Infinite-State Systems (Based on [ACJT 2000])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Automatic Verification 2009: Infinite-State Systems – 1/36

Infinite-State Systems

- Where does infinity arise?
 - Infinite data domains: integers, reals, ...
 - Unbounded storage, message channels, …
 - Unbounded replications of finite artifacts
 - Time and other natural phenomena (temperature, atmospheric pressure, ...)
- Popular computation models
 - Classic: push-down automata, Turing machines, ...
 - Petri nets and their variants
 - Transition systems with an infinite set of states
 - Indexed/parameterized finite-state systems
 - Timed automata, Hybrid automata, ...

Undecidablity and Decidablity

- The halting problem for Turing machines is undecidable.
- Rice's theorem:

Any *non-trivial* problem about Turing machines is *undecidable*.

- When a computation model can simulate the Turing machine, there is no hope of fully automating its verification.
- To obtain decidability, some restrictions must be present:
 - Imited operations on the storage/variables
 - certain regularity on the state transitions
 - Iossy message channels
 - simpler test/enabling conditions

Well-Structured Systems: An Overview

- Well-structured systems embody general mathematical structures that are common of several popular infinite-state computation models.
- In such systems, the state space is equipped with a simulation preorder (quasi-order) in that "smaller" states can be simulated by "larger" states.
- The quasi-order, in addition, is a well quasi-ordering in that every infinite sequence of states contains a pair of states such that the earlier state is "smaller" than the latter state.
- With additional requirements, the following problems are decidable for well-structured systems: reachability, eventuality, and simulation.

Labeled Transition Systems

- As a general model of infinite-state systems, we adopt labeled transition systems.
- Solution We assume a finite set Λ of *labels*. Each label $\lambda \in \Lambda$ represents an observable interaction with the environment.
- A (labeled) transition system \mathcal{L} is a pair $\langle S, \delta \rangle$:
 - \circledast S is a set of states,

formed as the cartesian product $Q \times D$ of a finite set Q of *control states* and a possibly infinite set D of *data values*.

 $\delta \subseteq S \times \Lambda \times S$ is a set of *transitions*.

Labeled Transition Systems (cont.)

- Solution We use $\langle q, d \rangle$ to denote the state whose control state is q and whose data value is d.
- We use s → s' to denote that (s, λ, s') ∈ δ. Intuitively, s → s' means that the system can move from state s to state s' while performing the observable action λ.
- We let $s \longrightarrow s'$ denote that there is a λ such that $s \xrightarrow{\lambda} s'$, and let $\xrightarrow{*}$ denote the reflexive transitive closure of \longrightarrow .
- Solution For $s \in S$ and $T \subseteq S$, we say that T is reachable from s(written $s \xrightarrow{*} T$) if there exists a state $s' \in T$ such that $s \xrightarrow{*} s'$.

Labeled Transition Systems (cont.)

- For $T \subseteq S$ and $\lambda \in \Lambda$, we define $pre_{\lambda}(T)$ to be the set $\left\{s' \mid \exists s \in T. \ s' \xrightarrow{\lambda} s\right\}$.
- Solution Analogously, we define $post_{\lambda}(T)$ as $\left\{s' \mid \exists s \in T. \ s \xrightarrow{\lambda} s' \right\}$.
- By pre(T) (post(T)) we mean $\cup_{\lambda \in \Lambda} pre_{\lambda}(T)$ ($\cup_{\lambda \in \Lambda} post_{\lambda}(T)$).
- Sometimes we write pre(s) (post(s)) instead of pre({s}) (post({s})).
- A computation from a state *s* is a sequence of the form $s_0s_1 \cdots s_n$, where $s_0 = s$, $s_i \longrightarrow s_{i+1}$, and either $n = \infty$ (i.e., the sequence is infinite) or there is no state *s'* such that $s_n \longrightarrow s'$.

