Compositional Reasoning

Yih-Kuen Tsay (original created by Yu-Fang Chen)

Dept. of Information Management National Taiwan University

Compositional Verification

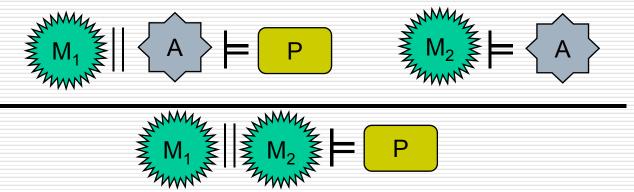
- **□ Verification Task:** verify if the system composed of components M_1 and M_2 satisfies a property P, i.e., $M_1 || M_2 \models P$.
- \square M₁ and M₂ may rely on each other to satisfy P.
- \square So, it is usually not possible to verify M_1 and M_2 separately.

Component M₁ Out x: Boolean; In y: Boolean; Init x = true; Repeat forever x:=y; Component M₂ Always x=true % Repeat forever y:= true;

 M_1 alone does not guarantee "always x = true"!

Compositional Verification (cont.)

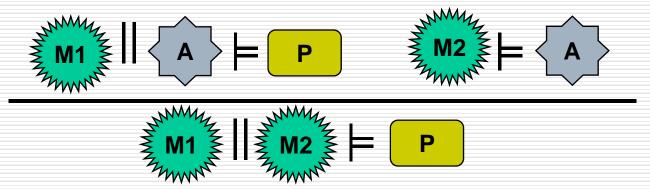
Assume-Guarantee reasoning:



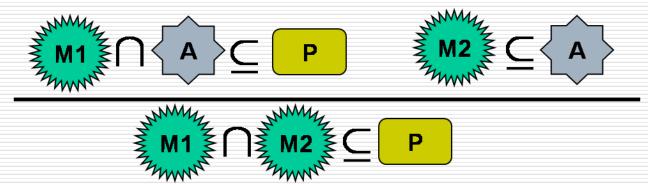
- Here, M_1 , M_2 , A, and P are finite automata.
- If a small A (an abstraction of M_2) exists, then the overall verification task may become easier.

But, how to find (A) automatically?

A Language-Theoretic Framework



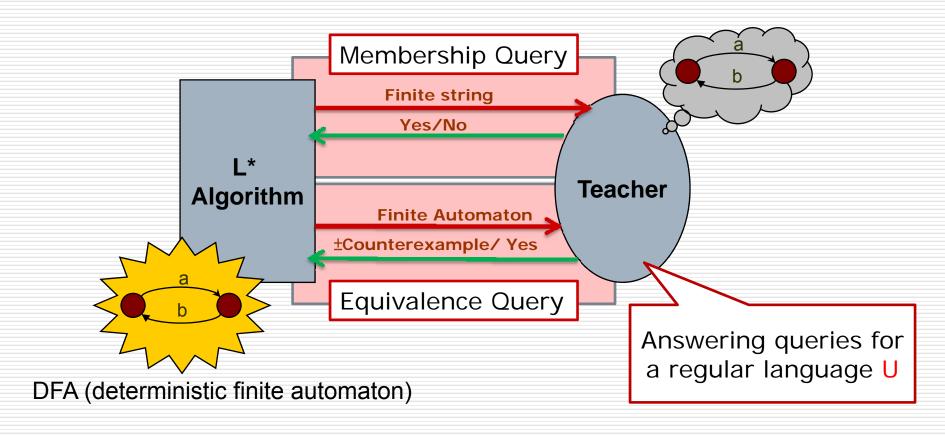
- ☐ The behaviors of components and properties are described as regular languages.
- □ Parallel composition is presented by the intersection of the languages.
- ☐ A system satisfies a property if the language of the system is a subset of the language of the property.



