
IM NTU

Infinite-State Systems
(Based on [ACJT 2000])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Infinite-State Systems – 1/36

IM NTU

Infinite-State Systems

Where does infinity arise?
Infinite data domains: integers, reals, ...
Unbounded storage, message channels, ...
Unbounded replications of finite artifacts
Time and other natural phenomena (temperature,
atmospheric pressure, ...)

Popular computation models
Classic: push-down automata, Turing machines, ...
Petri nets and their variants
Transition systems with an infinite set of states
Indexed/parameterized finite-state systems
Timed automata, Hybrid automata, ...

Automatic Verification 2009: Infinite-State Systems – 2/36

IM NTU

Undecidablity and Decidablity

The halting problem for Turing machines is undecidable.

Rice’s theorem:
Any non-trivial problem about Turing machines is
undecidable.

When a computation model can simulate the Turing
machine, there is no hope of fully automating its
verification.

To obtain decidability, some restrictions must be
present:

limited operations on the storage/variables
certain regularity on the state transitions
lossy message channels
simpler test/enabling conditions

Automatic Verification 2009: Infinite-State Systems – 3/36

IM NTU

Well-Structured Systems: An Overview

Well-structured systems embody general mathematical
structures that are common of several popular
infinite-state computation models.

In such systems, the state space is equipped with a
simulation preorder (quasi-order) in that “smaller” states
can be simulated by “larger” states.

The quasi-order, in addition, is a well quasi-ordering in
that every infinite sequence of states contains a pair of
states such that the earlier state is “smaller” than the
latter state.

With additional requirements, the following problems
are decidable for well-structured systems: reachability,
eventuality, and simulation.

Automatic Verification 2009: Infinite-State Systems – 4/36

IM NTU

Labeled Transition Systems

As a general model of infinite-state systems, we adopt
labeled transition systems.

We assume a finite set Λ of labels. Each label λ ∈ Λ
represents an observable interaction with the
environment.

A (labeled) transition system L is a pair 〈S, δ〉:
S is a set of states,
formed as the cartesian product Q × D of a finite set
Q of control states and a possibly infinite set D of
data values.
δ ⊆ S × Λ × S is a set of transitions.

Automatic Verification 2009: Infinite-State Systems – 5/36

IM NTU

Labeled Transition Systems (cont.)

We use 〈q, d〉 to denote the state whose control state is
q and whose data value is d.

We use s
λ

−→ s′ to denote that 〈s, λ, s′〉 ∈ δ. Intuitively,

s
λ

−→ s′ means that the system can move from state s to
state s′ while performing the observable action λ.

We let s −→ s′ denote that there is a λ such that s
λ

−→ s′,
and let ∗

−→ denote the reflexive transitive closure of −→.

For s ∈ S and T ⊆ S, we say that T is reachable from s

(written s
∗

−→ T) if there exists a state s′ ∈ T such that
s

∗
−→ s′.

Automatic Verification 2009: Infinite-State Systems – 6/36

IM NTU

Labeled Transition Systems (cont.)

For T ⊆ S and λ ∈ Λ, we define preλ(T) to be the set
{

s′ | ∃s ∈ T. s′
λ

−→ s

}

.

Analogously, we define postλ(T) as
{

s′ | ∃s ∈ T. s
λ

−→ s′
}

.

By pre(T) (post(T)) we mean ∪λ∈Λpreλ(T) (∪λ∈Λpostλ(T)).

Sometimes we write pre(s) (post(s)) instead of pre({s})
(post({s})).

A computation from a state s is a sequence of the form
s0s1 · · · sn, where s0 = s, si −→ si+1, and either n = ∞
(i.e., the sequence is infinite) or there is no state s′ such
that sn −→ s′.

Automatic Verification 2009: Infinite-State Systems – 7/36

IM NTU

Quasi-Orders (or Preorders)

A preorder � is a reflexive and transitive (binary)
relation on a set D.

We say that � is decidable if there is a procedure which,
given a, b ∈ D, decides whether a � b.

The relation � is a well quasi-ordering if, for every
infinite sequence a0, a1, a2, . . . in D, ai � aj for some i < j.