Quasi-Orders (or Preorders)

- A *preorder* \leq is a reflexive and transitive (binary) relation on a set *D*.
- Solution We say that \leq is *decidable* if there is a procedure which, given $a, b \in D$, decides whether $a \leq b$.
- Solution \leq is a *well quasi-ordering* if, for every infinite sequence a_0, a_1, a_2, \ldots in $D, a_i \leq a_j$ for some i < j.
- Solution A set M is said to be *canonical* if $a, b \in M$ implies $a \not\preceq b$.
- We say that M ⊆ A is a *minor set* of A, if
 1. for all a ∈ A there exists b ∈ M such that b ≤ a, and
 2. M is canonical.

Partial Orders vs. Quasi-Orders

- \bigcirc Let *P* be a set.
- A partial order, or simply order, on P is a binary relation < on P with the following properties:</p>
 - **1.** $\forall x \in P, x \leq x$. (reflexivity)
 - **2.** $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$. (transitivity)
 - **3.** $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$. (antisymmetry)
- Solution A set *P* equipped with a partial order ≤, often written as ⟨*P*, ≤⟩, is called a *partially ordered set*, or simply *ordered set*, sometimes abbreviated as *poset*.
- A binary relation that is reflexive and transitive is called a pre-order or quasi-order.

Chain Conditions

- Let P be an ordered set.
- Solution P satisfies the ascending chain condition (ACC), if given any sequence $x_1 \le x_2 \le \cdots \le x_n \le \cdots$ of elements in P, there exists $k \in N$ such that $x_k = x_{k+1} = \cdots$.
- Solution Dually, *P* satisfies the descending chain condition (DCC), if given any sequence $x_1 \ge x_2 \ge \cdots \ge x_n \ge \cdots$ of elements in *P*, there exists $k \in N$ such that

 $x_k = x_{k+1} = \cdots$

Quasi-Orders (cont.)

- Solution A set *I* ⊆ *D* is an *ideal* (in *D*) if *a* ∈ *I*, *b* ∈ *D*, and *a* \leq *b* imply *b* ∈ *I*, i.e., the set *I* is upward-closed with respect to the relation \leq .
- We define the (upward) *closure* of a set A ⊆ D, denoted C(A), as the ideal {b ∈ D | ∃a ∈ A. a ≤ b} which is generated by A.
- For sets A and B, we say that $A \equiv B$ if C(A) = C(B).
- Solution Observe that $A \equiv B$ if and only if for all $a \in A$ there is a $b \in B$ such that $b \preceq a$, and vice versa.

Lemma 3.1. If a preorder \leq on *D* is a well quasiordering, then for each subset *A* of *D* there exists at least one finite minor set of *A*.

- Solution Assuming no finite minor set of *A* exists, we can find, for any sequence $a_0, a_1, a_2, \ldots, a_i$, an element a_{i+1} such that $a_j \not\preceq a_{i+1}$ for each $j, 0 \leq j \leq i$.
- Continuing this way, we can construct an infinite sequence a₀, a₁, a₂, ... that violates the well quasi-ordering property.
- We use *min* to denote a function which, given a set A, returns a minor set of A.

Lemma 3.2. For a preorder \leq on a set A, \leq is a well quasi-ordering iff for each infinite sequence $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$ of ideals in A there is a k such that $I_k = I_{k+1}$

- (only if) Suppose $I_0 \subset I_1 \subset I_2 \subset \cdots$. It follows that there is a sequence a_0, a_1, a_2, \ldots of elements in A such that for all $k \ge 0$ we have $a_k \in I_k$ and $a_k \notin I_j$ for each j < k. This means $a_j \not\preceq a_k$ for j < k, otherwise $a_k \in I_j$, since I_j is an ideal.
- (if) Suppose there exists an infinite sequence a_0, a_1, a_2, \ldots in A where $a_j \not\preceq a_k$ if j < k. We define an infinite sequence I_0, I_1, I_2, \ldots of ideals where $I_k = C(\{a_0, a_1, \ldots, a_k\})$. It is clear that $I_0 \subset I_1 \subset I_2 \subset \cdots$.