Outline

- ☐ Learning-Based Compositional Model Checking:
 - Automation by Learning
 - The L* Algorithm
 - The Problem of L*-Based Approaches
- ☐ Learning Minimal Separating DFA's:
 - The L^{SEP} Algorithm
 - Comparison with Another Algorithm
 - Adapt L^{SEP} for Compositional Model Checking

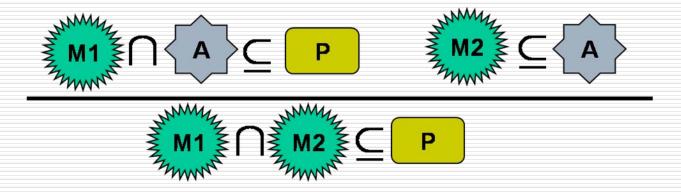
Overview of the L* Algorithm



If such a teacher is provided, L* guarantees to produce a DFA that recognizes U using a polynomial number of queries.

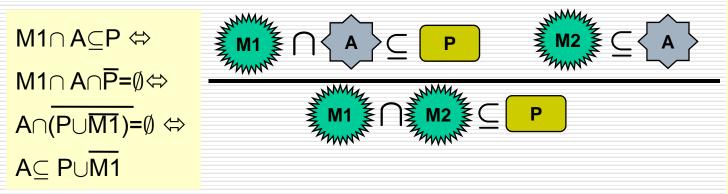
Automation by Learning

- ☐ First developed by Cobleigh, Giannakopoulou, and Pasareanu [TACAS 2003]
- □ Apply the L* learning algorithm for regular languages to find an ♠ for the assume-guarantee rule:



The Algorithm of Cobleigh et al.

☐ Automatically find an ♠ for the following assume-guarantee rule:

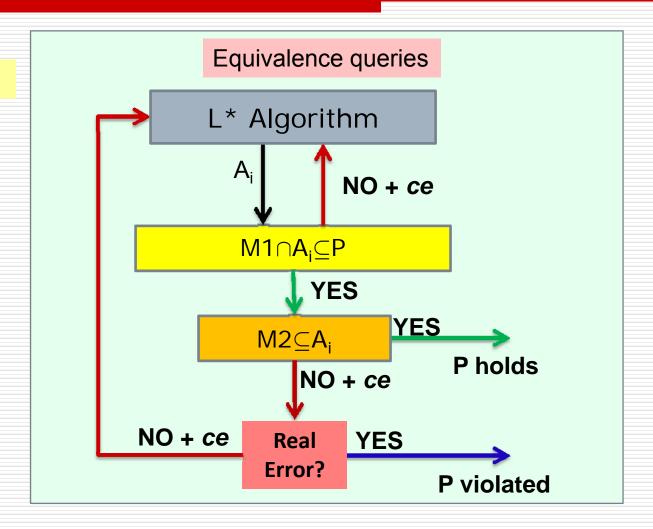


When $A=P\cup\overline{M1}$, $M2\subseteq A\Leftrightarrow$ $M2\subseteq P\cup\overline{M1}\Leftrightarrow$ $M2\cap (P\cup\overline{M1})=\emptyset\Leftrightarrow$ $M2\cap\overline{P}\cap M1=\emptyset\Leftrightarrow$ $M1\cap M2\subseteq P$

- ☐ Apply L* to find it iteratively.
- ☐ The target language is $P \cup M1$, the *weakest* assumption for the premise $M1 \cap A \subseteq P$.

The Algorithm of Cobleigh et al. (cont.)

