Binary Decision Diagrams
 (Based on [Clarke et al. 1999] and [Bryant 1986])

Yih-Kuen Tsay
(original created by Ming-Hsien Tsai)

Department of Information Management
National Taiwan University

Boolean Functions

- Boolean functions are widely used in
e digital logic design,
e testing,
artificial intelligence, and
model checking.
- Boolean operators

And: $x \cdot y(x \wedge y)$
Or: $x+y(x \vee y)$
Not: $\bar{x}(\neg x)$
e If and only if: \leftrightarrow
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$

Representations of Boolean Functions

A variety of methods have been developed for representing and manipulating Boolean functions such as:
, Karnaugh map
Sum-of-products form
. Truth table
Binary decision tree

- But these representations are quite impractical, because every function of n arguments has a representation of size 2^{n} or more.

Karnaugh Map

A Karnaugh table for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

	$x_{3} x_{4}$	00	01	11
$x_{1} x_{2}$	10			
00	1	0	1	0
01	0	0	0	0
11	1	0	1	0
10	0	0	0	0

Truth Table

A truth table for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

x_{1}	x_{2}	x_{3}	x_{4}	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0

x_{1}	x_{2}	x_{3}	x_{4}	f
1	0	0	0	0

100010
100100
10110
11001
11010
11100
11111

Binary Decision Tree

A binary decision tree for
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

Representations of Boolean Functions (cont.)

- More practical approaches utilize representations that, at least for many functions, are not of exponential size.
ereduced sum of products
e factored into unate functions
- But these representations still suffer from several drawbacks:
Certain common functions require representations of exponential size.
* Performing a simple operation could yield a function with an exponential representation.
- None of these representations are canonical forms.

Binary Decision Diagrams

- A binary decision diagram (BDD) represents a Boolean function as a rooted, directed acyclic graph (function graph).
- We use $r(G)$ to denote the root of a function graph G.
- The vertex set V of a function graph G contains two types of vertices.
e A nonterminal vertex v has
- an argument index index $(v) \in\{1, \ldots, n\}$ and
- two children $\operatorname{low}(v), \operatorname{high}(v) \in V$.

A terminal vertex v has a value $\operatorname{value}(v) \in\{0,1\}$

Ordered Binary Decision Diagrams

- An ordered binary decision diagram (ODBB) is defined by imposing a total ordering over the nonterminal vertices.
For any nonterminal vertex v,
- if $\operatorname{low}(v)$ is nonterminal, then we must have index (v) < index $(\operatorname{low}(v))$;
- if $\operatorname{high}(v)$ is nonterminal, then we must have index $(v)<\operatorname{index}(h i g h(v))$.
- Further minimality conditions will be introduced later.
- OBDDs are representations of Boolean functions with canonical forms and reasonable size.
- The size of the graph is highly sensitive to arguments ordering.

Ordering

Two OBDDs for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$ with different orderings.

Notations

All functions have the same n arguments: x_{1}, \cdots, x_{n}.

- A restriction of f is denoted $\left.f\right|_{x_{i}=b}$ where b is a constant.

$$
\left.f\right|_{x_{i}=b}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{n}\right)
$$

A composition of f and g is denoted $\left.f\right|_{x_{i}=g}$ where g is a Boolean function.
$\left.f\right|_{x_{i}=g}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, g\left(x_{1}, \ldots, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)$

Notations (cont.)

- The Shannon expansion of a function around variable x_{i} is given by:

$$
f=\left.x_{i} \cdot f\right|_{x_{i}=1}+\left.\bar{x}_{i} \cdot f\right|_{x_{i}=0}
$$

The dependency set of a function f is denoted I_{f}.

$$
I_{f}=\left\{i|f|_{x_{i}=0} \neq\left. f\right|_{x_{i}=1}\right\}
$$

The satisfying set of a function f is denoted S_{f}.

$$
S_{f}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=1\right\}
$$

Correspondence

A function graph (OBDD) G having root vertex v denotes a function f_{v} defined recursively as follows:
If v is a terminal vertex:

- If $\operatorname{value}(v)=1$, then $f_{v}=1$.
- If value $(v)=0$, then $f_{v}=0$.

