Bounded Model Checking (Based on [Biere *et al.* 1999, Benedetti and Cimatti 2003])

Yih-Kuen Tsay (original created by Ming-Hsien Tsai)

Dept. of Information Management
National Taiwan University

Outline

- Introduction
- An Illustrative Example
- Part I: Bounded Model Checking for LTL (with future only)
- Part II: Bounded Model Checking for LTL with Past (or Full PTL)
- References:

[Biere et al.] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, "Symbolic Model Checking without BDD," TACAS 1999, LNCS1579.

[Benedetti and Cimatti] M. Benedetti and A. Cimatti, "Bounded Model Checking for Past LTL," TACAS 2003, LNCS 2619.

Introduction

- In symbolic model checking, BDDs had traditionally been used for boolean encodings.
- Drawbacks of BDDs:
 - For large systems (with over a few hundred boolean variables), they can be prohibitively large.
 - Selecting the right variable ordering is often time-consuming or needs manual intervention.
- Propositional decision procedures, or SAT solvers, also operate on boolean expressions, but do not use canonical forms.
- SAT solvers can handle thousands of variables or even more.

Introduction (cont.)

- Basic ideas of bounded model checking (BMC):
 - Consider counterexamples of a particular length k.
 - Generate a propositional formula that is satisfiable iff such a counterexample exists.
 - The propositional formula can be tested for satisfiability by a SAT solver.
- Advantages of BMC:
 - It finds counterexamples very fast.
 - It finds counterexamples of minimal length.
 - It uses much less space than BDD-based approaches.
 - It does not need a manually selected variable ordering or time-consuming dynamic reordering.

An Example

- Consider a three-bit shift register.
- Let $M = \langle X, I, T \rangle$ be its state machine:
 - $X \triangleq \{x[0], x[1], x[2]\}$ contains the three bits.
 - $#I(X) \triangleq true$, posing no restriction on the initial states.
 - $T(X,X') \triangleq (x'[0] \Leftrightarrow x[1]) \land (x'[1] \Leftrightarrow x[2]) \land x'[2].$
- Suppose we want to check if eventually all three bits are set to 0, i.e., if LTL formula $p \triangleq \diamondsuit(\neg x[0] \land \neg x[1] \land \neg x[2])$ holds on all paths in M.
- To do so, we search for a path in M such that $\neg p \triangleq \Box(x[0] \lor x[1] \lor x[2])$ on the path.
- If we succeed, then *p* does not hold on all paths; otherwise, it does.

An Example (cont.)

- We look for (looping) paths with at most k+1 states, for instance k=2.
- Let X_i denote the set $\{x_i[0], x_i[1], x_i[2]\}$.
- The first 3 states of such a path can be characterized by the following boolean formula:

$$f_M \triangleq I(X_0) \land T(X_0, X_1) \land T(X_1, X_2)$$

• A witness for $\neg p$ must contain a loop from X_2 back to X_0, X_1 , or X_2 :

$$L_i \triangleq T(X_2, X_i)$$

 \bullet The path must fulfill the constraints imposed by $\neg p$:

$$S_i \triangleq x_i[0] \lor x_i[1] \lor x_i[2]$$

An Example (cont.)

The following formula is satisfiable iff there is a counterexample of length 2 for p.

$$f_M \wedge \bigvee_{i=0}^2 L_i \wedge \bigwedge_{i=0}^2 S_i$$

Here is a satisfying assignment:

$$x_0[0] = x_0[1] = x_0[2]$$
= $x_1[0] = x_1[1] = x_1[2]$
= $x_2[0] = x_2[1] = x_2[2]$
= 1.

Part I:

Bounded Model Checking for LTL

Kripke Structures

- A Kripke structure is a tuple M = (S, I, T, L) with
 - \clubsuit a finite set of states S,
 - \clubsuit the set of initial states $I \subseteq S$,
 - \clubsuit a transition relation between states $T \subseteq S \times S$, and
 - * the labeling of the states $L: S \to \mathscr{P}(A)$ with atomic propositions A.
- We write $s \to t$ for $(s,t) \in T$.
- For an infinite sequence π of states s_0, s_1, \ldots , we define
- An infinite sequence π is a path if $\pi(i) \to \pi(i+1)$ for all $i \in \mathbb{N}$.