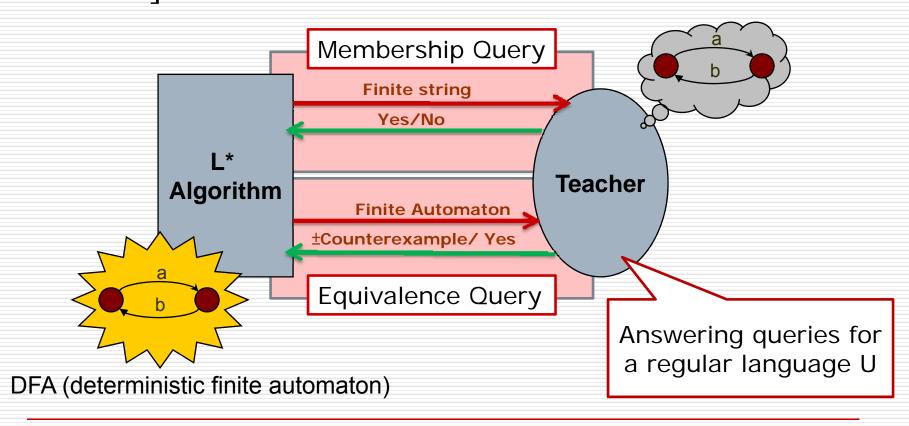
Target: P∪M1



[Cobleigh, Giannakopoulou, and Pasareanu 2003]

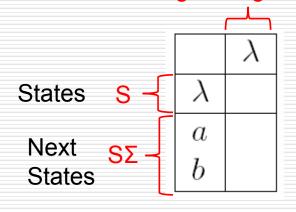
The L* Learning Algorithm

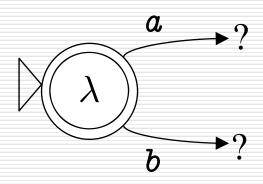
Proposed by D. Angluin [Info.&Comp. 1987] and improved by Rivest and Schapire [Info.&Comp. 1993]

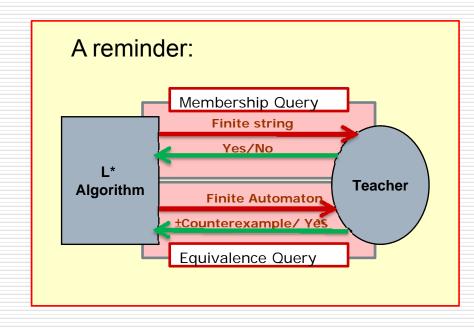


L*: Initial Setting

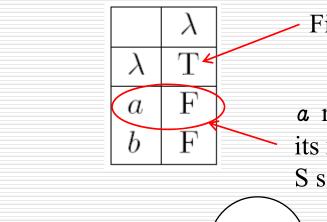
E: Distinguishing Experiments





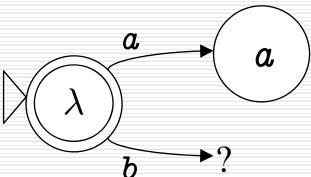


L*: Fill Up the Table by Membership Queries



Fill up the table using membership queries

a represents a new equivalence class, because its **row** is different from all of those in the current S set.

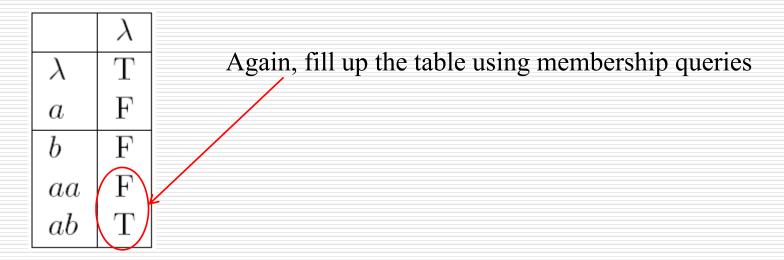


L*: Table Expansion

Move a to the S set and expand the table with elements aa and ab

	λ
λ	Τ
a	F
b	F
aa	
ab	

L*: A Closed Table

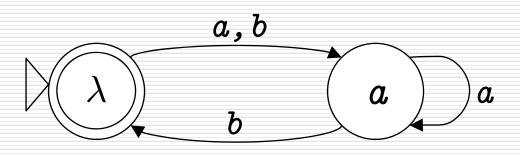


We say that the table is **closed** because every row in the $S\Sigma$ set appears somewhere in the S set

L*: Making a Conjecture

	λ
λ	Т
a	F
b	F
aa	F
ab	Т

Construct a DFA from the learned equivalence classes



Counterexample: bb

 $\delta(s, a) = s'$ iff sa and s' have the same row.