A set M is said to be canonical if a, b ∈ M implies a 6� b.

We say that M ⊆ A is a minor set of A, if
1. for all a ∈ A there exists b ∈ M such that b � a, and
2. M is canonical.

Automatic Verification 2009: Infinite-State Systems – 8/36

IM NTU

Partial Orders vs. Quasi-Orders

Let P be a set.

A partial order , or simply order , on P is a binary
relation ≤ on P with the following properties:
1. ∀x ∈ P, x ≤ x. (reflexivity)
2. ∀x, y, z ∈ P, x ≤ y ∧ y ≤ z → x ≤ z. (transitivity)
3. ∀x, y ∈ P, x ≤ y ∧ y ≤ x → x = y. (antisymmetry)

A set P equipped with a partial order ≤, often written as
〈P,≤〉, is called a partially ordered set , or simply
ordered set , sometimes abbreviated as poset .

A binary relation that is reflexive and transitive is called
a pre-order or quasi-order .

Automatic Verification 2009: Infinite-State Systems – 9/36

IM NTU

Chain Conditions

Let P be an ordered set.

P satisfies the ascending chain condition (ACC), if given
any sequence x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · of elements in P ,
there exists k ∈ N such that xk = xk+1 = · · ·.

Dually, P satisfies the descending chain condition
(DCC), if given any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of
elements in P , there exists k ∈ N such that
xk = xk+1 = · · ·.

Automatic Verification 2009: Infinite-State Systems – 10/36

IM NTU

Quasi-Orders (cont.)

A set I ⊆ D is an ideal (in D) if a ∈ I, b ∈ D, and a � b

imply b ∈ I, i.e., the set I is upward-closed with respect
to the relation �.

We define the (upward) closure of a set A ⊆ D, denoted
C(A), as the ideal {b ∈ D | ∃a ∈ A. a � b} which is
generated by A.

For sets A and B, we say that A ≡ B if C(A) = C(B).

Observe that A ≡ B if and only if for all a ∈ A there is a
b ∈ B such that b � a, and vice versa.

Automatic Verification 2009: Infinite-State Systems – 11/36

IM NTU

Quasi-Orders (cont.)

Lemma 3.1. If a preorder � on D is a well quasi-
ordering, then for each subset A of D there exists at
least one finite minor set of A.

Assuming no finite minor set of A exists, we can find, for
any sequence a0, a1, a2, . . . , ai, an element ai+1 such that
aj 6� ai+1 for each j, 0 ≤ j ≤ i.

Continuing this way, we can construct an infinite
sequence a0, a1, a2, . . . that violates the well
quasi-ordering property.

We use min to denote a function which, given a set A,
returns a minor set of A.

From Lemma 3.1 and that C(min(I)) = I for each ideal I,
we can use min(I) as a finite representation of I.

Automatic Verification 2009: Infinite-State Systems – 12/36

IM NTU

Quasi-Orders (cont.)

Lemma 3.2. For a preorder � on a set A, � is a well
quasi-ordering iff for each infinite sequence I0 ⊆ I1 ⊆
I2 ⊆ · · · of ideals in A there is a k such that Ik = Ik+1

(only if) Suppose I0 ⊂ I1 ⊂ I2 ⊂ · · ·. It follows that there
is a sequence a0, a1, a2, . . . of elements in A such that for
all k ≥ 0 we have ak ∈ Ik and ak 6∈ Ij for each j < k. This
means aj 6� ak for j < k, otherwise ak ∈ Ij, since Ij is an
ideal.

(if) Suppose there exists an infinite sequence
a0, a1, a2, . . . in A where aj 6� ak if j < k. We define an
infinite sequence I0, I1, I2, . . . of ideals where
Ik = C({a0, a1, . . . , ak}). It is clear that I0 ⊂ I1 ⊂ I2 ⊂ · · ·.

Automatic Verification 2009: Infinite-State Systems – 13/36

IM NTU

Monotonicity (Simulation)

We require that the set D of data values is equipped
with a decidable preorder �.

We assume that we are given a minor set of D which
we henceforth call Dmin.