Linear Temporal Logic (LTL)

- Let M be a Kripke structure, π be a path in M, and f be an LTL formula (in negation normal form).
- \bullet $\pi \models f$ (f is valid along π) is defined as follows:

$$\begin{array}{lll} \pi \models p & \text{iff} & p \in L(\pi(0)) \\ \pi \models \neg p & \text{iff} & p \not\in L(\pi(0)) \\ \pi \models f \wedge g & \text{iff} & \pi \models f \text{ and } \pi \models g \\ \pi \models f \vee g & \text{iff} & \pi \models f \text{ or } \pi \models g \\ \pi \models \Box f & \text{iff} & \forall j \in [0,\infty).\pi^j \models f \\ \pi \models \Diamond f & \text{iff} & \exists j \in [0,\infty).\pi^j \models f \\ \pi \models \bigcirc f & \text{iff} & \pi^1 \models f \\ \pi \models f \ \mathcal{U} g & \text{iff} & \exists j \in [0,\infty).(\pi^j \models g \text{ and } \forall k \in [0,j).\pi^k \models f) \\ \pi \models f \ \mathcal{R} g & \text{iff} & \forall j \in [0,\infty).(\pi^j \models g \text{ or } \exists k \in [0,j).\pi^k \models f) \end{array}$$

Model Checking

- An LTL formula f is valid in a Kripke structure M, denoted as $M \models \mathbf{A} f$, iff $\pi \models f$ for all paths π in M with $\pi(0) \in I$.
- An LTL formula f is satisfiable in a Kripke structure M, denoted as $M \models \mathbf{E} f$, iff there is a path π in M such that $\pi \models f$ and $\pi(0) \in I$.
- Given a Kripke structure M and an LTL formula f, the model checking problem is to determine whether $M \models \mathbf{A} f$, which is equivalent to determine whether $M \not\models \mathbf{E} \neg f$.
- In the following, the problem is restricted to find a witness for formulae of the form **E** *f*.

Bounded Model Checking

- Consider only a finite prefix of a path that may be a witness of E f.
- \bullet We restrict the length of the prefix to a certain bound k.
- Generate a propositional formula that is satisfiable iff there is a witness within the bound k.
- The propositional formula can be solved by a SAT solver.
- If there is no witness within bound k, we increase the bound and look for longer and longer possible witnesses.

Infinite Paths from the Prefix

- Though the prefix of a path is finite, it still might represent an infinite path if there is a back loop from the last state of the prefix to any of the previous states.
- If there is no such back loop, then the prefix does not say anything about the infinite behavior of the path.
- Only a prefix with a back loop can represent a witness for $\Box f$.

Loops

• A path π is a (k, l)-loop for $l \leq k$ if

$$\red \pi(k) \to \pi(l)$$
 and

$$\not = u \cdot v^{\omega}$$
 with

•
$$u = \pi(0), \dots, \pi(l-1)$$
 and

$$v = \pi(l), \ldots, \pi(k)$$

• A path π is a k-loop if there is an $l \in \mathbb{N}$ with $l \leq k$ for which π is a (k, l)-loop.

Bounded Semantics

- In bounded semantics, we only consider a finite prefix of a path which may or may not be a loop.
- In particular, we only use the first k+1 states of a path to determine the validity of a formula along that path.
- The bounded semantics $\pi \models_k f$ states that the LTL formula f is valid along the path π with bound k.

Bounded Semantics for a Loop

- Let $k \in \mathbb{N}$ and π be a k-loop.
- \bullet $\pi \models_k f \text{ iff } \pi \models f.$
- This is so, because all information about π is contained in the prefix of length k.