A suffix b is extracted from bb as a valid distinguishing experiment

Target: $(ab+aab)^*$

15/34

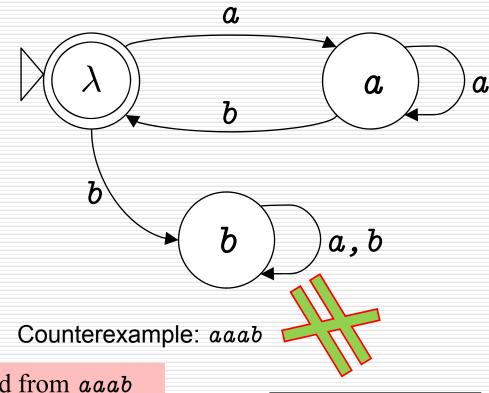
Theorem:

At least one suffix of the counterexample is a valid distinguishing experiment

L*: 2nd Iteration

Add b to the E set, fill up and expand the table following the same procedure

	λ	b
λ	Τ	F
a	F	T
b	F	F
aa	F	Τ
ab	Τ	\mathbf{F}
ba	F	\mathbf{F}
bb	F	F



A suffix ab is extracted from aaab as a valid distinguishing experiment

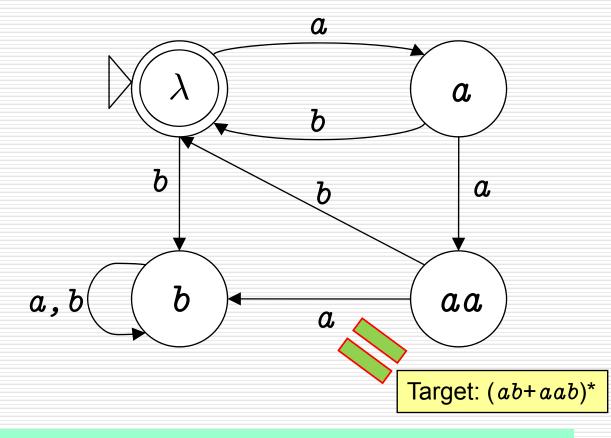
Target: $(ab+aab)^*$

16 / 34

L*: 3rd Iteration (Completed)

Add ab to the E set, fill up and expand the table following the same procedure

	λ	b	ab
λ	Τ	F	Τ
a	\mathbf{F}	T	Τ
b	F	\mathbf{F}	F
aa	F	Τ	F
ab	Τ	F	Τ
ba	\mathbf{F}	\mathbf{F}	F
bb	\mathbf{F}	\mathbf{F}	F
aaa	\mathbf{F}	\mathbf{F}	F
aab	Τ	F	\mathbf{T}



Theorem:

The DFA produced by L* is the minimal DFA that recognizes that target language

L*: Complexity

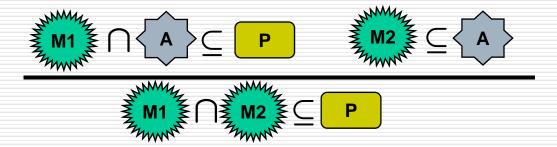
- **□** Complexity:
 - Equivalence query: at most n-1
 - Membership query: $O(|\Sigma|n^2 + n \log m)$

	λ	b	ab
λ	Τ	F	Τ
a	\mathbf{F}	T	T
b	\mathbf{F}	F	F
aa	F	Τ	F
ab	Τ	F	Т
ba	\mathbf{F}	\mathbf{F}	F
bb	\mathbf{F}	\mathbf{F}	F
aaa	F	F	F
aab	Τ	F	Т

Note: *n* is the size of the minimal DFA that recognizes U, *m* is the length of the longest counterexample returned from the teacher.

The Problem

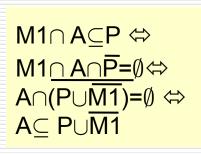
☐ The L*-based approaches cannot guarantee finding the minimal assumption (in size), even if there exists one.

