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Infinite-State Systems

Where does infinity arise?
Infinite data domains: integers, reals, ...
Unbounded storage, message channels, ...
Unbounded replications of finite artifacts
Time and other natural phenomena (temperature,
atmospheric pressure, ...)

Popular computation models
Classic: push-down automata, Turing machines, ...
Petri nets and their variants
Transition systems with an infinite set of states
Indexed/parameterized finite-state systems
Timed automata, Hybrid automata, ...
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Undecidablity and Decidablity

The halting problem for Turing machines is undecidable.

Rice’s theorem:
Any non-trivial problem about Turing machines is
undecidable.

When a computation model can simulate the Turing
machine, there is no hope of fully automating its
verification.

To obtain decidability, some restrictions must be
present:

limited operations on the storage/variables
certain regularity on the state transitions
lossy message channels
simpler test/enabling conditions
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Well-Structured Systems: An Overview

Well-structured systems embody general mathematical
structures that are common of several popular
infinite-state computation models.

In such systems, the state space is equipped with a
simulation preorder (quasi-order) in that “smaller” states
can be simulated by “larger” states.

The quasi-order, in addition, is a well quasi-ordering in
that every infinite sequence of states contains a pair of
states such that the earlier state is “smaller” than the
latter state.

With additional requirements, the following problems
are decidable for well-structured systems: reachability,
eventuality, and simulation.
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Labeled Transition Systems

As a general model of infinite-state systems, we adopt
labeled transition systems.

We assume a finite set Λ of labels. Each label λ ∈ Λ
represents an observable interaction with the
environment.

A (labeled) transition system L is a pair 〈S, δ〉:
S is a set of states,
formed as the cartesian product Q × D of a finite set
Q of control states and a possibly infinite set D of
data values.
δ ⊆ S × Λ × S is a set of transitions.
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Labeled Transition Systems (cont.)

We use 〈q, d〉 to denote the state whose control state is
q and whose data value is d.

We use s
λ

−→ s′ to denote that 〈s, λ, s′〉 ∈ δ. Intuitively,

s
λ

−→ s′ means that the system can move from state s to
state s′ while performing the observable action λ.

We let s −→ s′ denote that there is a λ such that s
λ

−→ s′,
and let ∗

−→ denote the reflexive transitive closure of −→.

For s ∈ S and T ⊆ S, we say that T is reachable from s

(written s
∗

−→ T ) if there exists a state s′ ∈ T such that
s

∗
−→ s′.

Automatic Verification 2009: Infinite-State Systems – 6/36



IM NTU

Labeled Transition Systems (cont.)

For T ⊆ S and λ ∈ Λ, we define preλ(T ) to be the set
{

s′ | ∃s ∈ T. s′
λ

−→ s

}

.

Analogously, we define postλ(T ) as
{

s′ | ∃s ∈ T. s
λ

−→ s′
}

.

By pre(T ) (post(T )) we mean ∪λ∈Λpreλ(T ) (∪λ∈Λpostλ(T )).

Sometimes we write pre(s) (post(s)) instead of pre({s})
(post({s})).

A computation from a state s is a sequence of the form
s0s1 · · · sn, where s0 = s, si −→ si+1, and either n = ∞
(i.e., the sequence is infinite) or there is no state s′ such
that sn −→ s′.
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Quasi-Orders (or Preorders)

A preorder � is a reflexive and transitive (binary)
relation on a set D.

We say that � is decidable if there is a procedure which,
given a, b ∈ D, decides whether a � b.

The relation � is a well quasi-ordering if, for every
infinite sequence a0, a1, a2, . . . in D, ai � aj for some i < j.

A set M is said to be canonical if a, b ∈ M implies a 6� b.

We say that M ⊆ A is a minor set of A, if
1. for all a ∈ A there exists b ∈ M such that b � a, and
2. M is canonical.

Automatic Verification 2009: Infinite-State Systems – 8/36



IM NTU

Partial Orders vs. Quasi-Orders

Let P be a set.

