Bounded Model Checking (Based on [Biere et al. 1999, Benedetti and Cimatti 2003])

Yih-Kuen Tsay
(original created by Ming-Hsien Tsai)
Dept. of Information Management
National Taiwan University

Outline

- Introduction
- An Illustrative Example

Part I: Bounded Model Checking for LTL (with future only)
Part II: Bounded Model Checking for LTL with Past (or Full PTL)

- References:
[Biere et al.] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, "Symbolic Model Checking without BDD," TACAS 1999, LNCS1579.
[Benedetti and Cimatti] M. Benedetti and A. Cimatti, "Bounded Model Checking for Past LTL," TACAS 2003, LNCS 2619.

Introduction

- In symbolic model checking, BDDs had traditionally been used for boolean encodings.
Drawbacks of BDDs:
, For large systems (with over a few hundred boolean variables), they can be prohibitively large.
Selecting the right variable ordering is often time-consuming or needs manual intervention.
- Propositional decision procedures, or SAT solvers, also operate on boolean expressions, but do not use canonical forms.
SAT solvers can handle thousands of variables or even more.

Introduction (cont.)

- Basic ideas of bounded model checking (BMC):

Consider counterexamples of a particular length k.
Generate a propositional formula that is satisfiable iff such a counterexample exists.
The propositional formula can be tested for satisfiability by a SAT solver.

- Advantages of BMC:

It finds counterexamples very fast.
It finds counterexamples of minimal length.
, It uses much less space than BDD-based approaches.
e It does not need a manually selected variable ordering or time-consuming dynamic reordering.

An Example

- Consider a three-bit shift register.
- Let $M=\langle X, I, T\rangle$ be its state machine:

准 $X \triangleq\{x[0], x[1], x[2]\}$ contains the three bits.

- $I(X) \triangleq$ true, posing no restriction on the initial states.
$T\left(X, X^{\prime}\right) \triangleq\left(x^{\prime}[0] \Leftrightarrow x[1]\right) \wedge\left(x^{\prime}[1] \Leftrightarrow x[2]\right) \wedge x^{\prime}[2]$.
- Suppose we want to check if eventually all three bits are set to 0, i.e., if LTL formula $p \triangleq \diamond(\neg x[0] \wedge \neg x[1] \wedge \neg x[2])$ holds on all paths in M.
- To do so, we search for a path in M such that $\neg p \triangleq \square(x[0] \vee x[1] \vee x[2])$ on the path.
- If we succeed, then p does not hold on all paths; otherwise, it does.

An Example (cont.)

We look for (looping) paths with at most $k+1$ states, for instance $k=2$.

- Let X_{i} denote the set $\left\{x_{i}[0], x_{i}[1], x_{i}[2]\right\}$.
- The first 3 states of such a path can be characterized by the following boolean formula:

$$
f_{M} \triangleq I\left(X_{0}\right) \wedge T\left(X_{0}, X_{1}\right) \wedge T\left(X_{1}, X_{2}\right)
$$

- A witness for $\neg p$ must contain a loop from X_{2} back to X_{0}, X_{1}, or X_{2} :

$$
L_{i} \triangleq T\left(X_{2}, X_{i}\right)
$$

The path must fulfill the constraints imposed by $\neg p$:

$$
S_{i} \triangleq x_{i}[0] \vee x_{i}[1] \vee x_{i}[2]
$$

An Example (cont.)

The following formula is satisfiable iff there is a counterexample of length 2 for p.

$$
f_{M} \wedge \bigvee_{i=0}^{2} L_{i} \wedge \bigwedge_{i=0}^{2} S_{i}
$$

- Here is a satisfying assignment:

$$
\begin{aligned}
& x_{0}[0]=x_{0}[1]=x_{0}[2] \\
= & x_{1}[0]=x_{1}[1]=x_{1}[2] \\
= & x_{2}[0]=x_{2}[1]=x_{2}[2] \\
= & 1 .
\end{aligned}
$$

Part I:

Bounded Model Checking for LTL

Kripke Structures

- A Kripke structure is a tuple $M=(S, I, T, L)$ with
a finite set of states S,
* the set of initial states $I \subseteq S$,
a transition relation between states $T \subseteq S \times S$, and
the labeling of the states $L: S \rightarrow \mathscr{P}(A)$ with atomic propositions A.
- Every state of M is required to have a successor.
- We write $s \rightarrow t$ for $(s, t) \in T$.
- For an infinite sequence π of states s_{0}, s_{1}, \ldots, we define

$$
\begin{aligned}
& \pi(i)=s_{i} \\
& \pi^{i}=s_{i}, s_{i+1}, \ldots
\end{aligned}
$$

An infinite sequence π is a path if $\pi(i) \rightarrow \pi(i+1)$ for all $i \in \mathbb{N}$.

