q ∨ (p ∧ −©(p S q))

p W q ∼= q ∨ (p ∧©(p W q)) p B q ∼= q ∨ (p ∧ ∼©(p B q))

Note: p R q ∼= (q ∧ p) ∨ (q ∧©(p R q)).
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Closure

We define the closure of a formula ϕ, denoted by Φϕ, as
the smallest set of formulae satisfying the following
requirements:

ϕ ∈ Φϕ.

For every p ∈ Φϕ, if q a subformula of p then q ∈ Φϕ.
For every p ∈ Φϕ, ¬p ∈ Φϕ.
For every ψ ∈ {2p,3p, p U q, p W q}, if ψ ∈ Φϕ then
©ψ ∈ Φϕ.

For every ψ ∈ { −3p, p S q}, if ψ ∈ Φϕ then −©ψ ∈ Φϕ.

For every ψ ∈ { −2p, p B q}, if ψ ∈ Φϕ then ∼©ψ ∈ Φϕ.

So, the closure Φϕ of a formula ϕ includes all formulae
that are relevant to the truth of ϕ.
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Classification of Formulae

α K(α)

p ∧ q p, q

2p p, ©2p

−2p p, ∼© −2p

β K1(β) K2(β)

p ∨ q p q

3p p ©3p

−3p p −© −3p

p U q q p, ©(p U q)

p W q q p, ©(p W q)

p S q q p, −©(p S q)

p B q q p, ∼©(p B q)

An α-formula ϕ holds at position j iff all the
K(ϕ)-formulae hold at j.

A β-formula ψ holds at position j iff either K1(ψ) or all
the K2(ψ)-formulae (or both) hold at j.
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Atoms

We define an atom over ϕ to be a subset A ⊆ Φϕ

satisfying the following requirements:
Rsat : the conjunction of all state formulae in A is
satisfiable.
R¬: for every p ∈ Φϕ, p ∈ A iff ¬p 6∈ A.
Rα : for every α-formula p ∈ Φϕ, p ∈ A iff K(p) ⊆ A.

Rβ : for every β-formula p ∈ Φϕ, p ∈ A iff either
K1(p) ∈ A or K2(p) ⊆ A (or both).

For example, if atom A contains the formula ¬3p, it
must also contain the formulae ¬p and ¬©3p.
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Mutually Satisfiable Formulae

A set of formulae S ⊆ Φϕ is called mutually satisfiable if
there exists a model σ and a position j ≥ 0, such that
every formula p ∈ S holds at position j of σ.

The intended meaning of an atom is that it represents a
maximal mutually satisfiable set of formulae.

Claim 1 (atoms represent necessary conditions)
Let S ⊆ Φϕ be a mutually satisfiable set of formulae.
Then there exists a ϕ-atom A such that S ⊆ A.

It is important to realize that inclusion in an atom is only
a necessary condition for mutual satisfiability (e.g.,
{©p ∨©¬p,©p,©¬p, p} is an atom for the formula
©p ∨©¬p).
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Basic Formulae

A formula is called basic if it is either a proposition or
has the form ©p, −©p, or ∼©p.

Basic formulae are important because their presence or
absence in an atom uniquely determines all other
closure formulae in the same atom.

Let Φ+
ϕ denote the set of formulae in Φϕ that are not of

the form ¬ψ.

Algorithm (atom construction)

1. Find all basic formulae p1, · · · , pb ∈ Φ+
ϕ .

2. Construct all 2b combinations.

3. Complete each combination into a full atom.

Automatic Verification 2009: Automata-Theoretic Approach – 43/66



IM NTU

Example

Consider the formula ϕ1 : 2p ∧ 3¬p whose basic
formulae are

p, ©2p, ©3¬p.

Following is the list of all atoms of ϕ1:

A0 : {¬p, ¬©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}

A1 : {p, ¬©2p, ¬©3¬p, ¬2p, ¬3¬p, ¬ϕ1}

A2 : {¬p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}

A3 : {p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}

A4 : {¬p, ©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}

A5 : {p, ©2p, ¬©3¬p, 2p, ¬3¬p, ¬ϕ1}

A6 : {¬p, ©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}

A7 : {p, ©2p, ©3¬p, 2p, 3¬p, ϕ1}
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The Tableau

Given a formula ϕ, we construct a directed graph Tϕ,
called the tableau of ϕ, by the following algorithm.

Algorithm (tableau construction)

1. The nodes of Tϕ are the atoms of ϕ.

2. Atom A is connected to atom B by a directed
edge if all of the following are satisfied:

R© : For every ©p ∈ Φϕ, ©p ∈ A iff p ∈ B.