A partial order , or simply order , on P is a binary
relation ≤ on P with the following properties:
1. ∀x ∈ P, x ≤ x. (reflexivity)
2. ∀x, y, z ∈ P, x ≤ y ∧ y ≤ z → x ≤ z. (transitivity)
3. ∀x, y ∈ P, x ≤ y ∧ y ≤ x → x = y. (antisymmetry)

A set P equipped with a partial order ≤, often written as
〈P,≤〉, is called a partially ordered set , or simply
ordered set , sometimes abbreviated as poset .

A binary relation that is reflexive and transitive is called
a pre-order or quasi-order .
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Chain Conditions

Let P be an ordered set.

P satisfies the ascending chain condition (ACC), if given
any sequence x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · of elements in P ,
there exists k ∈ N such that xk = xk+1 = · · ·.

Dually, P satisfies the descending chain condition
(DCC), if given any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of
elements in P , there exists k ∈ N such that
xk = xk+1 = · · ·.
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Quasi-Orders (cont.)

A set I ⊆ D is an ideal (in D) if a ∈ I, b ∈ D, and a � b

imply b ∈ I, i.e., the set I is upward-closed with respect
to the relation �.

We define the (upward) closure of a set A ⊆ D, denoted
C(A), as the ideal {b ∈ D | ∃a ∈ A. a � b} which is
generated by A.

For sets A and B, we say that A ≡ B if C(A) = C(B).

Observe that A ≡ B if and only if for all a ∈ A there is a
b ∈ B such that b � a, and vice versa.
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Quasi-Orders (cont.)

Lemma 3.1. If a preorder � on D is a well quasi-
ordering, then for each subset A of D there exists at
least one finite minor set of A.

Assuming no finite minor set of A exists, we can find, for
any sequence a0, a1, a2, . . . , ai, an element ai+1 such that
aj 6� ai+1 for each j, 0 ≤ j ≤ i.

Continuing this way, we can construct an infinite
sequence a0, a1, a2, . . . that violates the well
quasi-ordering property.

We use min to denote a function which, given a set A,
returns a minor set of A.

From Lemma 3.1 and that C(min(I)) = I for each ideal I,
we can use min(I) as a finite representation of I.
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Quasi-Orders (cont.)

Lemma 3.2. For a preorder � on a set A, � is a well
quasi-ordering iff for each infinite sequence I0 ⊆ I1 ⊆
I2 ⊆ · · · of ideals in A there is a k such that Ik = Ik+1

(only if) Suppose I0 ⊂ I1 ⊂ I2 ⊂ · · ·. It follows that there
is a sequence a0, a1, a2, . . . of elements in A such that for
all k ≥ 0 we have ak ∈ Ik and ak 6∈ Ij for each j < k. This
means aj 6� ak for j < k, otherwise ak ∈ Ij, since Ij is an
ideal.

(if) Suppose there exists an infinite sequence
a0, a1, a2, . . . in A where aj 6� ak if j < k. We define an
infinite sequence I0, I1, I2, . . . of ideals where
Ik = C({a0, a1, . . . , ak}). It is clear that I0 ⊂ I1 ⊂ I2 ⊂ · · ·.
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Monotonicity (Simulation)

We require that the set D of data values is equipped
with a decidable preorder �.

We assume that we are given a minor set of D which
we henceforth call Dmin.

We extend the preorder � on D to a decidable preorder
� on the set S of states defined by 〈q, d〉 � 〈q′, d′〉 if and
only if q = q′ and d � d′.

A transition system 〈S, δ〉 is monotonic (with respect to
�) if

for each s1, s2, s3 ∈ S and λ ∈ Λ, if s1 � s2 and
s1

λ
−→ s3, then there exists s4 such that s3 � s4 and

s2
λ

−→ s4.
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Monotonicity (cont.)

Lemma 3.3. A transition system 〈S, δ〉 is monotonic iff
the set of ideals in S is closed under the applications of
both preλ and pre.

(only if) Take any ideal I in S. Given s1 ∈ preλ(I) and
s1 � s2, we need to show that s2 ∈ preλ(I). There is

s3 ∈ I such that s1
λ

−→ s3. By monotonicity it follows that

there is s4 such that s3 � s4 and s2
λ

−→ s4. Since I is an
ideal, we have s4 ∈ I and hence s2 ∈ preλ(I).