We extend the preorder � on D to a decidable preorder
� on the set S of states defined by 〈q, d〉 � 〈q′, d′〉 if and
only if q = q′ and d � d′.

A transition system 〈S, δ〉 is monotonic (with respect to
�) if

for each s1, s2, s3 ∈ S and λ ∈ Λ, if s1 � s2 and
s1

λ
−→ s3, then there exists s4 such that s3 � s4 and

s2
λ

−→ s4.

Automatic Verification 2009: Infinite-State Systems – 14/36

IM NTU

Monotonicity (cont.)

Lemma 3.3. A transition system 〈S, δ〉 is monotonic iff
the set of ideals in S is closed under the applications of
both preλ and pre.

(only if) Take any ideal I in S. Given s1 ∈ preλ(I) and
s1 � s2, we need to show that s2 ∈ preλ(I). There is

s3 ∈ I such that s1
λ

−→ s3. By monotonicity it follows that

there is s4 such that s3 � s4 and s2
λ

−→ s4. Since I is an
ideal, we have s4 ∈ I and hence s2 ∈ preλ(I).

(if) Assuming 〈S, δ〉 is not monotonic, there are states s1,

s2, and s3, and λ ∈ Λ such that s1 � s2, s1
λ

−→ s3, but
there is no s4 where s3 � s4 and s2

λ
−→ s4. Define the

ideal I = C({s3}). It is clear that s1 ∈ preλ(I) but
s2 6∈ preλ(I). This means that preλ(I) is not an ideal.

Automatic Verification 2009: Infinite-State Systems – 15/36

IM NTU

Well-Structured Systems

A transition system L = 〈S, δ〉, assuming a decidable
preorder � on the set D of data values, is said to be
well-structured if
1. it is monotonic;
2. � is a well quasi-ordering; and
3. for each state s ∈ S and λ ∈ Λ, the set

min(preλ(C({s}))) is computable.

Note that min(preλ(C({s}))) is finite if � is a well
quasi-ordering.

We define minpreλ(s) as notation for min(preλ(C({s}))).

Automatic Verification 2009: Infinite-State Systems – 16/36

IM NTU

Lattices and Complete Lattices

Let P be a non-empty ordered set.

P is called a lattice if x ∨ y and x ∧ y exist for all x, y ∈ P .

P is called a complete lattice if
∨

S and
∧

S exist for all
S ⊆ P .

Every finite lattice is complete.

Automatic Verification 2009: Infinite-State Systems – 17/36

IM NTU

Directed Sets

Let S be a non-empty subset of an ordered set.

S is said to be directed if, for every pair of elements
x, y ∈ S there exists z ∈ S such that z ∈ {x, y}u.

S is directed if and only if, for every finite subset F of S,
there exists z ∈ S such that z ∈ F u.

In an ordered set with the ACC, a set is directed if and
only if it has a greatest element.

When D is directed for which
∨

D exists, we write ⊔D in
place of

∨

D.

Automatic Verification 2009: Infinite-State Systems – 18/36

IM NTU

Complete Partial Orders (CPO)

An ordered set P is called a Complete Partial Order
(CPO) if
1. P has a bottom element ⊥ and
2. ⊔D exists for each directed subset D of P .

Alternatively, P is a CPO if each chain of P has a least
upper bound in P .

Any complete lattice is a CPO.

For an ordered P satisfying Condition 2 above (called a
pre-CPO), its lifting P⊥ is a CPO.

Automatic Verification 2009: Infinite-State Systems – 19/36

IM NTU

Continuous Maps

Let P and Q be CPOs.

A map ϕ : P → Q is said to be continuous if, for every
directed set D in P ,
1. the subset ϕ(D) of Q is directed and
2. ϕ(

⊔

D) =
⊔

ϕ(D).

A continuous map need not preserve bottoms, since by
definition the empty set is not directed.

A map ϕ : P → Q such that ϕ(⊥) = ⊥ is called strict.

Automatic Verification 2009: Infinite-State Systems – 20/36

IM NTU

A Fixpoint Theorem for CPOs

The n-fold composite Fn of F : P → P is defined as
follows.
1. F 0 is the identity.
2. Fn = F ◦ Fn−1 for n ≥ 1.