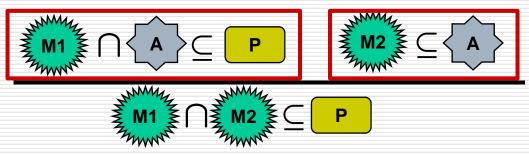


- The smaller the size of A is, the easier it is to check the correctness of the two premises.
- □ L* targets a single language, however, there exists a range of languages that satisfy the premises of an A-G rule.

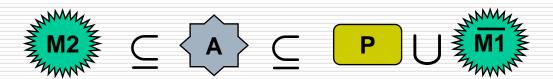
Finding a Minimal Assumption

☐ A reminder: we use the following Assume-Guarantee rule for decomposition.



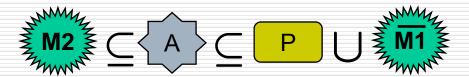


☐ The two premises can be rewritten as follows:



Finding a Minimal Assumption (cont.)

☐ The two premises can be rewritten as follows:



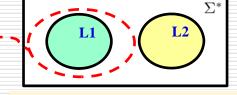
- ☐ The verification problem reduces to finding a minimal separating DFA that
 - accepts every string in M2 and
 - **rejects** every string not in $P \cup \overline{M1}$.

First observed by Gupta, McMillan, and Fu

Learning a Minimal Separating DFA

- Our contribution: a polynomial query learning algorithm, L^{Sep}, for minimal separating DFA's.
- Problem: given two disjoint regular languages L1 and L2, we want to find a minimal DFA A that satisfies

$$L1 \subseteq \mathcal{L}(A) \subseteq \overline{L2}$$



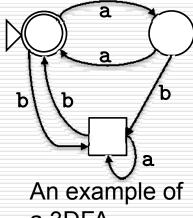
We say that A is a separating

DFA for L1 and L2

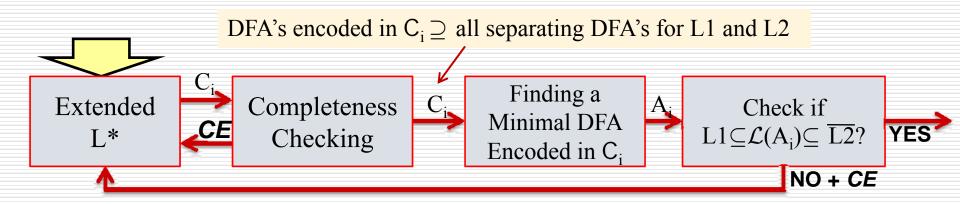
- **Assumption:** exists a teacher of L1 and L2:
 - Membership query: if a string **s** is in L1 (resp. L2)
 - Containment query: $?\subseteq L1$, $?\supseteq L1$, $?\subseteq L2$, and $?\supseteq L2$

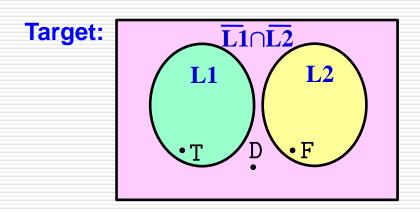
3-Value DFA (3DFA)

- A 3DFA is a tuple $C = (\Sigma, S, s_0, \delta, Acc, Rej, Dont)$.
- \blacksquare A **DFA** A is **encoded in** a **3DFA** C iff A
 - accepts all strings that C accepts and
 - rejects all strings that C rejects.
 - A don't care string in *C* can be either accepted or rejected by A.



The L^{Sep} Algorithm: Overview





	λ	\overline{a}
λ		E
a	F	Τ
ab		D
b	D	D
aa	T	F
aba	D	D
abb	Τ	F

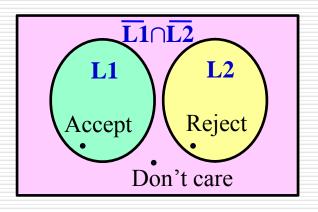
Extend the the L*

algorithm to allow

don't care values

The Target 3DFA

- The target 3DFA *C*
 - **accepts** every string in L1, and
 - rejects every string in L2.
 - Strings in $\overline{L1} \cap \overline{L2}$ are don't care strings.