(if) Assuming 〈S, δ〉 is not monotonic, there are states s1,

s2, and s3, and λ ∈ Λ such that s1 � s2, s1
λ

−→ s3, but
there is no s4 where s3 � s4 and s2

λ
−→ s4. Define the

ideal I = C({s3}). It is clear that s1 ∈ preλ(I) but
s2 6∈ preλ(I). This means that preλ(I) is not an ideal.
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Well-Structured Systems

A transition system L = 〈S, δ〉, assuming a decidable
preorder � on the set D of data values, is said to be
well-structured if
1. it is monotonic;
2. � is a well quasi-ordering; and
3. for each state s ∈ S and λ ∈ Λ, the set

min(preλ(C({s}))) is computable.

Note that min(preλ(C({s}))) is finite if � is a well
quasi-ordering.

We define minpreλ(s) as notation for min(preλ(C({s}))).
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Lattices and Complete Lattices

Let P be a non-empty ordered set.

P is called a lattice if x ∨ y and x ∧ y exist for all x, y ∈ P .

P is called a complete lattice if
∨

S and
∧

S exist for all
S ⊆ P .

Every finite lattice is complete.
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Directed Sets

Let S be a non-empty subset of an ordered set.

S is said to be directed if, for every pair of elements
x, y ∈ S there exists z ∈ S such that z ∈ {x, y}u.

S is directed if and only if, for every finite subset F of S,
there exists z ∈ S such that z ∈ F u.

In an ordered set with the ACC, a set is directed if and
only if it has a greatest element.

When D is directed for which
∨

D exists, we write ⊔D in
place of

∨

D.
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Complete Partial Orders (CPO)

An ordered set P is called a Complete Partial Order
(CPO) if
1. P has a bottom element ⊥ and
2. ⊔D exists for each directed subset D of P .

Alternatively, P is a CPO if each chain of P has a least
upper bound in P .

Any complete lattice is a CPO.

For an ordered P satisfying Condition 2 above (called a
pre-CPO), its lifting P⊥ is a CPO.
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Continuous Maps

Let P and Q be CPOs.

A map ϕ : P → Q is said to be continuous if, for every
directed set D in P ,
1. the subset ϕ(D) of Q is directed and
2. ϕ(

⊔

D) =
⊔

ϕ(D).

A continuous map need not preserve bottoms, since by
definition the empty set is not directed.

A map ϕ : P → Q such that ϕ(⊥) = ⊥ is called strict.
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A Fixpoint Theorem for CPOs

The n-fold composite Fn of F : P → P is defined as
follows.
1. F 0 is the identity.
2. Fn = F ◦ Fn−1 for n ≥ 1.

If F is order-preserving, so is Fn.

CPO Fixpoint Theorem I
Let P be a CPO and F : P → P an order-preserving

map. Define α
∆
=

⊔

n≥0 Fn(⊥).

1. If α ∈ fix(F ), then α = µ(F ).

2. If F is continuous, then µ(F ) exists and equals α.
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Control State Reachability

The problem: given a state s and a control state q, we
want to check whether 〈q,D〉 is reachable from s.

We will actually solve the more general problem of
deciding whether an ideal I is reachable from a given
state s.

Since 〈q,D〉 is an ideal, the control state reachability
problem is a special case of the reachability problem for
ideals.

To check the reachability of an ideal I, we perform a
reachability analysis backwards.
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Control State Reachability (cont.)

Starting from I we define the sequence I0, I1, I2, . . . of
sets by I0 = I and Ij+1 = I ∪ pre(Ij).

Intuitively, Ij denotes the set of states from which I is
reachable in at most j steps.

Thus, if we define pre∗(I) to be ∪j≥0 Ij, then I is
reachable from s if and only if s ∈ pre∗(I).

Notice that pre∗(I) is the least fixpoint µX. I ∪ pre(X).

By Lemma 3.3, each Ij is an ideal in S.

We know that I0 ⊆ I1 ⊆ I2 ⊆ · · ·, and hence from Lemma
3.2, it follows that there is a k such that Ik = Ik+1.

It can easily be seen that Iℓ = Ik for all ℓ ≥ k implying
that pre∗(I) = Ik.
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Control State Reachability (cont.)