If v is a nonterminal vertex with $\operatorname{index}(v)=i$, then f_{v} is the function
$f_{v}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}_{i} \cdot f_{\text {low }(v)}\left(x_{1}, \ldots, x_{n}\right)+x_{i} \cdot f_{h i g h(v)}\left(x_{1}, \ldots, x_{n}\right)$.

Correspondence (cont.)

- A path in the graph starting from the root is defined by a set of argument values.
- The value of the function for these arguments equals the value of the terminal vertex at the end of the path.
- Every vertex in the graph is contained in at least one path.

Correspondence (cont.)

$$
\begin{aligned}
f_{v_{8}} & =0 \\
f_{v_{7}} & =1 \\
f_{v_{6}} & =\bar{x}_{4} \cdot f_{v_{8}}+x_{4} \cdot f_{v_{7}} \\
& =x_{4} \\
f_{v_{5}} & =\bar{x}_{4} \cdot f_{v_{7}}+x_{4} \cdot f_{v_{8}} \\
& =\bar{x}_{4} \\
f_{v_{4}} & =\bar{x}_{3} \cdot f_{v_{5}}+x_{3} \cdot f_{v_{6}} \\
& =\bar{x}_{3} \cdot \bar{x}_{4}+x_{3} \cdot x_{4} \\
& \cdots \\
& \cdots \\
& \cdots \\
f_{v_{1}} & =\left(\bar{x}_{1} \cdot \bar{x}_{2}+x_{1} \cdot x_{2}\right) \cdot\left(\bar{x}_{3} \cdot \bar{x}_{4}+x_{3} \cdot x_{4}\right)
\end{aligned}
$$

Subgraph

- For any vertex v in a function graph G, the subgraph rooted at v, denoted by $\operatorname{sub}(G, v)$ is defined as the graph consisting of v and all its descendants.

Subgraph

- For any vertex v in a function graph G, the subgraph rooted at v, denoted by $\operatorname{sub}(G, v)$ is defined as the graph consisting of v and all its descendants.

Isomorphism

- Function graphs G and G^{\prime} are isomorphic, denoted by $G \sim G^{\prime}$, if there exists a one-to-one function σ from vertices of G onto the vertices of G^{\prime} such that for any vertex v if $\sigma(v)=v^{\prime}$, then either
both v and v^{\prime} are terminal vertices with
$\operatorname{value}(v)=\operatorname{value}\left(v^{\prime}\right)$, or
both v and v^{\prime} are nonterminal vertices with
$\operatorname{index}(v)=\operatorname{index}\left(v^{\prime}\right), \sigma(\operatorname{low}(v))=\operatorname{low}\left(v^{\prime}\right)$, and
$\sigma(\operatorname{high}(v))=\operatorname{high}\left(v^{\prime}\right)$

Isomorphism (cont.)

Is this an isomorphic mapping? (parts of it are)

Isomorphism (cont.)

The isomorphic mapping σ is quite constrained:
er $r(G)$ must map to the $r\left(G^{\prime}\right)$,
elow $(r(G))$ must map to $\operatorname{low}\left(r\left(G^{\prime}\right)\right)$,
and so on all the way down to the terminal vertices.
Lemma 1: If G is isomorphic to G^{\prime} by mapping σ, denoted by $G \sim_{\sigma} G^{\prime}$, then for any vertex v in G, $\operatorname{sub}(G, v) \sim \operatorname{sub}\left(G^{\prime}, \sigma(v)\right)$.

Reduced Function Graph

- A function graph G is reduced if
e it contains no vertex v with $\operatorname{low}(v)=\operatorname{high}(v)$,
nor does it contain distinct vertices v and v^{\prime} such that the subgraphs rooted by v and v^{\prime} are isomorphic.
- A reduced function graph is now commonly called (Reduced) OBDD.
- Lemma 2: For every vertex v in a reduced function graph $G, \operatorname{sub}(G, v)$ is itself a reduced function graph.