If F is order-preserving, so is Fn.

CPO Fixpoint Theorem I
Let P be a CPO and F : P → P an order-preserving

map. Define α
∆
=

⊔

n≥0 Fn(⊥).

1. If α ∈ fix(F), then α = µ(F).

2. If F is continuous, then µ(F) exists and equals α.

Automatic Verification 2009: Infinite-State Systems – 21/36

IM NTU

Control State Reachability

The problem: given a state s and a control state q, we
want to check whether 〈q,D〉 is reachable from s.

We will actually solve the more general problem of
deciding whether an ideal I is reachable from a given
state s.

Since 〈q,D〉 is an ideal, the control state reachability
problem is a special case of the reachability problem for
ideals.

To check the reachability of an ideal I, we perform a
reachability analysis backwards.

Automatic Verification 2009: Infinite-State Systems – 22/36

IM NTU

Control State Reachability (cont.)

Starting from I we define the sequence I0, I1, I2, . . . of
sets by I0 = I and Ij+1 = I ∪ pre(Ij).

Intuitively, Ij denotes the set of states from which I is
reachable in at most j steps.

Thus, if we define pre∗(I) to be ∪j≥0 Ij, then I is
reachable from s if and only if s ∈ pre∗(I).

Notice that pre∗(I) is the least fixpoint µX. I ∪ pre(X).

By Lemma 3.3, each Ij is an ideal in S.

We know that I0 ⊆ I1 ⊆ I2 ⊆ · · ·, and hence from Lemma
3.2, it follows that there is a k such that Ik = Ik+1.

It can easily be seen that Iℓ = Ik for all ℓ ≥ k implying
that pre∗(I) = Ik.

Automatic Verification 2009: Infinite-State Systems – 23/36

IM NTU

Control State Reachability (cont.)

The method for deciding whether I is reachable is
based on generating the preceding sequence
I0, I1, I2, . . . of ideals, and checking for convergence.

This cannot be carried out directly since Ij is an infinite
set.

Instead, we represent each Ij by a canonical set
Mj = min(Ij).

By Lemma 3.1, each minor set Mj is finite.

It is straightforward to show that
Mj+1 ≡ min(min(I) ∪ minpre(Mj)), which is computable
as

Mj+1 = min



min(I) ∪
⋃

s∈Mj

min(pre(C({s})))





Automatic Verification 2009: Infinite-State Systems – 24/36

IM NTU

Control State Reachability (cont.)

Theorem 4.1 The control state reachability problem is
decidable for well-structured systems.

From the previous discussion we conclude that if we
define minpre∗(M0) to be ∪j≥0Mj, then there is a k such
that Mk+1 ≡ Mk, and minpre∗(M0) ≡ Mk.

This implies that minpre∗(M) is computable for any
minor set M of I and in fact C(minpre∗(M)) = pre∗(I).

Given a state s and a control state q, we compute
minpre∗(〈q,Dmin〉).

We then check whether there is an
s′ ∈ minpre∗(〈q,Dmin〉) such that s′ � s.

Automatic Verification 2009: Infinite-State Systems – 25/36

IM NTU

Abstract Interpretation

The above analysis algorithm can also be phrased in
terms of abstract interpretation.

We intend to compute the fixpoint µX. I ∪ pre(X) for a
set I ⊆ S by iteration.

Instead of computing this fixpoint in the lattice 〈2S ,⊆〉 of
sets of states, we move to the abstract lattice 〈M,⊑〉,
where M is the set of canonical subsets of S, and
where M ⊑ M ′ if C(M) ⊆ C(M ′).

Automatic Verification 2009: Infinite-State Systems – 26/36

IM NTU

Abstract Interpretation (cont.)

The correspondence between the concrete lattice
〈2S ,⊆〉 and the abstract lattice 〈M,⊑〉 is expressed by a
pair 〈α, γ〉 of functions as follows.