The method for deciding whether I is reachable is
based on generating the preceding sequence
I0, I1, I2, . . . of ideals, and checking for convergence.

This cannot be carried out directly since Ij is an infinite
set.

Instead, we represent each Ij by a canonical set
Mj = min(Ij).

By Lemma 3.1, each minor set Mj is finite.

It is straightforward to show that
Mj+1 ≡ min(min(I) ∪ minpre(Mj)), which is computable
as

Mj+1 = min



min(I) ∪
⋃

s∈Mj

min(pre(C({s})))




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Control State Reachability (cont.)

Theorem 4.1 The control state reachability problem is
decidable for well-structured systems.

From the previous discussion we conclude that if we
define minpre∗(M0) to be ∪j≥0Mj, then there is a k such
that Mk+1 ≡ Mk, and minpre∗(M0) ≡ Mk.

This implies that minpre∗(M) is computable for any
minor set M of I and in fact C(minpre∗(M)) = pre∗(I).

Given a state s and a control state q, we compute
minpre∗(〈q,Dmin〉).

We then check whether there is an
s′ ∈ minpre∗(〈q,Dmin〉) such that s′ � s.
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Abstract Interpretation

The above analysis algorithm can also be phrased in
terms of abstract interpretation.

We intend to compute the fixpoint µX. I ∪ pre(X) for a
set I ⊆ S by iteration.

Instead of computing this fixpoint in the lattice 〈2S ,⊆〉 of
sets of states, we move to the abstract lattice 〈M,⊑〉,
where M is the set of canonical subsets of S, and
where M ⊑ M ′ if C(M) ⊆ C(M ′).

Automatic Verification 2009: Infinite-State Systems – 26/36



IM NTU

Abstract Interpretation (cont.)

The correspondence between the concrete lattice
〈2S ,⊆〉 and the abstract lattice 〈M,⊑〉 is expressed by a
pair 〈α, γ〉 of functions as follows.

α : 2S 7→ M, defined by α(T ) = min(T ) maps each set
of states in the concrete lattice to its abstract
representation.
γ : M 7→ 2S, defined by γ(M) = C(M) recovers the
concrete meaning of an element in the abstract
lattice.
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Abstract Interpretation (cont.)

The pair 〈α, γ〉 forms a Galois insertion of 〈M,⊑〉 into
〈2S ,⊆〉.

Let 〈Concr ,⊑Concr 〉 be an ordered concrete domain, and
let 〈Abs ,⊑Abs〉 be an ordered abstract domain.

Consider mappings α : Concr → Abs, and
γ : Abs → Concr .

We say that the pair 〈α, γ〉 form a Galois insertion if
α and γ are monotonic,
∀a ∈ Abs : a = α(γ(a)), and
∀c ∈ Conc : c ⊑Concr γ(α(c)).
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Abstract Interpretation (cont.)

The algorithm for deciding reachability can be seen as
computing the fixpoint µX. min(I) ⊔ minpre(X) in the
lattice 〈M,⊑〉, where M1 ⊔ M2 = min(M1 ∪ M2).

Monotonicity ensures that the above corresponds
exactly to the computation µX. I ∪ pre(X) in 〈2S ,⊆〉 if I is
an ideal in S.

Exactness follows from the identity
pre(γ(M)) = γ(minpre(M)) for all M ∈ M, and ensures
that if the fixpoint computation converges to Mk, then
γ(Mk) is the least fixpoint of µX. I ∪ pre(X) in 〈2S ,⊆〉.

Finally, the well quasi-ordering of � implies that all
ascending chains in 〈M,⊑〉 are finite, guaranteeing
convergence of any least fixpoint computation.
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Eventuality Properties

The problem: deciding whether each computation
starting from an initial state eventually reaches a certain
control state satisfying a predicate p over control states.

In CTL, these properties are of the form AFp.

We present an algorithm for the dual property EGp;
checking AFp is equivalent to checking ¬EG¬p.

The property EGp is true in a state s0 iff there is a
computation from s0 in which all states have a control
part that satisfies p.