Linear Temporal Logic (LTL)

- Let M be a Kripke structure, π be a path in M, and f be an LTL formula (in negation normal form).
$\pi \models f(f$ is valid along π) is defined as follows:

$$
\begin{array}{lll}
\pi \models p & \text { iff } & p \in L(\pi(0)) \\
\pi \models \neg p & \text { iff } & p \notin L(\pi(0)) \\
\pi \models f \wedge g & \text { iff } & \pi \models f \text { and } \pi \models g \\
\pi \models f \vee g & \text { iff } & \pi \models f \text { or } \pi \models g \\
\pi \models \square f & \text { iff } & \forall j \in[0, \infty) \cdot \pi^{j} \models f \\
\pi \models \diamond f & \text { iff } & \exists j \in[0, \infty) \cdot \pi^{j} \models f \\
\pi \models \bigcirc f & \text { iff } & \pi^{1} \models f \\
\pi \models f \mathcal{U} g & \text { iff } & \exists j \in[0, \infty) \cdot\left(\pi^{j} \models g \text { and } \forall k \in[0, j) \cdot \pi^{k} \models f\right) \\
\pi \models f \mathcal{R} g & \text { iff } & \forall j \in[0, \infty) \cdot\left(\pi^{j} \models g \text { or } \exists k \in[0, j) \cdot \pi^{k} \models f\right)
\end{array}
$$

Model Checking

An LTL formula f is valid in a Kripke structure M, denoted as $M \models \mathbf{A} f$, iff $\pi \models f$ for all paths π in M with $\pi(0) \in I$.

- An LTL formula f is satisfiable in a Kripke structure M, denoted as $M \models \mathbf{E} f$, iff there is a path π in M such that $\pi \models f$ and $\pi(0) \in I$.
Given a Kripke structure M and an LTL formula f, the model checking problem is to determine whether $M \models \mathbf{A} f$, which is equivalent to determine whether $M \notin \mathbf{E} \neg f$.
- In the following, the problem is restricted to find a witness for formulae of the form $\mathbf{E} f$.

Bounded Model Checking

- Consider only a finite prefix of a path that may be a witness of $\mathbf{E} f$.
We restrict the length of the prefix to a certain bound k.
- Generate a propositional formula that is satisfiable iff there is a witness within the bound k.
- The propositional formula can be solved by a SAT solver.
- If there is no witness within bound k, we increase the bound and look for longer and longer possible witnesses.

Infinite Paths from the Prefix

Though the prefix of a path is finite, it still might represent an infinite path if there is a back loop from the last state of the prefix to any of the previous states.

- If there is no such back loop, then the prefix does not say anything about the infinite behavior of the path.
- Only a prefix with a back loop can represent a witness for $\square f$.

Loops

A path π is a (k, l)-loop for $l \leq k$ if
. $\pi(k) \rightarrow \pi(l)$ and
$\pi=u \cdot v^{\omega}$ with

- $u=\pi(0), \ldots, \pi(l-1)$ and
- $v=\pi(l), \ldots, \pi(k)$

A path π is a k-loop if there is an $l \in \mathbb{N}$ with $l \leq k$ for which π is a (k, l)-loop.

Bounded Semantics

- In bounded semantics, we only consider a finite prefix of a path which may or may not be a loop.
- In particular, we only use the first $k+1$ states of a path to determine the validity of a formula along that path.
- The bounded semantics $\pi \models_{k} f$ states that the LTL formula f is valid along the path π with bound k.

Bounded Semantics for a Loop

Let $k \in \mathbb{N}$ and π be a k-loop.
$\pi \models_{k} f$ iff $\pi \models f$.
This is so, because all information about π is contained in the prefix of length k.