Reduced Function Graph (cont.)

Canonical Form

Theorem: For any Boolean function f, there is a unique (up to isomorphism) reduced function graph denoting f and any other function graph denoting f contains more vertices.

Basic Operations

Procedure Result

Time Complexity

Reduce
Apply
Restrict
Compose
Satisfy-one
Satisfy-all
Satisfy-count $\left|S_{f}\right|$
G reduced to canonical form $\quad O(|G| \cdot \log |G|)$
$f_{1}\langle o p\rangle f_{2}$
$O\left(\left|G_{1}\right| \cdot\left|G_{2}\right|\right)$
$O(|G| \cdot \log |G|)$
$O\left(\left|G_{1}\right|^{2} \cdot\left|G_{2}\right|\right)$
$O(n)$
$O\left(n \cdot\left|S_{f}\right|\right)$
$O(|G|)$

Reduction

The reduction algorithm transforms an arbitrary function graph into a reduced graph denoting the same function.

- The algorithm works from the terminal vertices up to the root:
Remove duplicate terminals (terminal vertices v and u such that $\operatorname{value}(v)=\operatorname{value}(u)$).
- Remove duplicate nonterminals (nonterminal vertices v and u such that index $(v)=\operatorname{index}(u)$, $\operatorname{id}(\operatorname{low}(v))=\operatorname{id}(\operatorname{low}(u))$, and $\operatorname{id}(\operatorname{high}(v))=i d(h i g h(u)))$.
* Remove duplicate tests (a nonterminal vertex v such that $\operatorname{low}(v)=\operatorname{high}(v)$).

A Reduction Example

A Reduction Example

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Apply

The procedure Apply takes graphs representing functions f_{1} and f_{2}, a binary operator $\langle o p\rangle$ and produces a reduced graph representing the function $f_{1}\langle o p\rangle f_{2}$ defined as:

$$
\left[f_{1}\langle o p\rangle f_{2}\right]\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}, \ldots, x_{n}\right)\langle o p\rangle f_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

- Derive a recursive expansion from the Shannon expansion:
$f_{1}\langle o p\rangle f_{2}=\bar{x}_{i} \cdot\left(\left.\left.f_{1}\right|_{x_{i}=0}\langle o p\rangle f_{2}\right|_{x_{i}=0}\right)+x_{i} \cdot\left(\left.\left.f_{1}\right|_{x_{i}=1}\langle o p\rangle f_{2}\right|_{x_{i}=1}\right)$

Apply (cont.)

function $\operatorname{Apply}(v 1, v 2$: vertex $\langle o p\rangle$: operator): vertex \{var T : array[1..| $\left.\left|G_{1}\right|, 1 . .\left|G_{2}\right|\right]$ of vertex;\} begin

Initialize all elements of T to null;
$u:=$ Apply-step $(v 1, v 2)$; return(Reduce(u));
end;

Apply (cont.)

```
function Apply-step(v1, v2: vertex): vertex;
begin
    u:=T[v1.id, v2.id];
    if }u\not=\mathrm{ null then return(u); {have already evaluated}
    u:= new vertex record; u.mark := false;
    T[v1.id,v2.id]:=u; {add vertex to table}
    u.value := v1.value \langleop\rangle v2.value;
    if u.value }\not=
    then u.index := n + 1; u.low := null; u.high := null;
    else {create nonterminal and evaluate further down}
    u.index := Min(v1.index, v2.index);
    if v1.index = u.index
        then begin vlow1 := v1.low; vhigh1 := v1.high end
        else begin vlow1 := v1; vhigh1 := v1 end;
    if v2.index = u.index
        then begin vlow2 := v2.low; vhigh2 := v2.high end
        else begin vlow2 :=v2; vhigh2 := v2 end;
    u.low := Apply-step(ulow1, vlow2);
    u.high := Apply-step(vhigh1,vhigh2);
    return(u);
end;
```


An Apply Example

Complementation

To complement an OBDD, simply complement its terminal vertices.