The algorithm will actually solve the more general
problem of whether s0 satisfies a property of the form
EGI for an ideal I.

We write this property as s0 |= EGI.
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Eventuality Properties (cont.)

The algorithm essentially builds a tree of reachable
states.

We must then consider the possibility that post(s) is
infinite for some states s.

We say that a transition system is essentially finite
branching if for each state s we can effectively compute
a finite subset of post(s), denoted maxpost(s), such that
for each state s′ ∈ post(s) there is a state s′′ ∈ maxpost(s)
with s′ � s′′.

If post(s) is finite, then maxpost(s) can be taken as
post(s). In the cases where post(s) is infinite (as can be
the case, e.g., for real-time automata), the subset
maxpost(s) can fully represent the set post(s) for the
purposes of this algorithm.
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Eventuality Properties (cont.)

We build a tree labeled by properties of the form
s |= EGI. The root node is labeled by s0 |= EGI. A node
labeled by s |= EGI is a leaf if one of the following holds.
1. s 6∈ I. In this case, the node is considered

unsuccessful.
2. The node has an ancestor labeled s′ |= EGI for some

s′ with s′ � s. In this case, the node is considered
successful.

3. s ∈ I and post(s) is empty. In this case, the node is
considered successful.

From a non-leaf node labeled s |= EGI we create a child
labeled s′ |= EGI for each state s′ ∈ maxpost(s).

The algorithm answers “yes” if a successful node is
encountered, otherwise it answers “no”.
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Simulation Relations

The problem: whether a well-structured system is
simulated by a finite transition system.

Given two transition systems L1 = 〈S1, δ1〉 and
L2 = 〈S2, δ2〉, we say that a relation R ⊆ S1 × S2 is a
simulation (of L1 by L2) if for each 〈s1, s2〉 ∈ R, s′1 ∈ S1,

and λ ∈ Λ, if s1
λ

−→ s′1 then there exists s′2 ∈ S2 such that

s2
λ

−→ s′2 and 〈s′1, s
′
2〉 ∈ R.

For s1 ∈ S1 and s2 ∈ S2, we say that s1 is simulated by s2,
denoted s1 ⊑ s2, if there is a simulation R of L1 by L2

such that 〈s1, s2〉 ∈ R.

A transition system is said to be intersection effective if
min(C(s1) ∩ C(s2)) is computable for any states s1 and s2.
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Simulation Relations (cont.)

Theorem 6.2. For a state s in an intersection effective
well-structured transition system and a state q in a finite
transition system, it is decidable whether s ⊑ q.

The idea is to calculate the set of pairs 〈s, q〉 of states
such that s 6⊑ q.

We observe that for each q, the set {s | s 6⊑ q} is an
ideal.

This allows us to compute the set by a fixpoint iteration
analogous to that used for the reachability problem.
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Simulation Relations (cont.)

For each state q of the finite transition system, we
define a sequence I

q
0 , I

q
1 , I

q
2 , . . ., where I

q
0 = ∅, and

s ∈ I
q
j+1 if and only if either

s ∈ I
q
j ; or

there are λ and s′ such that s
λ

−→ s′ and for all q′ if
q

λ
−→ q′ then s′ ∈ I

q′

j .

Intuitively, with I
q
0 = ∅, I

q
j denotes the set of states (in

the infinite transition system), which q can simulate at
most j − 1 steps, for j > 0.

It is clear that I
q
j is an ideal and that I

q
0 ⊆ I

q
1 ⊆ I

q
2 ⊆ · · ·.

By Lemma 3.2, it follows that there is a k such that
I

q
k+1 = I

q
k for all q, and s 6⊑ q iff s ∈ I

q
k .
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Simulation Relations (cont.)

We represent I
q
j by the canonical set M

q
j = min(Iq

j ),
where M

q
0 = ∅, and

M
q
j+1 =

⋃

λ

minpreλ





⋂

q′∈postλ(q)

M
q′

j





Note that M
q
j+1 can be computed from M

q
j for

intersection effective well-structured transition systems.

We iterate until we reach a k such that M
q
k+1 ≡ M

q
k .

To decide whether s 6⊑ q we check if ∃s′ � s such that
s′ ∈ M

q
k .
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