Bounded Semantics without a Loop

Let $k \in \mathbb{N}$ and π be a path that is not a k-loop.
$\pi \models_{k} f$ iff $(\pi, 0) \models_{k} f$ where

$$
\begin{array}{lll}
(\pi, i) \models_{k} p & \text { iff } \quad p \in L(\pi(i)) \\
(\pi, i) \models_{k} \neg p & \text { iff } \quad p \notin L(\pi(i)) \\
(\pi, i) \models_{k} f \wedge g \quad & \text { iff } \quad(\pi, i) \models_{k} f \text { and }(\pi, i) \models_{k} g \\
(\pi, i) \models_{k} f \vee g \quad \text { iff } \quad(\pi, i) \models_{k} f \text { or }(\pi, i) \models_{k} g \\
(\pi, i) \models_{k} \square f \quad & \text { iff } \quad \text { false } \\
(\pi, i) \models_{k} \diamond f & \text { iff } \quad \exists j \in[i, k] .(\pi, j) \models_{k} f \\
(\pi, i) \models_{k} \bigcirc f & \text { iff } \quad i<k \text { and }(\pi, i+1) \models_{k} f \\
(\pi, i) \models_{k} f \mathcal{U} g \quad \text { iff } \quad \exists j \in[i, k] .\left((\pi, j) \models_{k} g \text { and } \forall n \in[i, j) .(\pi, n) \models_{k} f\right) \\
(\pi, i) \models_{k} f \mathcal{R} g \quad \text { iff } \quad \exists j \in[i, k] .\left((\pi, j) \models_{k} f \text { and } \forall n \in[i, j] .(\pi, n) \models_{k} g\right)
\end{array}
$$

Note: $(\pi, i) \models_{k} f$ is written as $\pi \models_{k}^{i} f$ in the paper.

Bounded Semantics without a Loop (cont.)

- Note that the bounded semantics without a loop imply that the following two dualities no longer hold: the duality of \square and $\diamond(\neg \square f=\diamond \neg f)$, and the duality of \mathcal{U} and $\mathcal{R}(\neg(f \mathcal{U} g)=(\neg f) \mathcal{R}(\neg g))$.

Reduce to Bounded Model Checking

- Lemma 1 Let h be an LTL formula and π a path, then $\pi \models_{k} h \Rightarrow \pi \models h$.
- Lemma 2 Let f be an LTL formula and M a Kripke structure. If $M \models \boldsymbol{E} f$ then there exists $k \in \mathbb{N}$ with $M \models_{k} \boldsymbol{E} f$.
Theorem 3 Let f be an LTL formula and M a Kripke structure. Then $M \models E f$ iff there exists $k \in \mathbb{N}$ with $M \models_{k} \boldsymbol{E} f$.

Proof of Lemma 1

Let h be an LTL formula and π a path, then $\pi \models_{k} h \Rightarrow \pi \models h$.

- Case 1: π is a k-loop.

The conclusion follows by the definition.

- Case 2: π is not a loop.

Prove by induction over the structure of f and $i \leq k$ the stronger property $\pi \models_{k}^{i} h \Rightarrow \pi^{i} \models h$.

Proof of Lemma 11 (cont.)

$$
\begin{aligned}
& \pi \models_{k}^{i} f \mathcal{R} g \\
\Leftrightarrow & \exists j \in[i, k] \cdot\left(\pi \models \models_{k}^{j} f \text { and } \forall n \in[i, j] \cdot \pi \models_{k}^{n} g\right) \\
\Rightarrow & \exists j \in[i, k] \cdot\left(\pi^{j} \models f \text { and } \forall n \in[i, j] \cdot \pi^{n} \models g\right) \\
\Rightarrow & \exists j \in[i, \infty] \cdot\left(\pi^{j} \models f \text { and } \forall n \in[i, j] \cdot \pi^{n} \models g\right) \\
\Rightarrow & \exists j^{\prime} \in[0, \infty) \cdot\left(\pi^{i+j^{\prime}} \models f \text { and } \forall n^{\prime} \in\left[0, j^{\prime}\right] \cdot \pi^{i+n^{\prime}} \models g\right) \\
& \left(\text { with } j^{\prime}=j-i \text { and } n^{\prime}=n-i\right) \\
\Rightarrow & \exists j \in[0, \infty) \cdot\left[\left(\pi^{i}\right)^{j} \models f \text { and } \forall n \in[0, j] \cdot\left(\pi^{i}\right)^{n} \models g\right] \\
\Rightarrow & \forall n \in[0, \infty) \cdot\left[\left(\pi^{i}\right)^{n} \models g \text { or } \exists j \in[0, n) \cdot\left(\pi^{i}\right)^{j} \models f\right] \\
& (\text { see next slide }) \\
\Rightarrow & \pi^{i} \models f \mathcal{R} g
\end{aligned}
$$