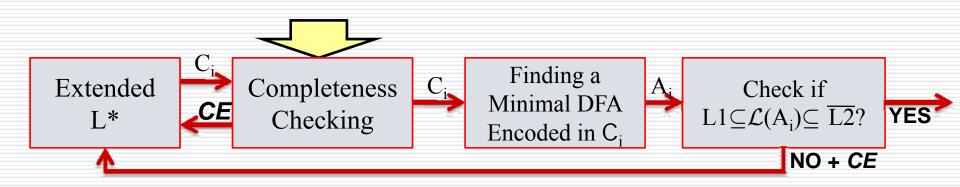
Definition:

- **A DFA** A is **encoded in** a **3DFA** C iff A
 - accepts all strings that C accepts and

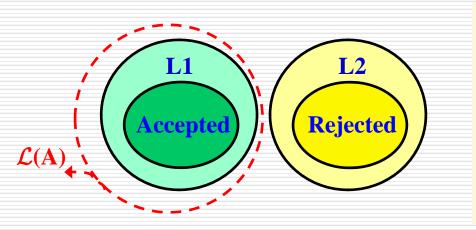
DFA's encoded in C =

all separating DFA's for L1 and L2

- rejects all strings that *C* rejects.
- $\blacksquare \quad A DFA A \text{ separates L1 and L2 iff } A$
 - accepts all strings in L1 and
 - rejects all strings in **L2**.
- A minimal DFA encoded in *C* is a minimal separating DFA of **L1** and **L2**.

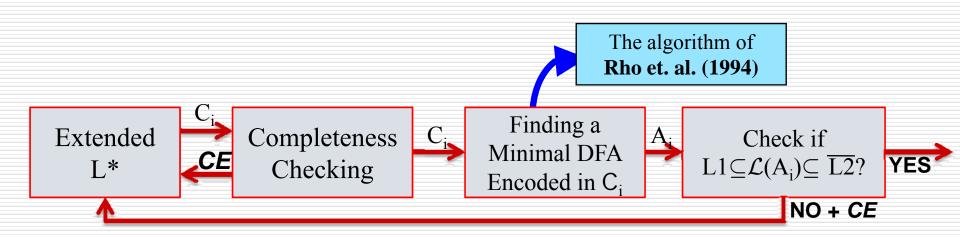


Check if all of the **separating** DFA's of L1 and L2 are **encoded** in C_i , which can be done by checking the following conditions:



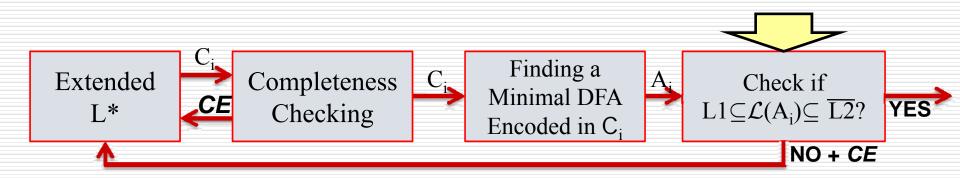
Definition:

- **A DFA** A is **encoded in** a **3DFA** C iff A
 - accepts all strings that *C* accepts and
 - rejects all strings that *C* rejects.
- \blacksquare A DFA A separates L1 and L2 iff A
 - accepts all strings in L1 and
 - rejects all strings in **L2**.



LEMMA:

The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**i.