Restriction

The procedure Restrict transforms the graph representing a function f into one representing the function $\left.f\right|_{x_{i}=b}$.

- Steps of Restrict:

Look for a vertex v with index $(v)=i$.
Change it to point either to $\operatorname{low}(v)($ for $b=0)$ or to $\operatorname{high}(v)$ (for $b=1$).
After changing every vertex v with $\operatorname{index}(v)=i$, run the reduction procedure.

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}} ^{2}=0
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

Composition

The procedure Compose constructs the graph for the function obtained by composing two functions.

- Composition can be expressed in terms of restriction and Boolean operations according to the following expansion:

$$
\left.f_{1}\right|_{x_{i}=f_{2}}=\left.f_{2} \cdot f_{1}\right|_{x_{i}=1}+\left.\left(\neg f_{2}\right) \cdot f_{1}\right|_{x_{i}=0}
$$

- It is sufficient to use Restrict and Apply to implement Compose.

Satisfy-one

The Satisfy-one procedure utilizes a classic depth-first search with backtracking.
function Satisfy-one(v: vertex; x : array[1..n] of integer): boolean begin
if value $(v)=0$ then return false;
if value(v) $=1$ then return true;
$x[i]$:= 0 ;
if Satisfy-one(low(v), x) then return true;
$\mathrm{x}[\mathrm{i}]:=1$;
return Satisfy-one(high(v), x);
end;

A Satisfy-one Example

Satisfy-all

procedure Satisfy-all(i: integer; v: vertex; x: array[1..n] of integer): begin
if value $(v)=0$ then return;
if $\mathrm{i}=\mathrm{n}+1$ and value $(\mathrm{v})=1$
then begin

$$
\text { Print element } \mathrm{x}[1], \ldots, x[n] ;
$$

return;
end;
if index $(v)>i$
then begin

$$
\begin{aligned}
& x[i]:=0 ; \text { Satisfy-all(}(\mathrm{i}+1, \mathrm{v}, \mathrm{x}) ; \\
& \mathrm{x[i]}:=1 \text {; Satisfy-all(i }+1, \mathrm{v}, \mathrm{x}) ;
\end{aligned}
$$

end
else begin

$$
\begin{aligned}
& x[i]:=0 ; \operatorname{Satisfy-all(i+1,\operatorname {low}(v),x);} \\
& x[i]:=1 ; \operatorname{Satisfy-all(i+1,\operatorname {high}(v),x);}
\end{aligned}
$$

end
end;

Satisfy-count

The procedure Satisfy-count computes a value α_{v} to each vertex v in the graph according to the following recursive formula:
If v is a terminal vertex: $\alpha_{v}=\operatorname{value}(v)$.
If v is a nonterminal vertex:

$$
\alpha_{v}=\alpha_{\operatorname{low}(v)} \cdot 2^{\operatorname{index}(\operatorname{low}(v))-\operatorname{index}(v)}+\alpha_{h i g h(v)} \cdot 2^{\operatorname{index}(h i g h(v))-\operatorname{index}(v)}
$$

- Once we have computed these values for a graph with root v, we compute the size of the satisfying set as

$$
\left|S_{f}\right|=\alpha_{v} \cdot 2^{\text {index }(v)-1}
$$

Kripke Structures

- Given a set of atomic propositions $A P$, a Kripke structure M is a four tuple (S, S_{0}, R, L):
S is a finite set of states.
- $S_{0} \subseteq S$ is the set of initial states.
e $R \subseteq S \times S$ is a transition relation that must be total.
数 $L: S \rightarrow 2^{A P}$ is a function that labels each state with the set of atomic propositions true in that state.