Proof of Lemma 11 (cont.)

$$
\exists m\left[\pi^{m} \models f \text { and } \forall l, l \leq m \cdot \pi^{l} \models g\right] \Rightarrow \forall n\left[\pi^{n} \models g \text { or } \exists j, j<n \cdot \pi^{j} \models f\right]
$$

- Assume that m is the smallest number such that $\pi^{m} \models f$ and $\pi^{l} \models g$ for all l with $l \leq m$.
- Case 1: $n>m$.

Based on the assumption, there exists $j<n$ such that $\pi^{j} \models f$ (choose $j=m$).

- Case 2: $n \leq m$.

Because $\pi^{l} \models g$ for all $l \leq m$ we have $\pi^{n} \models g$ for all $n \leq m$.

Proof of Lemma 2

Let f be an LTL formula and M a Kripke structure. If

 $M \models \mathbf{E} f$ then there exists $k \in \mathbb{N}$ with $M \models_{k} \mathbf{E} f$.- If f is satisfiable in M, then there exists a path in the product structure of M and the tableau of f that starts with an initial state and ends with a cycle in the strongly connected component of fair states.
This path can be chosen to be a k-loop with k bounded by $|S| \cdot 2^{|f|}$ which is the size of the product structure.
- If we project this path onto its first component, the original Kripke structure, then we get a path π that is a k-loop and in addition fulfills $\pi \models f$.
- By definition of the bounded semantics this also implies $\pi \models_{k} f$.

From BMC to SAT

Given a Kripke structure M, an LTL formula f, and a bound k, we will construct a propositional formula $\llbracket M, f \rrbracket_{k}$.
The bounded model checking problem can be reduced in polynomial time to propositional satisfiability.
億 The size of $\llbracket M, f \rrbracket_{k}$ is polynomial in the size of f if common sub-formulae are shared.
It is quadratic in k and linear in the size of the propositional formulae for T, I, and the $p \in A$.

Unfolding the Transition Relation

For a Kripke structure M and $k \in \mathbb{N}$,

$$
\llbracket M \rrbracket_{k} \triangleq I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right)
$$

Trans. of an LTL formula without a Loop

For an LTL formula f and $k, i \in \mathbb{N}$, with $i \leq k$,

$$
\begin{aligned}
& \llbracket p \rrbracket_{k}^{i} \quad \triangleq p\left(s_{i}\right) \\
& \llbracket \neg p \rrbracket_{k}^{i} \triangleq \neg p\left(s_{i}\right) \\
& \llbracket f \wedge g \rrbracket_{k}^{i} \triangleq \llbracket f \rrbracket_{k}^{i} \wedge \llbracket g \rrbracket_{k}^{i} \\
& \left.\llbracket f \vee g \rrbracket_{k}^{i} \triangleq \llbracket f \rrbracket_{k}^{i} \vee \llbracket g\right]_{k}^{i} \\
& \llbracket \square f \rrbracket_{k}^{i} \triangleq \text { false } \\
& \llbracket \diamond f \rrbracket_{k}^{i} \quad \triangleq \bigvee_{j=i}^{k} \llbracket f \rrbracket_{k}^{j} \\
& \llbracket \bigcirc f \rrbracket_{k}^{i} \triangleq \text { if } i<k \text { then } \llbracket f \rrbracket_{k}^{i+1} \text { else false } \\
& \llbracket f \mathcal{U} g \rrbracket_{k}^{i} \triangleq \bigvee_{j=i}^{k}\left(\llbracket g \rrbracket_{k}^{j} \wedge \wedge_{n=i}^{j-1} \llbracket f \rrbracket_{k}^{n}\right) \\
& \llbracket f \mathcal{R} g \rrbracket_{k}^{i} \triangleq \bigvee_{j=i}^{k}\left(\llbracket f \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{j} \llbracket \llbracket \rrbracket_{k}^{n}\right)
\end{aligned}
$$