Bounded Semantics without a Loop

- Let $k \in \mathbb{N}$ and π be a path that is not a k-loop.
- $\pi \models_k f$ iff $(\pi,0) \models_k f$ where

```
(\pi, i) \models_k p iff p \in L(\pi(i))
(\pi, i) \models_k \neg p iff p \notin L(\pi(i))
(\pi,i) \models_k f \land g iff (\pi,i) \models_k f and (\pi,i) \models_k g
(\pi,i) \models_k f \lor g iff (\pi,i) \models_k f or (\pi,i) \models_k g
(\pi,i) \models_k \Box f iff false
(\pi,i) \models_k \Diamond f iff \exists j \in [i,k].(\pi,j) \models_k f
(\pi, i) \models_k \bigcirc f iff i < k and (\pi, i + 1) \models_k f
(\pi,i) \models_k f \mathcal{U} g iff \exists j \in [i,k].((\pi,j) \models_k g \text{ and } \forall n \in [i,j).(\pi,n) \models_k f)
(\pi,i) \models_k f \mathcal{R} g \quad \text{iff} \quad \exists j \in [i,k]. ((\pi,j) \models_k f \text{ and } \forall n \in [i,j]. (\pi,n) \models_k g)
```

Note: $(\pi, i) \models_k f$ is written as $\pi \models_k^i f$ in the paper.

Bounded Semantics without a Loop (cont.)

- Note that the bounded semantics without a loop imply that the following two dualities no longer hold:
 - \clubsuit the duality of \Box and \diamondsuit ($\neg \Box f = \diamondsuit \neg f$), and
 - \red the duality of \mathcal{U} and \mathcal{R} ($\neg (f \mathcal{U} g) = (\neg f) \mathcal{R} (\neg g)$).

Reduce to Bounded Model Checking

- **Lemma 1** Let h be an LTL formula and π a path, then $\pi \models_k h \Rightarrow \pi \models h$.
- Lemma 2 Let f be an LTL formula and M a Kripke structure. If $M \models \mathbf{E} f$ then there exists $k \in \mathbb{N}$ with $M \models_k \mathbf{E} f$.
- **Theorem 3** Let f be an LTL formula and M a Kripke structure. Then $M \models \mathbf{E} f$ iff there exists $k \in \mathbb{N}$ with $M \models_k \mathbf{E} f$.

Proof of Lemma 1

Let h be an LTL formula and π a path, then $\pi \models_k h \Rightarrow \pi \models h$.

- igcep Case 1: π is a k-loop.
 - The conclusion follows by the definition.
- \bigcirc Case 2: π is not a loop.
 - *Prove by induction over the structure of f and $i \leq k$ the stronger property $\pi \models_k^i h \Rightarrow \pi^i \models h$.

Proof of Lemma 1 (cont.)

$$\pi \models_{k}^{i} f \mathcal{R} g$$

$$\Leftrightarrow \exists j \in [i, k]. (\pi \models_{k}^{j} f \text{ and } \forall n \in [i, j]. \pi \models_{k}^{n} g)$$

$$\Rightarrow \exists j \in [i, k]. (\pi^{j} \models f \text{ and } \forall n \in [i, j]. \pi^{n} \models g)$$

$$\Rightarrow \exists j \in [i, \infty]. (\pi^{j} \models f \text{ and } \forall n \in [i, j]. \pi^{n} \models g)$$

$$\Rightarrow \exists j' \in [0, \infty). (\pi^{i+j'} \models f \text{ and } \forall n' \in [0, j']. \pi^{i+n'} \models g)$$

$$(\text{with } j' = j - i \text{ and } n' = n - i)$$

$$\Rightarrow \exists j \in [0, \infty). [(\pi^{i})^{j} \models f \text{ and } \forall n \in [0, j]. (\pi^{i})^{n} \models g]$$

$$\Rightarrow \forall n \in [0, \infty). [(\pi^{i})^{n} \models g \text{ or } \exists j \in [0, n). (\pi^{i})^{j} \models f]$$

$$(\text{see next slide})$$

$$\Rightarrow \pi^{i} \models f \mathcal{R} g$$

Proof of Lemma 1 (cont.)

$$\exists m[\pi^m \models f \text{ and } \forall l, l \leq m.\pi^l \models g] \Rightarrow \forall n[\pi^n \models g \text{ or } \exists j, j < n.\pi^j \models f]$$

- Assume that m is the smallest number such that $\pi^m \models f$ and $\pi^l \models g$ for all l with $l \leq m$.
- \bullet Case 1: n > m.
 - ** Based on the assumption, there exists j < n such that $\pi^j \models f$ (choose j = m).
- \bigcirc Case 2: $n \leq m$.
 - ** Because $\pi^l \models g$ for all $l \leq m$ we have $\pi^n \models g$ for all n < m.