First Order Representations

The initial states can be represented by the formula:

$$
(a \wedge b)
$$

The transitions can be represented by the formula:

$$
\begin{aligned}
& \left(a \wedge b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \quad \vee \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge b^{\prime}\right)
\end{aligned}
$$

OBDD Representations

Use $x_{1}, x_{2}, x_{3}, x_{4}$ to represent $a, b, a^{\prime}, b^{\prime}$ respectively.

- The characteristic function of initial states:

$$
(a \wedge b)
$$

becomes

$$
\left(x_{1} \cdot x_{2}\right)
$$

OBDD Representations (cont.)

The characteristic function of transitions:

$$
\begin{array}{ll}
\left(a \wedge b \wedge a^{\prime} \wedge \neg b^{\prime}\right) & \vee \\
\left(a \wedge \neg b \wedge a^{\prime} \wedge \neg b^{\prime}\right) & \vee \\
\left(a \wedge \neg b \wedge a^{\prime} \wedge b^{\prime}\right) &
\end{array}
$$

becomes

$$
\begin{array}{ll}
\left(x_{1} \cdot x_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) & + \\
\left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) & + \\
\left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot x_{4}\right) &
\end{array}
$$

OBDD Representations (cont.)

Initial states: $x_{1} \cdot x_{2}$

OBDD Representations (cont.)

Transitions:

$$
\begin{aligned}
& \left(x_{1} \cdot x_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) \\
& \left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) \\
& \left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot x_{4}\right)
\end{aligned}+
$$

Summary

- OBDDs are representations of Boolean functions with
e canonical forms, and
e reasonable size.
- Transition systems can be encoded in Boolean functions and thus representable in OBDDs.
- Symbolic model checking becomes possible with OBDDs.

Constant Functions

Lemma 3: The reduced function graph G denoting the constant function $0 / 1$ must consist of a single terminal vertex with value 0/1.

Constant Functions (cont.)

- Let G be a reduced graph denoting the constant function 0 .
- G cannot contain terminal vertices having value 1 .
- Suppose G contains at least one nonterminal vertices.
, There must be a nonterminal vertex v where both $\operatorname{low}(v)$ and $\operatorname{high}(v)$ are terminal vertices. Thus we have $\operatorname{value}(\operatorname{low}(v))=\operatorname{value}(h i g h(v))$.
Either (1) $\operatorname{low}(v)$ and $\operatorname{high}(v)$ are distinct, in which case $\operatorname{sub}\left(G_{f}, \operatorname{low}(v)\right) \sim \operatorname{sub}\left(G_{f}, \operatorname{high}(v)\right)$ or (2) they are identical, in which case $\operatorname{low}(v)=\operatorname{high}(v)$.
In either case, G_{f} would not be a reduced function graph.
So, G consists of a single terminal vertex with value 0 .

Recall: Canonical Form

Theorem: For any Boolean function f, there is a unique (up to isomorphism) reduced function graph denoting f and any other function graph denoting f contains more vertices.

Proof of Canonical Form

- The proof proceeds by induction on the size of I_{f}
- Case 1: $\left|I_{f}\right|=0$

The proof comes directly from Lemma 3.

Proof of Canonical Form (cont.)

Suppose that the theorem holds for any function g having $\left|I_{g}\right|<k$.
Consider an arbitrary function f such that $\left|I_{f}\right|=k$, where $k>0$.
Let i be the minimum value in I_{f},
Define f_{0} and f_{1} as $\left.f\right|_{x_{i}=0}$ and $\left.f\right|_{x_{i}=1}$ respectively.

- $\left|I_{f_{0}}\right|<k$ and $\left|I_{f_{1}}\right|<k$ and hence f_{0} and f_{1} are represented by unique reduced function graphs $G_{f_{0}}$ and $G_{f_{1}}$ respectively.

Proof of Canonical Form (cont.)