Monotonicity (Simulation)

- Solution We require that the set D of data values is equipped with a decidable preorder \leq .
- Solution We assume that we are given a minor set of D which we henceforth call D_{min} .
- Solution We extend the preorder \leq on *D* to a decidable preorder \leq on the set *S* of states defined by $\langle q, d \rangle \leq \langle q', d' \rangle$ if and only if q = q' and $d \leq d'$.
- A transition system $\langle S, \delta \rangle$ is *monotonic* (with respect to \preceq) if

for each $s_1, s_2, s_3 \in S$ and $\lambda \in \Lambda$, if $s_1 \leq s_2$ and $s_1 \xrightarrow{\lambda} s_3$, then there exists s_4 such that $s_3 \leq s_4$ and $s_2 \xrightarrow{\lambda} s_4$.

Monotonicity (cont.)

Lemma 3.3. A transition system $\langle S, \delta \rangle$ is monotonic iff the set of ideals in *S* is closed under the applications of both pre_{λ} and pre.

• (only if) Take any ideal *I* in *S*. Given $s_1 \in pre_{\lambda}(I)$ and $s_1 \leq s_2$, we need to show that $s_2 \in pre_{\lambda}(I)$. There is $s_3 \in I$ such that $s_1 \xrightarrow{\lambda} s_3$. By monotonicity it follows that there is s_4 such that $s_3 \leq s_4$ and $s_2 \xrightarrow{\lambda} s_4$. Since *I* is an ideal, we have $s_4 \in I$ and hence $s_2 \in pre_{\lambda}(I)$.

(if) Assuming $\langle S, \delta \rangle$ is not monotonic, there are states s_1 , s_2 , and s_3 , and $\lambda \in \Lambda$ such that $s_1 \leq s_2$, $s_1 \xrightarrow{\lambda} s_3$, but there is no s_4 where $s_3 \leq s_4$ and $s_2 \xrightarrow{\lambda} s_4$. Define the ideal $I = C(\{s_3\})$. It is clear that $s_1 \in pre_{\lambda}(I)$ but $s_2 \notin pre_{\lambda}(I)$. This means that $pre_{\lambda}(I)$ is not an ideal. Automatic Verification 2009: Infinite-State Systems – 15/36

Well-Structured Systems

- A transition system $\mathcal{L} = \langle S, \delta \rangle$, assuming a decidable preorder \preceq on the set *D* of data values, is said to be *well-structured* if
 - 1. it is monotonic;
 - 2. \leq is a well quasi-ordering; and
 - 3. for each state $s \in S$ and $\lambda \in \Lambda$, the set $min(pre_{\lambda}(\mathcal{C}(\{s\})))$ is computable.
- Solution Note that $min(pre_{\lambda}(\mathcal{C}(\{s\})))$ is finite if \leq is a well quasi-ordering.
- We define $minpre_{\lambda}(s)$ as notation for $min(pre_{\lambda}(\mathcal{C}(\{s\})))$.

Lattices and Complete Lattices

- Let P be a non-empty ordered set.
- P is called a *lattice* if $x \lor y$ and $x \land y$ exist for all $x, y \in P$.
- *P* is called a *complete lattice* if $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$.
- Every finite lattice is complete.

Directed Sets

- Let S be a non-empty subset of an ordered set.
- S is said to be *directed* if, for every pair of elements $x, y \in S$ there exists $z \in S$ such that $z \in \{x, y\}^u$.
- S is directed if and only if, for every finite subset F of S, there exists $z \in S$ such that $z \in F^u$.
- In an ordered set with the ACC, a set is directed if and only if it has a greatest element.
- Solution When D is directed for which $\lor D$ exists, we write $\sqcup D$ in place of $\lor D$.

Complete Partial Orders (CPO)

- An ordered set P is called a Complete Partial Order (CPO) if
 - **1.** *P* has a bottom element \perp and
 - **2.** $\Box D$ exists for each directed subset D of P.
- Alternatively, P is a CPO if each chain of P has a least upper bound in P.
- Any complete lattice is a CPO.
- For an ordered *P* satisfying Condition 2 above (called a pre-CPO), its lifting P_{\perp} is a CPO.

Continuous Maps

- Let P and Q be CPOs.
- A map $\varphi: P \rightarrow Q$ is said to be continuous if, for every directed set D in P,
 - 1. the subset $\varphi(D)$ of Q is directed and
 - **2.** $\varphi(\bigsqcup D) = \bigsqcup \varphi(D)$.
- A continuous map need not preserve bottoms, since by definition the empty set is not directed.
- A map $\varphi: P \to Q$ such that $\varphi(\bot) = \bot$ is called strict.