α : 2S 7→ M, defined by α(T) = min(T) maps each set
of states in the concrete lattice to its abstract
representation.
γ : M 7→ 2S, defined by γ(M) = C(M) recovers the
concrete meaning of an element in the abstract
lattice.

Automatic Verification 2009: Infinite-State Systems – 27/36

IM NTU

Abstract Interpretation (cont.)

The pair 〈α, γ〉 forms a Galois insertion of 〈M,⊑〉 into
〈2S ,⊆〉.

Let 〈Concr ,⊑Concr 〉 be an ordered concrete domain, and
let 〈Abs ,⊑Abs〉 be an ordered abstract domain.

Consider mappings α : Concr → Abs, and
γ : Abs → Concr .

We say that the pair 〈α, γ〉 form a Galois insertion if
α and γ are monotonic,
∀a ∈ Abs : a = α(γ(a)), and
∀c ∈ Conc : c ⊑Concr γ(α(c)).

Automatic Verification 2009: Infinite-State Systems – 28/36

IM NTU

Abstract Interpretation (cont.)

The algorithm for deciding reachability can be seen as
computing the fixpoint µX. min(I) ⊔ minpre(X) in the
lattice 〈M,⊑〉, where M1 ⊔ M2 = min(M1 ∪ M2).

Monotonicity ensures that the above corresponds
exactly to the computation µX. I ∪ pre(X) in 〈2S ,⊆〉 if I is
an ideal in S.

Exactness follows from the identity
pre(γ(M)) = γ(minpre(M)) for all M ∈ M, and ensures
that if the fixpoint computation converges to Mk, then
γ(Mk) is the least fixpoint of µX. I ∪ pre(X) in 〈2S ,⊆〉.

Finally, the well quasi-ordering of � implies that all
ascending chains in 〈M,⊑〉 are finite, guaranteeing
convergence of any least fixpoint computation.

Automatic Verification 2009: Infinite-State Systems – 29/36

IM NTU

Eventuality Properties

The problem: deciding whether each computation
starting from an initial state eventually reaches a certain
control state satisfying a predicate p over control states.

In CTL, these properties are of the form AFp.

We present an algorithm for the dual property EGp;
checking AFp is equivalent to checking ¬EG¬p.

The property EGp is true in a state s0 iff there is a
computation from s0 in which all states have a control
part that satisfies p.

The algorithm will actually solve the more general
problem of whether s0 satisfies a property of the form
EGI for an ideal I.

We write this property as s0 |= EGI.

Automatic Verification 2009: Infinite-State Systems – 30/36

IM NTU

Eventuality Properties (cont.)

The algorithm essentially builds a tree of reachable
states.

We must then consider the possibility that post(s) is
infinite for some states s.

We say that a transition system is essentially finite
branching if for each state s we can effectively compute
a finite subset of post(s), denoted maxpost(s), such that
for each state s′ ∈ post(s) there is a state s′′ ∈ maxpost(s)
with s′ � s′′.

If post(s) is finite, then maxpost(s) can be taken as
post(s). In the cases where post(s) is infinite (as can be
the case, e.g., for real-time automata), the subset
maxpost(s) can fully represent the set post(s) for the
purposes of this algorithm.

Automatic Verification 2009: Infinite-State Systems – 31/36

IM NTU

Eventuality Properties (cont.)

We build a tree labeled by properties of the form
s |= EGI. The root node is labeled by s0 |= EGI. A node
labeled by s |= EGI is a leaf if one of the following holds.
1. s 6∈ I. In this case, the node is considered

unsuccessful.
2. The node has an ancestor labeled s′ |= EGI for some

s′ with s′ � s. In this case, the node is considered
successful.

3. s ∈ I and post(s) is empty. In this case, the node is
considered successful.

From a non-leaf node labeled s |= EGI we create a child
labeled s′ |= EGI for each state s′ ∈ maxpost(s).

The algorithm answers “yes” if a successful node is
encountered, otherwise it answers “no”.

Automatic Verification 2009: Infinite-State Systems – 32/36

IM NTU

Simulation Relations

The problem: whether a well-structured system is
simulated by a finite transition system.