R
−© : For every −©p ∈ Φϕ, p ∈ A iff −©p ∈ B.

R
∼© : For every ∼©p ∈ Φϕ, p ∈ A iff ∼©p ∈ B.

An atom is called initial if it does not contain a formula
of the form −©p or ¬ ∼©p (∼= −©¬p).
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Example
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From the Tableau to a GBA

Create an initial node and link it to every initial atom that
contains ϕ.

Label each directed edge with the atomic propositions
that are contained in the ending atom.

Add a set of atoms to the accepting set for each
subformula of the following form:

3q: atoms with q or ¬3q.
p U q: atoms with q or ¬(p U q).
¬2¬q (∼= 3q): atoms with q or 2¬q.
¬(¬q W p) (∼= ¬p U (q ∧ ¬p)): atoms with q or ¬q W p.
¬2q (∼= 3¬q): atoms with ¬q or 2q.
¬(q W p) (∼= ¬p U (¬q ∧ ¬p)): atoms with ¬q or q W p.
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Correctness: Models vs. Paths

For a model σ, the infinite atom path πσ : A0, A1, · · · in Tϕ

is said to be induced by σ if, for every position j ≥ 0 and
every closure formula p ∈ Φϕ,

(σ, j) |= p iff p ∈ Aj .

Claim 2 (models induce paths)
Consider a formula ϕ and its tableau Tϕ. For every
model σ : s0, s1, · · · , there exists an infinite atom path
πσ : A0, A1, · · · in Tϕ induced by σ.

Furthermore, A0 is an initial atom, and if σ |= ϕ then
ϕ ∈ A0.
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Correctness: Promising Formulae

A formula ψ ∈ Φϕ is said to promise the formula r if ψ
has one of the following forms:

3r, p U r, ¬2¬r, ¬(¬r W p).

or if r is the negation ¬q and ψ has one of the forms:

¬2q, ¬(q W p).

Claim 3 (promise fulfillment by models)
Let σ be a model and ψ, a formula promising r. Then,
σ contains infinitely many positions j ≥ 0 such that

(σ, j) |= ¬ψ or (σ, j) |= r.
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Correctness: Fulfilling Paths

Atom A fulfills a formula ψ that promises r if ¬ψ ∈ A or
r ∈ A.

A path π : A0, A1, · · · in the tableau Tϕ is called fulfilling:

A0 is an initial atom.
For every promising formula ψ ∈ Φϕ, π contains
infinitely many atoms Aj that fulfill ψ.

Claim 4 (models induce fulfilling paths)
If πσ : A0, A1, · · · is a path induced by a model σ, then
πσ is fulfilling.
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Correctness: Fulfilling Paths (cont.)

Claim 5 (fulfilling paths induce models)
If π : A0, A1, · · · is a fulfilling path in Tϕ, there exists a
model σ inducing π, i.e., π = πσ and, for every ψ ∈ Φϕ

and every j ≥ 0,

(σ, j) |= ψ iff ψ ∈ Aj .

Proposition 6 (satisfiability and fulfilling paths)
Formula ϕ is satisfiable iff the tableau Tϕ contains a
fulfilling path π = A0, A1, · · · such that A0 is an initial
ϕ-atom.
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Outline

Büchi Automata

Model Checking Using Automata

Checking Emptiness

Simple On-the-fly Translation

Tableau Construction

Inductive Construction
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Inductive Construction

We show how to construct a Büchi automaton
inductively from a given temporal formula.

The construction was originally proposed in [Kesten and
Pnueli 2002] for proving completeness of a proof
system for QPTL, the quantified version of PTL.

Utilizing congruences on temporal formulae, the
inductive step deals with the following cases:

¬p, p ∨ q,©p,3p, ∼©p, −3p,∃v : p.

(p U q may be treated as ∃t : t ∧ 2(t→ q ∨ (p ∧©t)) ∧ ¬2t

and p S q as ∃t : t ∧ −2(t→ q ∨ (p ∧ −©t)).)

The case of negation is rather involved and will be
omitted.
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Definitions

We will use a slight variant of Büchi automaton.

A Büchi automaton A = (Q,Q0, δ, F ) consists of
Q: a finite set of automaton locations.
Q0 ⊆ Q: a subset of initial automaton locations.
δ: for every qi, qj ∈ Q, δ(qi, qj) is a propositional
assertion over V (a given set of Boolean variables).
F : a set of accepting locations.