Proof of Lemma 2

Let f be an LTL formula and M a Kripke structure. If $M \models \mathbf{E} f$ then there exists $k \in \mathbb{N}$ with $M \models_k \mathbf{E} f$.

- If f is satisfiable in M, then there exists a path in the product structure of M and the tableau of f that starts with an initial state and ends with a cycle in the strongly connected component of fair states.
- This path can be chosen to be a k-loop with k bounded by $|S| \cdot 2^{|f|}$ which is the size of the product structure.
- If we project this path onto its first component, the original Kripke structure, then we get a path π that is a k-loop and in addition fulfills $\pi \models f$.
- \odot By definition of the bounded semantics this also implies $\pi \models_k f$.

From BMC to SAT

- Given a Kripke structure M, an LTL formula f, and a bound k, we will construct a propositional formula $[\![M,f]\!]_k$.
- The bounded model checking problem can be reduced in polynomial time to propositional satisfiability.
 - * The size of $[\![M,f]\!]_k$ is polynomial in the size of f if common sub-formulae are shared.
 - * It is quadratic in k and linear in the size of the propositional formulae for T, I, and the $p \in A$.

Unfolding the Transition Relation

 $igoplus For a Kripke structure M and <math>k \in \mathbb{N}$,

$$\llbracket M \rrbracket_k \triangleq I(s_0) \land \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})$$

Trans. of an LTL formula without a Loop

• For an LTL formula f and $k, i \in \mathbb{N}$, with $i \leq k$,

Trans. of an LTL formula for a Loop

• For an LTL formula f and $k, l, i \in \mathbb{N}$, with $l, i \leq k$,

$$\begin{array}{ccc}
l \llbracket p \rrbracket_k^i & \triangleq & p(s_i) \\
l \llbracket \neg p \rrbracket_k^i & \triangleq & \neg p(s_i) \\
l \llbracket f \wedge g \rrbracket_k^i & \triangleq & l \llbracket f \rrbracket_k^i \wedge l \llbracket g \rrbracket_k^i \\
l \llbracket f \vee g \rrbracket_k^i & \triangleq & l \llbracket f \rrbracket_k^i \vee l \llbracket g \rrbracket_k^i
\end{array}$$

Trans. of an LTL formula for a Loop

$$\begin{aligned}
& l \llbracket \Box f \rrbracket_k^i & \triangleq & \bigwedge_{j=\min(i,l)}^k l \llbracket f \rrbracket_k^j \\
& l \llbracket \diamondsuit f \rrbracket_k^i & \triangleq & \bigvee_{j=\min(i,l)}^k l \llbracket f \rrbracket_k^j \\
& l \llbracket \bigcirc f \rrbracket_k^i & \triangleq & l \llbracket f \rrbracket_k^{succ(i)}
\end{aligned}$$

• Let $k, l, i \in \mathbb{N}$, with $l, i \leq k$.

$$succ(i) \triangleq \left\{ egin{array}{ll} i+1 & \mbox{for } i < k \\ l & \mbox{for } i = k \end{array}
ight.$$

Trans. of an LTL formula for a Loop (cont.)

$$l \llbracket f \mathcal{R} g \rrbracket_{k}^{i} \triangleq \bigwedge_{j=\min(i,l)}^{k} l \llbracket g \rrbracket_{k}^{j} \vee \\ \bigvee_{j=i}^{k} (l \llbracket f \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{j} l \llbracket g \rrbracket_{k}^{n}) \vee \\ \bigvee_{j=l}^{i-1} (l \llbracket f \rrbracket_{k}^{j} \wedge \bigwedge_{n=i}^{k} l \llbracket g \rrbracket_{k}^{n} \wedge \bigwedge_{n=l}^{j} l \llbracket g \rrbracket_{k}^{n})$$

Loop Condition

- \bullet The loop condition L_k is used to distinguish paths with bound k which are loops or not loops.

$$\stackrel{*}{=} {}_{l}L_{k} \triangleq T(s_{k}, s_{l})$$

$$\stackrel{*}{\circledast} L_k \triangleq \bigvee_{l=0}^k {}_l L_k.$$

General Translation

• Let f be an LTL formula, M a Kripke structure, and $k \in \mathbb{N}$.

$$[M, f]_k \triangleq [M]_k \wedge ((\neg L_k \wedge [f]_k^0) \vee (\bigvee_{l=0}^{\kappa} (_l L_k \wedge _l [f]_k^0)))$$

Note: is the term $\neg L_k$ redundant?