Trans. of an LTL formula for a Loop

For an LTL formula f and $k, l, i \in \mathbb{N}$, with $l, i \leq k$,

$$
\begin{array}{ll}
l \llbracket p \rrbracket_{k}^{i} & \triangleq p\left(s_{i}\right) \\
l \llbracket \neg q \rrbracket_{k}^{i} & \triangleq \neg p\left(s_{i}\right) \\
l \llbracket f \wedge g \rrbracket_{k}^{i} & \triangleq{ }_{l} \llbracket f \rrbracket_{k}^{i} \wedge l \llbracket g \rrbracket_{k}^{i} \\
l \llbracket f \vee g \rrbracket_{k}^{i} & \triangleq{ }_{l} \llbracket f \rrbracket_{k}^{i} \vee_{l} \llbracket g \rrbracket_{k}^{i}
\end{array}
$$

Trans. of an LTL formula for a Loop

$$
\begin{aligned}
& \left.{ }^{\prime}[\square f]_{k}^{i} \triangleq \wedge_{j=\min (i, l)}^{k} l . f\right]_{k}^{j} \\
& { }_{\|}\left\lfloor\diamond f \rrbracket_{k}^{i} \triangleq \bigvee_{j=\min (i, l)}^{k} \|\left[f \rrbracket_{k}^{j}\right.\right. \\
& { }_{l}\left[\mathrm{O} f \rrbracket_{k}^{i} \triangleq{ }_{l} \| f\right]_{k}^{\text {succ(i) }}
\end{aligned}
$$

Let $k, l, i \in \mathbb{N}$, with $l, i \leq k$.

$$
\operatorname{succ}(i) \triangleq \begin{cases}i+1 & \text { for } i<k \\ l & \text { for } i=k\end{cases}
$$

Trans. of an LTL formula for a Loop (cont.)

$$
\begin{aligned}
& { }_{l} \llbracket f \mathcal{U} g \rrbracket_{k}^{i} \triangleq \bigvee_{j=i}^{k}\left(\imath \llbracket g \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{j-1} \llbracket \llbracket \rrbracket_{k}^{n}\right) \vee \\
& \bigvee_{j=l}^{i-1}\left(\llbracket \llbracket \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{k} \llbracket \rrbracket_{k}^{n} \wedge \bigwedge_{n=l}^{j-1} \llbracket \llbracket \rrbracket_{k}^{n}\right) \\
& { }_{l} \llbracket f \mathcal{R} g \rrbracket_{k}^{i} \triangleq \bigwedge_{j=\min (i, l)}^{k} \downarrow g \rrbracket_{k}^{j} \vee \\
& \bigvee_{j=i}^{k}\left(l \llbracket f \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{j} \llbracket g \rrbracket_{k}^{n}\right) \vee \\
& \bigvee_{j=l}^{i-1}\left(l \llbracket f \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{k} l \rrbracket g \rrbracket_{k}^{n} \wedge \bigwedge_{n=l}^{j} l \llbracket g \rrbracket_{k}^{n}\right)
\end{aligned}
$$

Loop Condition

The loop condition L_{k} is used to distinguish paths with bound k which are loops or not loops.

- For $k, l \in \mathbb{N}$, let

$$
{ }_{l} L_{k} \triangleq T\left(s_{k}, s_{l}\right)
$$

$$
L_{k} \triangleq \bigvee_{l=0}^{k}{ }_{l} L_{k}
$$

General Translation

- Let f be an LTL formula, M a Kripke structure, and $k \in \mathbb{N}$.

$$
\llbracket M, f \rrbracket_{k} \triangleq \llbracket M \rrbracket_{k} \wedge\left(\left(\neg L_{k} \wedge \llbracket f \rrbracket_{k}^{0}\right) \vee\left(\bigvee_{l=0}^{k}\left({ }_{l} L_{k} \wedge l \llbracket f \rrbracket_{k}^{0}\right)\right)\right)
$$

Note: is the term $\neg L_{k}$ redundant?

- Theorem $4 \llbracket M, f \rrbracket_{k}$ is satisfiable iff $M \models_{k} \boldsymbol{E} f$.

Corollary $5 M \models \boldsymbol{A} \neg f$ iff $\llbracket M, f \rrbracket_{k}$ is unsatisfiable for all $k \in \mathbb{N}$.

Bounds for LTL

LTL model checking is known to be PSPACE-complete.

