
IM NTU

Model Checking µ-Calculus
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

(original created by Kai-Fu Tang and Jinn-Shu Chang)

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Model Checking µ-Calculus – 1/46

IM NTU

Outline

Introduction

The Propositional µ-Calculus

Evaluating Fixpoint Formulae

Representing µ-Calculus Formulae Using OBDDs

Translating CTL into the µ-Calculus

Complexity Considerations

Automatic Verification 2009: Model Checking µ-Calculus – 2/46

IM NTU

Introduction

The propositional µ-calculus is a powerful language for
expressing properties of transition systems by using
least and greatest fixpoint operators.

It is important for two reasons:
Many temporal and program logics can be encoded
into the µ-calculus.
There exist efficient model checking algorithms for
this formalism.

Automatic Verification 2009: Model Checking µ-Calculus – 3/46

IM NTU

Introduction (cont.)

Model checking algorithms for µ-calculus fall into two
classes:

Local procedures:
for proving that a specific state satisfies the given
formula
not having been combined with BDDs

Global procedures:
for proving that all states satisfy the given formula
those based on BDDs prove to be very efficient in
practice

Here, we consider only global model checking.

Automatic Verification 2009: Model Checking µ-Calculus – 4/46

IM NTU

Extended Kripke Structures

Formulae in the µ-calculus are interpreted relative to a
transition system.

To distinguish between different transitions in a system,
we modify the definition of a Kripke structure slightly.

An extended Kripke structure M over AP is a tuple
〈S, T, L〉:

S is a nonempty set of states,
T is a set of transition relations, and
L : S → 2AP gives the set of atomic propositions true
in a state.

We will refer to each a ∈ T as a transition (instead of a
transition relation).

Automatic Verification 2009: Model Checking µ-Calculus – 5/46

IM NTU

µ-Calculus: Syntax

Let VAR = {Q,Q1, Q2, . . . } be a set of relational
variables.

Each relational variable Q ∈ VAR can be assigned a
subset of S.

The µ-calculus formulae are constructed as follows:
If p ∈ AP , then p is a formula.
A relational variable is a formula.
If f and g are formulae, then ¬f, f ∧ g, f ∨ g are
formulae.
If f is a formula and a ∈ T , then 〈a〉f and [a]f are
formulae.
If Q ∈ VAR and f is a syntactically monotone formula
in Q, then µQ.f and νQ.f are formulae.

Automatic Verification 2009: Model Checking µ-Calculus – 6/46

IM NTU

Syntactically Monotone Formulae

A formula f is syntactically monotone in Q if all
occurrences of Q within f fall under an even number of
negations in f .

Consider these formulae:

f1 = ¬((p ∨ ¬Q1) ∧ ¬〈a〉Q1)

f2 = (Q1 ∧ 〈a〉Q1) ∨ ¬µQ2.¬(p ∧ [a]¬Q2)

f1 is syntactically monotone in Q1.

f2 is syntactically monotone in Q1, but not syntactically
monotone in Q2.

Automatic Verification 2009: Model Checking µ-Calculus – 7/46

IM NTU

Intuitive Meaning of µ-Calculus Formulae

The formula 〈a〉f means that f holds in at least one
state reachable in one step by making an a-transition.

The formula [a]f means that f holds in all states
reachable in one step by making an a-transition.

The formula µQ.f(Q) computes the least fixpoint of f .

The formula νQ.f(Q) computes the greatest fixpoint of f .

The fixpoint operator is like a quantifier in first-order
logic.

Variables can be free or bound by a fixpoint operator.

We write f(Q1, Q2, . . . , Qn) to emphasize that a formula f
contains free relational variables Q1, Q2, . . . Qn.

Automatic Verification 2009: Model Checking µ-Calculus – 8/46

IM NTU

µ-Calculus: Semantics

The notation s
a
→ s′ means (s, s′) ∈ a.

The environment e : VAR → 2S is an interpretation for
free variables.

We denote by e[Q← W] a new environment that is the
same as e except that e[Q← W](Q) = W .

A formula f is interpreted as a set of states in which f is
true, denoted JfKMe, where

M is a transition system and
e is an environment.