- Theorem 4 $[\![M,f]\!]_k$ is satisfiable iff $M\models_k Ef$.
- Corollary 5 $M \models A \neg f$ iff $[\![M, f]\!]_k$ is unsatisfiable for all $k \in \mathbb{N}$.

Bounds for LTL

- LTL model checking is known to be PSPACE-complete.
- A polynomial bound on k with respect to the size of M and f for which $M \models_k \mathbf{E} f \Leftrightarrow M \models \mathbf{E} f$ is unlikely to be found.
- **Theorem 6** Given an LTL formula f and a Kripke structure M, let |M| be the number of states in M, then $M \models \mathbf{E} f$ iff there exists $k \leq |M| \times 2^{|f|}$ with $M \models_k \mathbf{E} f$.
- For the subset of LTL formulae that involves only temporal operators ◊ and □, LTL model checking is NP-complete.
- For this subset of LTL formulae, there exists a bound on k linear in the number of states and the size of the formula.

Bounds for LTL (cont.)

- **Oefinition 7 (Loop Diameter)** A Kripke structure is lasso shaped if every path p starting from an initial state is of the form $u_p v_p^{\omega}$, where u_p and v_p are finite sequences of length less or equal to u and v, respectively. The loop diameter of M is defined as (u,v).
- **Theorem 8** Given an LTL formula f and a lasso-shaped Kripke structure M, let the loop diameter of M be (u, v), then $M \models \mathbf{E} f$ iff there exists $k \leq u + v$ with $M \models_k \mathbf{E} f$.

Part II:

Bounded Model Checking for LTL with Past

Note: (k, l)-loop here corresponds to (k - 1, l)-loop in Part I. For easy cross-referencing with the original paper, we have not attempted to unify the notion.

Propositional Temporal Logic

The full propositional temporal logic (PTL) is LTL with past operators.

$$\begin{split} (\pi,i) &\models \bigcirc f &\quad \text{iff} \quad i > 0 \text{ and } (\pi,i-1) \models f \\ (\pi,i) &\models \bigcirc f &\quad \text{iff} \quad i = 0 \text{ or } (\pi,i-1) \models f \\ (\pi,i) &\models \bigcirc f &\quad \text{iff} \quad \exists j,j \leq i.(\pi,j) \models f \\ (\pi,i) &\models \boxdot f &\quad \text{iff} \quad \forall j,j \leq i.(\pi,j) \models f \\ (\pi,i) &\models f \mathrel{\mathcal{S}} g &\quad \text{iff} \quad \exists j,j \leq i.((\pi,j) \models g \text{ and } \forall k,j < k \leq i.(\pi,k) \models f) \\ (\pi,i) &\models f \mathrel{\mathcal{T}} g &\quad \text{iff} \quad \forall j,j \leq i.((\pi,j) \models g \text{ or } \exists k,j < k \leq i.(\pi,k) \models f) \end{split}$$

Every PTL formula can be converted into the negation normal form.

Extend the Translation without Loops

• Let $k, i \in \mathbb{N}$ with $i \leq k$.

Extend the Translation with Loops

- The extension is not straightforward.
- For example, consider the path $01(2345)^{\omega}$ which can be seen as a (6,2)-loop.
 - In the future case, the encoding of a specification is based on the idea that, for every time in the encoding, exactly one successor time exists.
 - Past formulae do not enjoy the above property.
 - \bullet The predecessor of 2 may be 1 or 5.

The Solution: Intuition

- The formula $\diamondsuit(x=2 \land \diamondsuit(x=3 \land \diamondsuit(x=4 \land (\diamondsuit(x=5)))))$ is true in all the occurrences of x=2 after the fourth.
- The key idea is that every formula has a finite discriminating power for events in the past.
- When evaluated sufficiently far from the origin of time, a formula becomes unable to distinguish its past sequence from infinitely many other past sequences with a "similar" behavior.
- The idea is then to collapse the undistinguishable versions of the past together into the same equivalence class.