If
$$L1\subseteq \mathcal{L}(A_i)\subseteq \overline{L2}$$
:

A_i is a minimal separating DFA

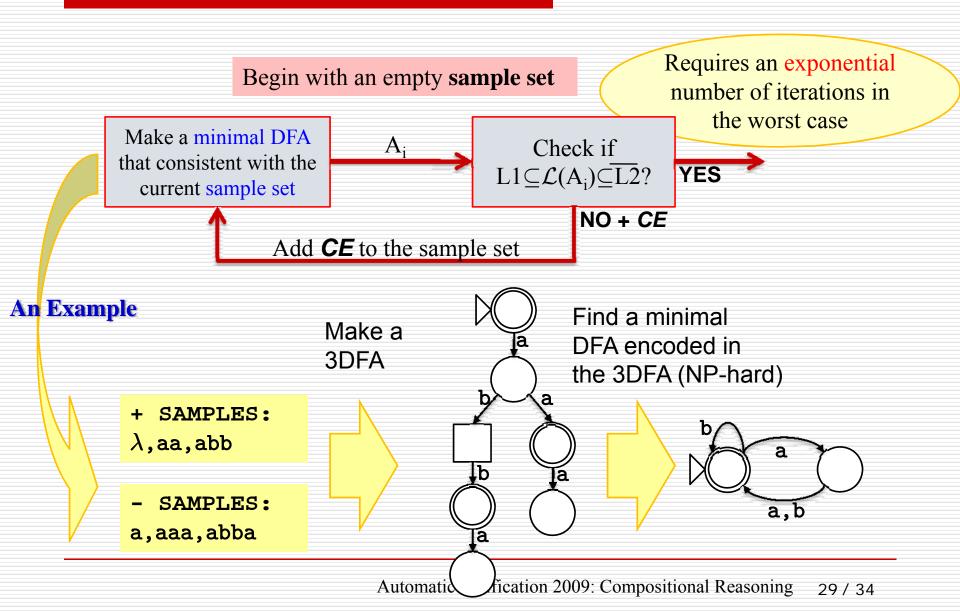
If L1
$$\nsubseteq \mathcal{L}(A_i)$$
 or $\mathcal{L}(A_i) \nsubseteq \overline{L2}$:

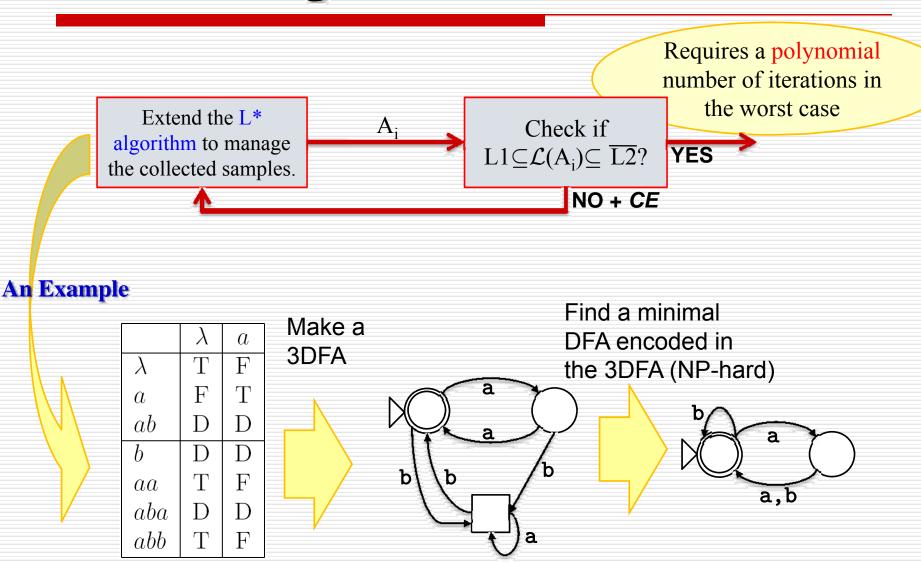
The counterexample CE is a witness for C_i is not the target 3DFA

LEMMA:

The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**i.