- A polynomial bound on k with respect to the size of M and f for which $M \models_{k} \mathbf{E} f \Leftrightarrow M \models \mathbf{E} f$ is unlikely to be found.
Theorem 6 Given an LTL formula f and a Kripke structure M, let $|M|$ be the number of states in M, then $M \models \boldsymbol{E} f$ iff there exists $k \leq|M| \times 2^{f \mid}$ with $M \models_{k} \boldsymbol{E} f$.
- For the subset of LTL formulae that involves only temporal operators \diamond and \square, LTL model checking is NP-complete.
- For this subset of LTL formulae, there exists a bound on k linear in the number of states and the size of the formula.

Bounds for LTL (cont.)

Definition 7 (Loop Diameter) A Kripke structure is lasso shaped if every path p starting from an initial state is of the form $u_{p} v_{p}^{\omega}$, where u_{p} and v_{p} are finite sequences of length less or equal to u and v, respectively. The loop diameter of M is defined as (u, v).
Theorem 8 Given an LTL formula f and a lasso-shaped Kripke structure M, let the loop diameter of M be (u, v), then $M \models \boldsymbol{E} f$ iff there exists $k \leq u+v$ with $M \models_{k} \boldsymbol{E} f$.

Part II:

Bounded Model Checking for LTL with Past

Note: (k, l)-loop here corresponds to $(k-1, l)$-loop in Part I. For easy cross-referencing with the original paper, we have not attempted to unify the notion.

Propositional Temporal Logic

The full propositional temporal logic (PTL) is LTL with past operators.

$$
\begin{array}{ll}
(\pi, i) \models \ominus f & \text { iff } \quad i>0 \text { and }(\pi, i-1) \models f \\
(\pi, i) \models \ominus f \quad & \text { iff } \quad i=0 \text { or }(\pi, i-1) \models f \\
(\pi, i) \models \ominus f \quad & \text { iff } \quad \exists j, j \leq i .(\pi, j) \models f \\
(\pi, i) \models \boxminus f \quad & \text { iff } \quad \forall j, j \leq i .(\pi, j) \models f \\
(\pi, i) \models f \mathcal{S} g & \text { iff } \quad \exists j, j \leq i .((\pi, j) \models g \text { and } \forall k, j<k \leq i .(\pi, k) \models f) \\
(\pi, i) \models f \mathcal{T} g \quad \text { iff } \quad \forall j, j \leq i .((\pi, j) \models g \text { or } \exists k, j<k \leq i .(\pi, k) \models f)
\end{array}
$$

- Every PTL formula can be converted into the negation normal form.

Extend the Translation without Loops

- Let $k, i \in \mathbb{N}$ with $i \leq k$.

$$
\begin{aligned}
& \llbracket \ominus f \rrbracket_{k}^{i} \\
& \llbracket \begin{cases}\text { false } & i=0 \\
\llbracket f \rrbracket_{k}^{i-1} & i>0\end{cases} \\
& \llbracket \ominus f \rrbracket_{k}^{i}
\end{aligned} \triangleq\left\{\begin{array}{ll}
\text { true } & i=0 \\
\llbracket f \rrbracket_{k}^{i-1} & i>0
\end{array}\right] \begin{aligned}
& \llbracket \diamond f \rrbracket_{k}^{i} \triangleq \bigvee_{j=0}^{i} \llbracket f \rrbracket_{k}^{j} \\
& \llbracket \boxminus f \rrbracket_{k}^{i} \triangleq \bigwedge_{j=0}^{i} \llbracket f \rrbracket_{k}^{j} \\
& \llbracket f \mathcal{S} g \rrbracket_{k}^{i} \triangleq \bigvee_{j=0}^{i}\left(\llbracket g \rrbracket_{k}^{j} \wedge \bigwedge_{n=j+1}^{i} \llbracket f \rrbracket_{k}^{n}\right) \\
& \llbracket f \mathcal{T} g \rrbracket_{k}^{i} \triangleq \bigwedge_{j=0}^{i}\left(\llbracket g \rrbracket_{k}^{j} \vee \bigvee_{n=j+1}^{i} \llbracket f \rrbracket_{k}^{n}\right)
\end{aligned}
$$

Extend the Translation with Loops

The extension is not straightforward.