A Fixpoint Theorem for CPOs

- Solution The *n*-fold composite F^n of $F : P \to P$ is defined as follows.
 - 1. F^0 is the identity.
 - **2.** $F^n = F \circ F^{n-1}$ for $n \ge 1$.

If F is order-preserving, so is F^n .

CPO Fixpoint Theorem I Let *P* be a CPO and *F* : *P* \rightarrow *P* an *order-preserving* map. Define $\alpha \stackrel{\Delta}{=} \bigsqcup_{n \geq 0} F^n(\bot)$. 1. If $\alpha \in \text{fix}(F)$, then $\alpha = \mu(F)$. 2. If *F* is continuous, then $\mu(F)$ exists and equals α .

Control State Reachability

- The problem: given a state s and a control state q, we want to check whether $\langle q, D \rangle$ is reachable from s.
- We will actually solve the more general problem of deciding whether an ideal I is reachable from a given state s.
- Since $\langle q, D \rangle$ is an ideal, the control state reachability problem is a special case of the reachability problem for ideals.
- To check the reachability of an ideal *I*, we perform a reachability analysis backwards.

Control State Reachability (cont.)

- Starting from *I* we define the sequence $I_0, I_1, I_2, ...$ of sets by $I_0 = I$ and $I_{j+1} = I \cup pre(I_j)$.
- Intuitively, I_j denotes the set of states from which I is reachable in at most j steps.
- Solution Thus, if we define $pre^*(I)$ to be $\bigcup_{j\geq 0} I_j$, then I is reachable from s if and only if $s \in pre^*(I)$.
- Solution Notice that $pre^*(I)$ is the least fixpoint μX . $I \cup pre(X)$.
- Solution By Lemma 3.3, each I_j is an ideal in S.
- Solution We know that $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$, and hence from Lemma 3.2, it follows that there is a k such that $I_k = I_{k+1}$.
- Solution It can easily be seen that $I_{\ell} = I_k$ for all $\ell \ge k$ implying that $pre^*(I) = I_k$.

Control State Reachability (cont.)

- The method for deciding whether *I* is reachable is based on generating the preceding sequence *I*₀, *I*₁, *I*₂, ... of ideals, and checking for convergence.
- This cannot be carried out directly since I_j is an infinite set.
- Solution Instead, we represent each I_j by a canonical set $M_j = min(I_j)$.
- Solution By Lemma 3.1, each minor set M_j is finite.
- It is straightforward to show that $M_{j+1} \equiv min(min(I) \cup minpre(M_j))$, which is computable as

$$M_{j+1} = \min\left(\min(I) \cup \bigcup_{\substack{s \in M_j \\ \text{Automatic Verification 2009: Infinite-State Systems - 24/36}} \min(Pre(\mathcal{C}(\{s\})))\right)$$

Control State Reachability (cont.)

Theorem 4.1 The control state reachability problem is decidable for well-structured systems.

- From the previous discussion we conclude that if we define $minpre^*(M_0)$ to be $\cup_{j\geq 0}M_j$, then there is a k such that $M_{k+1} \equiv M_k$, and $minpre^*(M_0) \equiv M_k$.
- This implies that $minpre^*(M)$ is computable for any minor set M of I and in fact $C(minpre^*(M)) = pre^*(I)$.
- Solution Given a state *s* and a control state *q*, we compute $minpre^*(\langle q, D_{min} \rangle)$.
- Solution We then check whether there is an $s' \in minpre^*(\langle q, D_{min} \rangle)$ such that $s' \preceq s$.

Abstract Interpretation

- The above analysis algorithm can also be phrased in terms of abstract interpretation.
- Solution We intend to compute the fixpoint μX . $I \cup pre(X)$ for a set $I \subseteq S$ by iteration.
- Solution Instead of computing this fixpoint in the lattice $\langle 2^S, \subseteq \rangle$ of sets of states, we move to the abstract lattice $\langle \mathcal{M}, \sqsubseteq \rangle$, where \mathcal{M} is the set of canonical subsets of S, and where $M \sqsubseteq M'$ if $\mathcal{C}(M) \subseteq \mathcal{C}(M')$.