Let σ = s0, s1, · · · be a model, namely a sequence of
truth assignments to V.

A sequence of automaton locations ρ = q0, q1, · · · is a run
segment of A over σ, if si |= δ(qi, qi+1), for every i ≥ 0.

A run segment ρ = q0, q1, · · · is a run of A if q0 ∈ Q0.
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Definitions (cont.)

A model σ is said to be accepted by the automaton A, if
A has an accepting run over σ.

We denote by L(A), the set of all models accepted by A.

A model σ′ is said to be a j-marked variant of σ if σ′ is a
t-variant of σ and σ′ interprets t as T at position j and F
elsewhere (t is a special variable in V).

Every model σ has a unique j-marked variant for each
j ≥ 0.

Automaton A j-approves a model σ if it accepts the
j-marked variant of σ.

A is congruent to a formula ϕ not referring to t if, for
every model σ and position j ≥ 0, (σ, j) |= ϕ iff A
j-approves σ.
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Case (Basis): p

Let p be a proposition and Ap = (Q,Q0, δ, F ) be a Büchi
automaton given by:

Q = {q0, q1}

Q0 = {q0}

F = {q1}

δ(q0, q1) = p ∧ t

δ(q0, q0) = δ(q1, q1) = ¬t

δ(q1, q0) = F

Claim: Ap is congruent to p.

Subsequently, we will use Ap = (Qp, Q
p
0
, δp, F p) to denote the

Büchi automaton congruent to a formula p.
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Case (Induction): p ∨ q

The automaton Ap∨q = (Q,Q0, δ, F ) is given by:

Q = Qp ∪Qq

Q0 = Q
p
0
∪Qq

0

F = F p ∪ F q.

For every qi, qj ∈ Q,

δ(qi, qj) =











δp(qi, qj) if qi, qj ∈ Qp

δq(qi, qj) if qi, qj ∈ Qq

F otherwise.
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Case (Induction): ©p

The automaton A©p = (Q,Q0, δ, F ) is given by:

Q = Qp ∪ (Qp)′

Q0 = Q
p
0

F = F p.

For every qi, qj ∈ Qp, let δp(qi, qj) = ηij(t). Then

δ(qi, qj) = ¬t ∧ ηij [F]

δ(qi, q
′
j) = t ∧ ηij [F]

δ(q′i, qj) = ¬t ∧ ηij [T]

δ(q′i, q
′
j) = F.
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Case (Induction): ©p (cont.)

t
p

~t

t

~t

~
t

s0

s1

Q1

s2

s3
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Case (Induction): −©p

The automaton A
−©p = (Q,Q0, δ, F ) is defined as follows:

Q = Qp ∪ (Qp)′

Q0 = Q
p
0

F = F p.

For every qi, qj ∈ Qp, let δp(qi, qj) = ηij(t). Then

δ(qi, qj) = ¬t ∧ ηij [F]

δ(qi, q
′
j) = ¬t ∧ ηij [T]

δ(q′i, q
′
j) = t ∧ ηij [F]

δ(q′i, qj) = F.
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Case (Induction): −©p (cont.)
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Case (Induction): 3p

The automaton A3p = (Q,Q0, δ, F ) is defined as follows:

Q = Qp ∪ (Qp)′

Q0 = Q
p
0

F = (F p)′.

For every qi, qj ∈ Qp, let δp(qi, qj) = ηij(t). Then

δ(qi, qj) = ηij [F]

δ(qi, q
′
j) = ηij [T]

δ(q′i, q
′
j) = ¬t ∧ ηij [F]

δ(q′i, qj) = F.
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Case (Induction): 3p (cont.)

~
t

p
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~
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s3
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Case (Induction): −3p

The automaton A −3p = (Q,Q0, δ, F ) is given by:

Q = Qp ∪ (Qp)′

Q0 = Q
p
0

F = (F p)′.

For every qi, qj ∈ Qp, let δp(qi, qj) = ηij(t). Then

δ(qi, qj) = ¬t ∧ ηij [F]

δ(qi, q
′
j) = ηij [T]

δ(q′i, q
′
j) = ηij [F]

δ(q′i, qj) = F.
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Case (Induction): −3p (cont.)

p

~
t

T
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s0
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Case (Induction): ∃v : p

For every qi, qj ∈ Qp and v ∈ V − {t}, let δp(qi, qj) = ηij(v).
The automaton A∃v:p = (Q,Q0, δ, F ) is defined as follows:

Q = Qp

Q0 = Q
p
0

F = F p

δ(qi, qj) = ηi,j [F] ∨ ηi,j [T]
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