- For example, consider the path $01(2345)^{\omega}$ which can be seen as a (6, 2)-loop.
In the future case, the encoding of a specification is based on the idea that, for every time in the encoding, exactly one successor time exists.
Past formulae do not enjoy the above property. - The predecessor of 2 may be 1 or 5 .

$x=$	0	1	2	3	4	5	2	3	4	5	2	3	4	5	2
		\mid	\mid	\mid				\mid	\mid	\mid	\mid	\mid			

The Solution: Intuition

The formula $\diamond(x=2 \wedge \diamond(x=3 \wedge \diamond(x=4 \wedge(\diamond(x=5)))))$ is true in all the occurrences of $x=2$ after the fourth.

- The key idea is that every formula has a finite discriminating power for events in the past.
When evaluated sufficiently far from the origin of time, a formula becomes unable to distinguish its past sequence from infinitely many other past sequences with a "similar" behavior.
- The idea is then to collapse the undistinguishable versions of the past together into the same equivalence class.

Past Temporal Horizon

The past temporal horizon (PTH) $\tau_{\pi}(f)$ of a PTL formula f with respect to a (k, l)-loop π (with period $p=k-l$) is the smallest value $n \in \mathbb{N}$ such that

$$
\forall i, l \leq i<k .\left((\pi, i+n p) \models f \text { iff }\left(\forall n^{\prime}>n .\left(\pi, i+n^{\prime} p\right) \models f\right)\right) .
$$

PTH of a PTL Formula

- The $\mathrm{PTH} \tau(f)$ of a PTL formula f is defined as $\tau(f) \triangleq \max _{\tau \in \Pi} \tau_{\pi}(f)$ where Π is the set of all the paths which are (k, l)-loops for some $k>l \geq 0$.
Theorem 9 Let f and g be PTL formulae. Then, it holds that:

$$
\begin{aligned}
& \tau(p)=0, \text { when } p \in A \text { and } \tau(f)=\tau(\neg f) \text {; } \\
& \tau(\circ f) \leq \tau(f), \text { when } \circ \in\{\bigcirc, \diamond, \square\} ; \\
& \tau(\circ f) \leq \tau(f)+1 \text {, when } \circ \in\{\Theta, \Theta, \diamond, \boxminus\} ; \\
& \tau(f \circ g) \leq \max (\tau(f), \tau(g)) \text {, when } \circ \in\{\wedge, \vee, \mathcal{U}, \mathcal{R}\} ; \\
& \tau(f \circ g) \leq \max (\tau(f), \tau(g))+1, \text { when } \circ \in\{\mathcal{S}, \mathcal{T}\} ;
\end{aligned}
$$

- The PTH of a PTL formula is bounded by its structure regardless of the particular path π.

Borders and Intervals

－We call
组 $\operatorname{LB}(n) \triangleq l+n p$ the n－th left border of π ，
沮 $\operatorname{RB}(n) \triangleq k+n p$ the n－th right border of π ，and the interval $M(n) \triangleq[0, \mathbf{R B}(n))$ the n－th main domain of a (k, l)－loop．
－We call
LB $(f) \triangleq \mathbf{L B}(\tau(f))$ the left border of f ，
目B（f）$\triangleq \mathbf{R B}(\tau(f))$ the right border of f ，and
$M(f) \triangleq M(\tau(f))$ the main domain of f ．

Borders and Intervals (cont.)

$x=\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 2 & 3 & 4 & 5 & 2 & 3 & 4 & 5 & 2\end{array}$

time $\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
$\mathbf{L B}(0)=2$

- $\mathbf{R B}(0)=6$
- $\mathbf{L B}(1)=6$
- $\mathbf{R B}(1)=10$

Projection of Points

- Let $i \in \mathbb{N}$.

The projection of the point i in the n-th main domain of a (k, l)-loop is $\rho_{n}(i)$, defined as

$$
\rho_{n}(i) \triangleq \begin{cases}i & i<\mathbf{R B}(n) \\ \rho_{n}(i-p) & \text { otherwise }\end{cases}
$$

The projection of the point i onto the main domain of f is defined as $\rho_{f}(i) \triangleq \rho_{\tau(f)}(i)$.

Projection of Intervals

The projection of the interval $[a, b)$ onto the main domain of f is defined as $\rho_{f}([a, b)) \triangleq \rho_{\tau(f)}([a, b))$.