Abstract Interpretation (cont.)

- The correspondence between the concrete lattice $\langle 2^S, \subseteq \rangle$ and the abstract lattice $\langle \mathcal{M}, \sqsubseteq \rangle$ is expressed by a pair $\langle \alpha, \gamma \rangle$ of functions as follows.
 - * $\alpha : 2^S \mapsto \mathcal{M}$, defined by $\alpha(T) = min(T)$ maps each set of states in the concrete lattice to its abstract representation.
 - * $\gamma : \mathcal{M} \mapsto 2^S$, defined by $\gamma(M) = \mathcal{C}(M)$ recovers the concrete meaning of an element in the abstract lattice.

Abstract Interpretation (cont.)

- Solution The pair $\langle \alpha, \gamma \rangle$ forms a *Galois insertion* of $\langle \mathcal{M}, \sqsubseteq \rangle$ into $\langle 2^S, \subseteq \rangle$.
- Solution Let $\langle Concr, \sqsubseteq_{Concr} \rangle$ be an ordered *concrete* domain, and let $\langle Abs, \sqsubseteq_{Abs} \rangle$ be an ordered *abstract* domain.
- Solution Consider mappings $\alpha : Concr \rightarrow Abs$, and $\gamma : Abs \rightarrow Concr$.
- We say that the pair ⟨α, γ⟩ form a Galois insertion if *α* and γ are monotonic,
 ∀a ∈ Abs : a = α(γ(a)), and

Abstract Interpretation (cont.)

- The algorithm for deciding reachability can be seen as computing the fixpoint μX . $min(I) \sqcup minpre(X)$ in the lattice $\langle \mathcal{M}, \sqsubseteq \rangle$, where $M_1 \sqcup M_2 = min(M_1 \cup M_2)$.
- Solution Monotonicity ensures that the above corresponds exactly to the computation μX . $I \cup pre(X)$ in $\langle 2^S, \subseteq \rangle$ if I is an ideal in S.
- Solution Exactness follows from the identity $pre(\gamma(M)) = \gamma(minpre(M))$ for all $M \in \mathcal{M}$, and ensures that if the fixpoint computation converges to M_k , then $\gamma(M_k)$ is the least fixpoint of μX . $I \cup pre(X)$ in $\langle 2^S, \subseteq \rangle$.
- Finally, the well quasi-ordering of \leq implies that all ascending chains in $\langle \mathcal{M}, \sqsubseteq \rangle$ are finite, guaranteeing convergence of any least fixpoint computation.

Eventuality Properties

- The problem: deciding whether each computation starting from an initial state eventually reaches a certain control state satisfying a predicate p over control states.
- In CTL, these properties are of the form AF_p .
- We present an algorithm for the dual property EGp; checking AFp is equivalent to checking ¬EG¬p.
- Solution The property EGp is true in a state s_0 iff there is a computation from s_0 in which all states have a control part that satisfies p.
- The algorithm will actually solve the more general problem of whether s₀ satisfies a property of the form EGI for an ideal I.

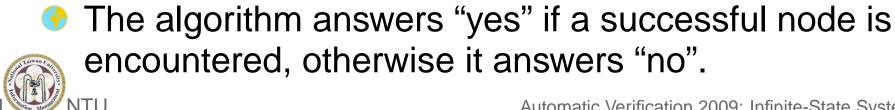
We write this property as $s_0 \models EGI$.

Eventuality Properties (cont.)

- The algorithm essentially builds a tree of reachable states.
- We must then consider the possibility that post(s) is infinite for some states s.
- Solution Section Section Section 1975
 We say that a transition system is essentially finite branching if for each state *s* we can effectively compute a finite subset of post(s), denoted maxpost(s), such that for each state *s'* ∈ post(s) there is a state *s''* ∈ maxpost(s) with *s'* ≤ *s''*.
- If post(s) is finite, then maxpost(s) can be taken as post(s). In the cases where post(s) is infinite (as can be the case, e.g., for real-time automata), the subset maxpost(s) can fully represent the set post(s) for the purposes of this algorithm.

Eventuality Properties (cont.)