Past Temporal Horizon

The past temporal horizon (PTH) $\tau_{\pi}(f)$ of a PTL formula f with respect to a (k,l)-loop π (with period p=k-l) is the smallest value $n\in\mathbb{N}$ such that

$$\forall i, l \leq i < k.((\pi, i + np) \models f \text{ iff } (\forall n' > n.(\pi, i + n'p) \models f)).$$

PTH of a PTL Formula

- The PTH $\tau(f)$ of a PTL formula f is defined as $\tau(f) \triangleq \max_{\tau \in \Pi} \tau_{\pi}(f)$ where Π is the set of all the paths which are (k, l)-loops for some $k > l \geq 0$.
- **Theorem 9** Let f and g be PTL formulae. Then, it holds that:
 - $\red{*}$ au(p) = 0, when $p \in A$ and $au(f) = au(\neg f)$;
 - \bullet $\tau(\circ f) \leq \tau(f)$, when $\circ \in \{\bigcirc, \diamondsuit, \square\}$;
 - \bullet $\tau(\circ f) \leq \tau(f) + 1$, when $\circ \in \{ \ominus, \ominus, \ominus, \ominus \}$;
 - * $\tau(f \circ g) \leq \max(\tau(f), \tau(g))$, when $\circ \in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$;
 - * $au(f \circ g) \leq \max(\tau(f), \tau(g)) + 1$, when $\circ \in \{S, T\}$;
- The PTH of a PTL formula is bounded by its structure regardless of the particular path π .

Borders and Intervals

- We call
 - $\clubsuit LB(n) \triangleq l + np$ the *n*-th left border of π ,
 - $\circledast RB(n) \triangleq k + np$ the *n*-th right border of π , and
 - * the interval $M(n) \triangleq [0, \mathbf{RB}(n))$ the n-th main domain of a (k, l)-loop.
- We call
 - $\clubsuit LB(f) \triangleq LB(\tau(f))$ the left border of f,
 - $\circledast RB(f) \triangleq RB(\tau(f))$ the right border of f, and
 - $\not * M(f) \triangleq M(\tau(f))$ the main domain of f.

Borders and Intervals (cont.)

- **B** $\mathbf{LB}(0) = 2$
- **?** RB(0) = 6
- **\bigsilon LB**(1) = 6
- **?** RB(1) = 10

Projection of Points

- \bullet Let $i \in \mathbb{N}$.
- The projection of the point i in the n-th main domain of a (k,l)-loop is $\rho_n(i)$, defined as

$$\rho_n(i) \triangleq \begin{cases}
i & i < \mathbf{RB}(n) \\
\rho_n(i-p) & \text{otherwise}
\end{cases}$$

The projection of the point i onto the main domain of f is defined as $\rho_f(i) \triangleq \rho_{\tau(f)}(i)$.

Projection of Intervals

- The projection of the interval [a,b) onto the main domain of f is defined as $\rho_f([a,b)) \triangleq \rho_{\tau(f)}([a,b))$.
- Lemma 10 For an open interval [a,b),

$$\rho_n([a,b)) = \begin{cases} \emptyset & \text{if } a = b, \text{ else} \\ [a,b) & \text{if } b < \textbf{\textit{RB}}(n), \text{ else} \\ [\min(a,\textbf{\textit{LB}}(n)),\textbf{\textit{RB}}(n)) & \text{if } b - a \geq p, \text{ else} \\ [\rho_n(a),\rho_n(b)) & \text{if } \rho_n(a) < \rho_n(b), \text{ else} \\ [\rho_n(a),\textbf{\textit{RB}}(n)) \cup [\textbf{\textit{LB}}(n),\rho_n(b)) \end{cases}$$

Extended Projection of Intervals

- An extended intervals is of the form [a,b) where b is possibly less than a (or even it is equal to ∞).
- \bullet Let [a,b) be an extended interval.
- The extended projection of [a,b) onto the n-th main domain of a (k,l)-loop is defined as follows

$$\rho_n^*([a,b)) \triangleq \begin{cases} \rho_n^*([a,\max(a,\mathbf{RB}(n))+p)) & b=\infty\\ \rho_n^*([a,b+p)) & b< a\\ \rho_n^*([a,b)) & \text{otherwise} \end{cases}$$

• As before, $\rho_f^*([a,b)) \triangleq \rho_{\tau(f)}^*([a,b))$.