- Lemma 10 For an open interval $[a, b)$,

$$
\rho_{n}([a, b))= \begin{cases}\emptyset & \text { if } a=b, \text { else } \\ {[a, b)} & \text { if } b<\boldsymbol{R} \boldsymbol{B}(n), \text { else } \\ {[\min (a, \boldsymbol{L B}(n)), \boldsymbol{R B}(n))} & \text { if } b-a \geq p, \text { else } \\ {\left[\rho_{n}(a), \rho_{n}(b)\right)} & \text { if } \rho_{n}(a)<\rho_{n}(b), \text { else } \\ {\left[\rho_{n}(a), \boldsymbol{R B}(n)\right) \cup\left[\boldsymbol{L} \boldsymbol{B}(n), \rho_{n}(b)\right)} & \end{cases}
$$

Extended Projection of Intervals

An extended intervals is of the form $[a, b)$ where b is possibly less than a (or even it is equal to ∞).

- Let $[a, b)$ be an extended interval.
- The extended projection of $[a, b)$ onto the n-th main domain of a (k, l)-loop is defined as follows

$$
\rho_{n}^{*}([a, b)) \triangleq \begin{cases}\rho_{n}^{*}([a, \max (a, \mathbf{R B}(n))+p)) & b=\infty \\ \rho_{n}^{*}([a, b+p)) & b<a \\ \rho_{n}^{*}([a, b)) & \text { otherwise }\end{cases}
$$

- As before, $\rho_{f}^{*}([a, b)) \triangleq \rho_{\tau(f)}^{*}([a, b))$.

Equivalent Counterparts

Theorem 11 For

e any PTL formula f,
any (k, l)-loop π, and
any extended interval $[a, b)$,
a point $i \in[a, b)$ such that $(\pi, i) \models f$ exists iff a point $i^{\prime} \in \rho_{f}^{*}([a, b))$ exists such that $\left(\pi, i^{\prime}\right) \models f$.

Extend the Translation with Loops

The translation of a PTL formula on a (k, l)-loop π at time point i (with $k, l, i \in \mathbb{N}$ and $0 \leq l<k$) is a propositional formula inductively defined as follows.

$$
\begin{aligned}
& \left.{ }_{l} \llbracket p\right]_{k}^{i} \triangleq p^{\rho_{0}(i)} \\
& { }_{l} \llbracket \neq p \rrbracket_{k}^{i} \triangleq \neq p^{\rho_{0}(i)} \\
& { }_{l} \llbracket f \wedge g \rrbracket_{k}^{i} \triangleq l \llbracket f \rrbracket_{k}^{\rho_{f}(i)} \wedge l \llbracket g \rrbracket_{k}^{\rho_{g}(i)} \\
& { }_{l} \llbracket f \vee g \rrbracket_{k}^{i} \triangleq{ }_{l} \llbracket f \rrbracket_{k}^{\rho_{f}(i)} \vee_{l} \llbracket g \rrbracket_{k}^{\rho_{g}(i)}
\end{aligned}
$$

Extend the Translation with Loops (cont.)

${ }_{\iota}[f \mathcal{R} g]_{k}^{i} \triangleq \wedge_{\left.j \in \rho_{g}^{s}(i, \infty)\right)}\left(\left[I[g]_{k}^{j} \vee \bigvee_{\left.n \in \rho_{f}^{*}(i, j)\right)} L[f]_{k}^{n}\right)\right.$
$\left.\left.{ }_{l} \| \Theta f\right]_{k}^{i} \triangleq i>0 \wedge \| \llbracket f\right]_{k}^{D_{f}^{f}(i-1)}$
$\left.{ }_{l} \llbracket \odot \in \rrbracket_{k}^{i} \quad \triangleq i=0 \vee_{\|} \| f\right]_{k}^{\rho_{f}^{f}(i-1)}$

$\left.\left.{ }_{\|} \| \in f\right]_{k}^{i} \triangleq \bigwedge_{\left.j \in \rho_{f}^{p}(0, i)\right\rangle} \ell \| f\right]_{k}^{j}$

Correctness of the Translation

Theorem 12 For any PTL formula f, a (k, l)-loop path π in M such that $\pi \models f$ exists iff $\llbracket M \rrbracket_{k} \wedge_{l} L_{k} \wedge_{l} \llbracket f \rrbracket_{k}^{0}$ is satisfiable.