- Solution We build a tree labeled by properties of the form $s \models EGI$. The root node is labeled by $s_0 \models EGI$. A node labeled by $s \models EGI$ is a leaf if one of the following holds.
 - 1. $s \notin I$. In this case, the node is considered *unsuccessful*.
 - 2. The node has an ancestor labeled $s' \models EGI$ for some s' with $s' \preceq s$. In this case, the node is considered successful.
 - 3. $s \in I$ and post(s) is empty. In this case, the node is considered *successful*.
- Show From a non-leaf node labeled *s* ⊨ EG*I* we create a child labeled *s'* ⊨ EG*I* for each state *s'* ∈ maxpost(*s*).



Simulation Relations

- The problem: whether a well-structured system is simulated by a finite transition system.
- Given two transition systems $\mathcal{L}_1 = \langle S_1, \delta_1 \rangle$ and $\mathcal{L}_2 = \langle S_2, \delta_2 \rangle$, we say that a relation $\mathcal{R} \subseteq S_1 \times S_2$ is a *simulation* (of \mathcal{L}_1 by \mathcal{L}_2) if for each $\langle s_1, s_2 \rangle \in \mathcal{R}$, $s'_1 \in S_1$, and $\lambda \in \Lambda$, if $s_1 \xrightarrow{\lambda} s'_1$ then there exists $s'_2 \in S_2$ such that $s_2 \xrightarrow{\lambda} s'_2$ and $\langle s'_1, s'_2 \rangle \in \mathcal{R}$.
- Solution For $s_1 \in S_1$ and $s_2 \in S_2$, we say that s_1 is simulated by s_2 , denoted $s_1 \sqsubseteq s_2$, if there is a simulation \mathcal{R} of \mathcal{L}_1 by \mathcal{L}_2 such that $\langle s_1, s_2 \rangle \in \mathcal{R}$.
- A transition system is said to be *intersection effective* if $min(\mathcal{C}(s_1) \cap \mathcal{C}(s_2))$ is computable for any states s_1 and s_2 .

Simulation Relations (cont.)

Theorem 6.2. For a state *s* in an intersection effective well-structured transition system and a state *q* in a finite transition system, it is decidable whether $s \sqsubseteq q$.

- The idea is to calculate the set of pairs $\langle s, q \rangle$ of states such that $s \not\subseteq q$.
- Solution We observe that for each q, the set $\{s \mid s \not\subseteq q\}$ is an ideal.
- This allows us to compute the set by a fixpoint iteration analogous to that used for the reachability problem.

Simulation Relations (cont.)

- Solution For each state q of the finite transition system, we define a sequence $I_0^q, I_1^q, I_2^q, \ldots$, where $I_0^q = \emptyset$, and $s \in I_{j+1}^q$ if and only if either
 - ${\ensuremath{\overset{@}{=}}} s \in I_j^q$; or
 - ♦ there are λ and s' such that s → s' and for all q' if $q → q' \text{ then } s' \in I_j^{q'}.$
- Intuitively, with $I_0^q = \emptyset$, I_j^q denotes the set of states (in the infinite transition system), which q can simulate at most j 1 steps, for j > 0.
- It is clear that I_j^q is an ideal and that $I_0^q \subseteq I_1^q \subseteq I_2^q \subseteq \cdots$.
- Solution By Lemma 3.2, it follows that there is a k such that $I_{k+1}^q = I_k^q$ for all q, and $s \not\subseteq q$ iff $s \in I_k^q$.

Simulation Relations (cont.)

• We represent I_j^q by the canonical set $M_j^q = min(I_j^q)$, where $M_0^q = \emptyset$, and

$$M_{j+1}^{q} = \bigcup_{\lambda} minpre_{\lambda} \left(\bigcap_{q' \in post_{\lambda}(q)} M_{j}^{q'} \right)$$

- Solution Note that M_{j+1}^q can be computed from M_j^q for intersection effective well-structured transition systems.
- We iterate until we reach a k such that $M_{k+1}^q \equiv M_k^q$.
- To decide whether $s \not\sqsubseteq q$ we check if $\exists s' \preceq s$ such that $s' \in M_k^q$.