Equivalent Counterparts

- Theorem 11 For
 - any PTL formula f,
 - \red any (k,l)-loop π , and
 - \red any extended interval [a,b),

a point $i \in [a,b)$ such that $(\pi,i) \models f$ exists iff a point $i' \in \rho_f^*([a,b))$ exists such that $(\pi,i') \models f$.

Extend the Translation with Loops

The translation of a PTL formula on a (k, l)-loop π at time point i (with $k, l, i \in \mathbb{N}$ and $0 \le l < k$) is a propositional formula inductively defined as follows.

$$\begin{aligned}
&l \llbracket p \rrbracket_k^i & \triangleq & p^{\rho_0(i)} \\
&l \llbracket \neq p \rrbracket_k^i & \triangleq & \neq p^{\rho_0(i)} \\
&l \llbracket f \wedge g \rrbracket_k^i & \triangleq & l \llbracket f \rrbracket_k^{\rho_f(i)} \wedge l \llbracket g \rrbracket_k^{\rho_g(i)} \\
&l \llbracket f \vee g \rrbracket_k^i & \triangleq & l \llbracket f \rrbracket_k^{\rho_f(i)} \vee l \llbracket g \rrbracket_k^{\rho_g(i)}
\end{aligned}$$

Extend the Translation with Loops (cont.)

$$\begin{split} & \| [\diamondsuit f]]_k^i \quad \triangleq \quad \bigvee_{j \in \rho_f^*([i,\infty))} \iota \llbracket f \rrbracket_k^j \\ & \iota \llbracket \Box f \rrbracket_k^i \quad \triangleq \quad \bigwedge_{j \in \rho_f^*([i,\infty))} \iota \llbracket f \rrbracket_k^j \\ & \iota \llbracket f \ \mathcal{U} \ g \rrbracket_k^i \quad \triangleq \quad \bigvee_{j \in \rho_g^*([i,\infty))} (\iota \llbracket g \rrbracket_k^j \wedge \bigwedge_{n \in \rho_f^*([i,j))} \iota \llbracket f \rrbracket_k^n) \\ & \iota \llbracket f \ \mathcal{R} \ g \rrbracket_k^i \quad \triangleq \quad \bigwedge_{j \in \rho_g^*([i,\infty))} (\iota \llbracket g \rrbracket_k^j \vee \bigvee_{n \in \rho_f^*([i,j))} \iota \llbracket f \rrbracket_k^n) \\ & \iota \llbracket \ominus f \rrbracket_k^i \quad \triangleq \quad i > 0 \wedge \iota \llbracket f \rrbracket_k^{\rho_f(i-1)} \\ & \iota \llbracket \ominus f \rrbracket_k^i \quad \triangleq \quad i = 0 \vee \iota \llbracket f \rrbracket_k^{\rho_f(i-1)} \\ & \iota \llbracket \ominus f \rrbracket_k^i \quad \triangleq \quad \bigvee_{j \in \rho_f^*([0,i])} \iota \llbracket f \rrbracket_k^j \\ & \iota \llbracket f \ \mathcal{S} \ g \rrbracket_k^i \quad \triangleq \quad \bigvee_{j \in \rho_g^*([0,i])} (\iota \llbracket g \rrbracket_k^j \wedge \bigwedge_{n \in \rho_f^*((j,i])} \iota \llbracket f \rrbracket_k^n) \\ & \iota \llbracket f \ \mathcal{T} \ g \rrbracket_k^i \quad \triangleq \quad \bigwedge_{j \in \rho_g^*([0,i])} (\iota \llbracket g \rrbracket_k^j \vee \bigvee_{n \in \rho_f^*((j,i])} \iota \llbracket f \rrbracket_k^n) \end{split}$$

Correctness of the Translation

Theorem 12 For any PTL formula f, a (k,l)-loop path π in M such that $\pi \models f$ exists iff $[\![M]\!]_k \wedge_l L_k \wedge_l [\![f]\!]_k^0$ is satisfiable.