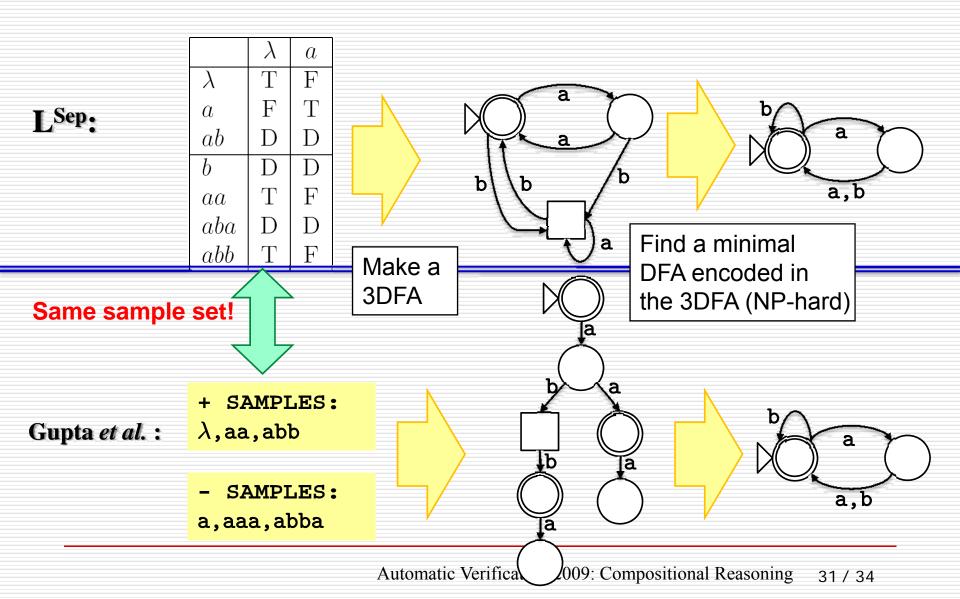
The Algorithm of Gupta et al.





30 / 34

Comparing the Two Algorithms

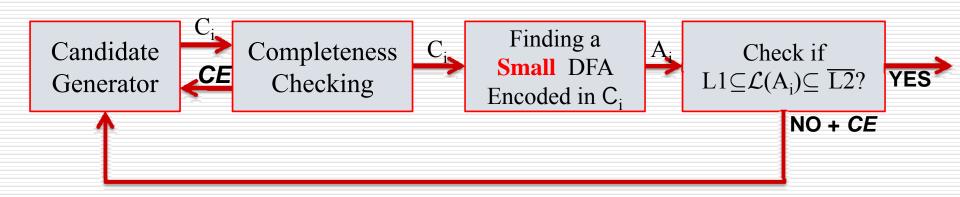


Adapt L^{Sep} for Compositional Verification

- □ Let L1 = M2 and $\overline{L}2$ = P∪M1, use L^{Sep} to find a separating DFA for L1 and L2.
- □ When $M2 \nsubseteq P \cup \overline{M1}$ ($M1 \cap M2 \nsubseteq P$), L^{Sep} can be modified to guarantee finding a string in $M1 \cap M2 \setminus P$.

Adapt L^{Sep} for Compositional Verification

☐ Use heuristics to find a small consistent DFA:

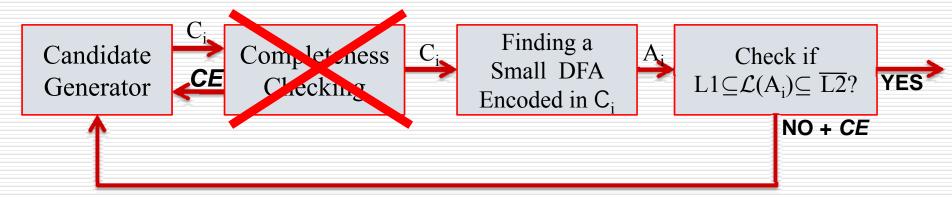


Minimality is no longer guaranteed!

33 / 34

Adapt L^{Sep} for Compositional Verification

☐ Skip completeness checking:



Minimality is no longer guaranteed!