Given two transition systems L1 = 〈S1, δ1〉 and
L2 = 〈S2, δ2〉, we say that a relation R ⊆ S1 × S2 is a
simulation (of L1 by L2) if for each 〈s1, s2〉 ∈ R, s′1 ∈ S1,

and λ ∈ Λ, if s1
λ

−→ s′1 then there exists s′2 ∈ S2 such that

s2
λ

−→ s′2 and 〈s′1, s
′
2〉 ∈ R.

For s1 ∈ S1 and s2 ∈ S2, we say that s1 is simulated by s2,
denoted s1 ⊑ s2, if there is a simulation R of L1 by L2

such that 〈s1, s2〉 ∈ R.

A transition system is said to be intersection effective if
min(C(s1) ∩ C(s2)) is computable for any states s1 and s2.

Automatic Verification 2009: Infinite-State Systems – 33/36

IM NTU

Simulation Relations (cont.)

Theorem 6.2. For a state s in an intersection effective
well-structured transition system and a state q in a finite
transition system, it is decidable whether s ⊑ q.

The idea is to calculate the set of pairs 〈s, q〉 of states
such that s 6⊑ q.

We observe that for each q, the set {s | s 6⊑ q} is an
ideal.

This allows us to compute the set by a fixpoint iteration
analogous to that used for the reachability problem.

Automatic Verification 2009: Infinite-State Systems – 34/36

IM NTU

Simulation Relations (cont.)

For each state q of the finite transition system, we
define a sequence I

q
0 , I

q
1 , I

q
2 , . . ., where I

q
0 = ∅, and

s ∈ I
q
j+1 if and only if either

s ∈ I
q
j ; or

there are λ and s′ such that s
λ

−→ s′ and for all q′ if
q

λ
−→ q′ then s′ ∈ I

q′

j .

Intuitively, with I
q
0 = ∅, I

q
j denotes the set of states (in

the infinite transition system), which q can simulate at
most j − 1 steps, for j > 0.

It is clear that I
q
j is an ideal and that I

q
0 ⊆ I

q
1 ⊆ I

q
2 ⊆ · · ·.

By Lemma 3.2, it follows that there is a k such that
I

q
k+1 = I

q
k for all q, and s 6⊑ q iff s ∈ I

q
k .

Automatic Verification 2009: Infinite-State Systems – 35/36

IM NTU

Simulation Relations (cont.)

We represent I
q
j by the canonical set M

q
j = min(Iq

j),
where M

q
0 = ∅, and

M
q
j+1 =

⋃

λ

minpreλ





⋂

q′∈postλ(q)

M
q′

j





Note that M
q
j+1 can be computed from M

q
j for

intersection effective well-structured transition systems.

We iterate until we reach a k such that M
q
k+1 ≡ M

q
k .

To decide whether s 6⊑ q we check if ∃s′ � s such that
s′ ∈ M

q
k .

Automatic Verification 2009: Infinite-State Systems – 36/36

	Infinite-State Systems
	Undecidablity and Decidablity
	Well-Structured Systems: An Overview
	Labeled Transition Systems
	Labeled Transition Systems (cont.)
	Labeled Transition Systems (cont.)
	Quasi-Orders (or Preorders)
	Partial Orders vs. Quasi-Orders
	Chain Conditions
	Quasi-Orders (cont.)
	Quasi-Orders (cont.)
	Quasi-Orders (cont.)
	Monotonicity (Simulation)
	Monotonicity (cont.)
	Well-Structured Systems
	Lattices and Complete Lattices
	Directed Sets
	Complete Partial Orders (CPO)
	Continuous Maps
	A Fixpoint Theorem for CPOs
	Control State Reachability
	Control State Reachability (cont.)
	Control State Reachability (cont.)
	Control State Reachability (cont.)
	Abstract Interpretation
	Abstract Interpretation (cont.)
	Abstract Interpretation (cont.)
	Abstract Interpretation (cont.)
	Eventuality Properties
	Eventuality Properties (cont.)
	Eventuality Properties (cont.)
	Simulation Relations
	Simulation Relations (cont.)
	Simulation Relations (cont.)
	Simulation Relations (cont.)