- Let G_{f} and G_{f}^{\prime} be reduced function graphs for f.
- Let $v \in V_{G_{f}}$ and $v^{\prime} \in V_{G_{f}^{\prime}}$ be nonterminal vertices such that index $(v)=\operatorname{index}\left(v^{\prime}\right)=i$.
- $\operatorname{sub}\left(G_{f}, v\right)$ and $\operatorname{sub}\left(G_{f}^{\prime}, v^{\prime}\right)$ both denote f.
- $\operatorname{sub}\left(G_{f}, \operatorname{low}(v)\right)$ and $\operatorname{sub}\left(G_{f}^{\prime}, \operatorname{low}\left(v^{\prime}\right)\right)$ both denote f_{0} and hence $\operatorname{sub}\left(G_{f}, \operatorname{low}(v)\right) \sim_{\sigma_{0}} \operatorname{sub}\left(G_{f}^{\prime}, \operatorname{low}\left(v^{\prime}\right)\right)$ for some mapping σ_{0}.
- Similarly, $\operatorname{sub}\left(G_{f}, \operatorname{high}(v)\right)$ and $\operatorname{sub}\left(G_{f}^{\prime}, \operatorname{high}\left(v^{\prime}\right)\right)$ both denote f_{1} and hence
$\operatorname{sub}\left(G_{f}, \operatorname{high}(v)\right) \sim_{\sigma_{1}} \operatorname{sub}\left(G_{f}^{\prime}, \operatorname{high}\left(v^{\prime}\right)\right)$ for some mapping σ_{1}.

Proof of Canonical Form (cont.)

- We define a mapping σ as

$$
\sigma(u)=\begin{array}{ll}
v^{\prime}, & u=v, \\
\sigma_{0}(u), & u \in V_{\operatorname{sub}\left(G_{f}, l o w(v)\right)} \\
\sigma_{1}(u), & u \in V_{\text {sub }\left(G_{f}, \text { high }(v)\right)}
\end{array}
$$

- Claim 1: σ is well-defined.

This comes from Claim 2 and Claim 3.

Proof of Canonical Form (cont.)

- Claim 2: There is no conflict in σ.
. If $u \in V_{\left.\text {sub }\left(G_{f}, \text { low(} v\right)\right)}$ and $u \in V_{\text {sub }\left(G_{f}, \operatorname{high}(v)\right)}$, then $\operatorname{sub}\left(G_{f}^{\prime}, \sigma_{0}(u)\right) \sim \operatorname{sub}\left(G_{f}^{\prime}, \sigma_{1}(u)\right)$.
Since G_{f}^{\prime} contains no isomorphic subgraphs, this can only hold if $\sigma_{0}(u)=\sigma_{1}(u)$, and hence there is no conflict in the definition of σ.
- Claim 3: σ must be one-to-one.
. If there are distinct vertices u_{1} and u_{2} in G_{f} having $\sigma\left(u_{1}\right)=\sigma\left(u_{2}\right)$, then $\operatorname{sub}\left(G_{f}, u_{1}\right) \sim \operatorname{sub}\left(G_{f}, u_{2}\right)$ and hence G is not reduced.

Proof of Canonical Form (cont.)

Claim 4: $\operatorname{sub}\left(G_{f}, v\right) \sim_{\sigma} \operatorname{sub}\left(G_{f}^{\prime}, v^{\prime}\right), r\left(G_{f}\right)=v$, and $r\left(G_{f}^{\prime}\right)=v^{\prime}$.
We have shown σ is a well-defined mapping.
Suppose there is some vertex u with $\operatorname{index}(u)=j<i$ such that there is no other vertex w having $j<i n d e x(w)<i$.
頻 f does not depend on x_{j} and hence $\operatorname{sub}(G, \operatorname{low}(u))$ and $\operatorname{sub}(G, \operatorname{high}(u))$ both define f.
The above implies $\operatorname{low}(u)=\operatorname{high}(u)=v$, i.e., G is not reduced.
Hence $r(G)=v$.

Proof of Canonical Form (cont.)

Claim 5: Of all the graphs denoting a particular function, only the reduced graph has a minimum number of vertices.