Automatic Verification 2009: Model Checking µ-Calculus – 9/46

IM NTU

µ-Calculus: Semantics (cont.)

JpKMe = {s | p ∈ L(s)}

JQKMe = e(Q)

J¬fKMe = S \ JfKMe

Jf ∧ gKMe = JfKMe ∩ JgKMe

Jf ∨ gKMe = JfKMe ∪ JgKMe

J〈a〉fKMe = {s | ∃t[s
a
→ t and t ∈ JfKMe]}

J[a]fKMe = {s | ∀t[s
a
→ t implies t ∈ JfKMe]}

JµQ.fKMe is the least fixpoint of the predicate
transformer τ : 2S → 2S, where τ(W) = JfKMe[Q← W]

JνQ.fKMe is the greatest fixpoint of the predicate
transformer τ : 2S → 2S, where τ(W) = JfKMe[Q← W]

Automatic Verification 2009: Model Checking µ-Calculus – 10/46

IM NTU

An Example

f = p ∧ [a]Q

τ(W) = JfKMe[Q← W]

= Jp ∧ [a]QKMe[Q← W]

= JpKMe[Q← W] ∩ J[a]QKMe[Q← W]

= {s | p ∈ L(s)} ∩

{s | ∀t(s
a
→ t implies t ∈ JQKMe[Q← W])}

= {s | p ∈ L(s)} ∩

{s | ∀t(s
a
→ t implies t ∈W)}

Automatic Verification 2009: Model Checking µ-Calculus – 11/46

IM NTU

A CTL Formula in µ-Calculus

Consider EG f with fairness constraint k.

Recall that this property can be expressed as a fixpoint:

νZ . f ∧ EX E[f U (Z ∧ k)]

Using the fixpoint characterization of EU, we obtain

E[f U (Z ∧ k)] = µY . (Z ∧ k) ∨ (f ∧ EX Y)

Substituting the right-hand side of the second formula in
the first one gives

νZ . f ∧ EX (µY . (Z ∧ k) ∨ (f ∧ EX Y))

Automatic Verification 2009: Model Checking µ-Calculus – 12/46

IM NTU

A CTL Formula in µ-Calculus (cont.)

Suppose the system under consideration has just one
transition a.

Replace EX by 〈a〉, we obtain the µ-calculus formula

νZ . f ∧ 〈a〉(µY . (Z ∧ k) ∨ (f ∧ 〈a〉Y))

Automatic Verification 2009: Model Checking µ-Calculus – 13/46

IM NTU

Negation and Monotonicity

All negations can be pushed down to the atomic
propositions:

¬[a]f ≡ 〈a〉¬f

¬〈a〉f ≡ [a]¬f

¬µQ.f(Q) ≡ νQ.¬f(¬Q)

¬νQ.f(Q) ≡ µQ.¬f(¬Q)

Every logical connective except negation is monotonic.

Bound variables are under an even number of
negations, thus they can be made negation-free.

Therefore, each possible formula in a fixpoint operator
is monotonic.

This ensures the existence of the fixpoints.
Automatic Verification 2009: Model Checking µ-Calculus – 14/46

IM NTU

Fixpoint Reviewed

Let τ : 2S → 2S be a monotonic function.

If S is finite and τ is monotonic, then τ is also
∪-continous and ∩-continuous.

µQ.τ(Q) =
⋃

i τ
i(False), i.e., µQ.τ(Q) is the union of the

following ascending chain of approximations:

False ⊆ τ(False) ⊆ τ2(False) ⊆ · · · ⊆ τn(False) ⊆ · · ·

νQ.τ(Q) =
⋂

i τ
i(True), i.e., νQ.τ(Q) is the intersection of

the following descending chain of approximations:

True ⊇ τ(True) ⊇ τ2(True) ⊇ · · · ⊇ τn(True) ⊇ · · ·

Automatic Verification 2009: Model Checking µ-Calculus – 15/46

IM NTU

Naive Algorithm

Function Eval(f , e)
if f = p then return {s | p ∈ L(s)};
if f = Q then return e(Q);
if f = g1 ∧ g2 then return Eval(g1, e) ∩ Eval(g2, e);
if f = g1 ∨ g2 then return Eval(g1, e) ∪ Eval(g2, e);
if f = 〈a〉g then return {s | ∃t(s

a
→ t and t ∈ Eval(g, e))};

if f = [a]g then return {s | ∀t(s
a
→ t implies t ∈ Eval(g, e))};

if f = µQ.g(Q) then return Lfp(g, e,Q);
if f = νQ.g(Q) then return Gfp(g, e,Q);

Automatic Verification 2009: Model Checking µ-Calculus – 16/46

IM NTU

Naive Least Fixpoint Procedure

Function Lfp(g, e, Q)
Qval ← False;
repeat

Qold ← Qval;
Qval ← Eval(g, e[Q← Qval]);

until Qval = Qold ;
return Qval;

Automatic Verification 2009: Model Checking µ-Calculus – 17/46

IM NTU

Naive Greatest Fixpoint Procedure

Function Gfp(g, e, Q)
Qval ← True;
repeat

Qold ← Qval;
Qval ← Eval(g, e[Q← Qval]);

until Qval = Qold ;
return Qval;

Automatic Verification 2009: Model Checking µ-Calculus – 18/46

IM NTU

A Run Sketch

Consider the calculation of µQ1.g1(Q1, µQ2.g2(Q1, Q2)).

We start with the initial approximation Q0
1 = False.

Compute the inner fixpoint starting from Q00
2 = False

until we reach the fixpoint Q0ω
2 .

Q1 is increased to Q1
1 = g1(Q

0
1, Q

0ω
2).

Compute the inner fixpoint starting from Q10
2 = False

until we reach the fixpoint Q1ω
2 .

Q1 is increased to Q2
1 = g1(Q

1
1, Q

1ω
2) . . .

This continues until we reach the fixpoint Qω
1 .

Automatic Verification 2009: Model Checking µ-Calculus – 19/46

IM NTU

A Run Sketch (cont.)

Summary of the calculation of µQ1.g1(Q1, µQ2.g2(Q1, Q2)):

Q0
1 = False

Q1
1 Q00

2 Q01
2 · · · Q0ω

2

= g1(Q
0
1, Q

0ω
2) = False; = g2(Q

0
1, Q

00
2);

Q2
1 Q10

2 Q11
2 · · · Q1ω

2

= g1(Q
1
1, Q

1ω
2) = False; = g2(Q

1
1, Q

10
2);

...
...

Qω
1 Q

(ω−1)0
2 Q

(ω−1)1
2 · · · Q

(ω−1)ω
2

= False; = g2(Q
ω−1
1 , Q

(ω−1)0
2);

Automatic Verification 2009: Model Checking µ-Calculus – 20/46

IM NTU

Complexity Analysis

Let k be the maximum nesting depth of fixpoint
operators.

The naive algorithm runs in O(|M | · |f | · nk) time, where
M is the Kripke structure and n the number of states.

The innermost fixpoint will be evaluated O(nk) times.
Each individual iteration takes O(|M | · |f |) steps.

Automatic Verification 2009: Model Checking µ-Calculus – 21/46

IM NTU

Alternation Depth

Top-level ν-subformula of f : a subformula νQ.g that is
not contained within any other greatest fixpoint
subformula of f .

The alternation depth of a formula f is the number of
alternations in the nesting of least and greatest fixpoints
in f , denoted d(f):

d(p) = d(Q) = 0

d(f ∧ g) = d(f ∨ g) = max(d(f), d(g))

d(〈a〉f) = d([a]f) = d(f)

d(µQ.f) = max(1, d(f), 1 + max({d(g) |
g is a top level ν-subformula of f}))

d(νQ.f) = max(1, d(f), 1 + max({d(g) |
g is a top level µ-subformula of f}))

Automatic Verification 2009: Model Checking µ-Calculus – 22/46

IM NTU

Alternation Depth (cont.)

Examples:
d(µQ.p ∨ 〈a〉Q) = 1

d(νQ.(q ∧ (p ∨ [a]Q)) = 1

d(νQ1.(νQ2.(p ∧ [a]Q2) ∧ 〈a〉Q1)) = 1

d(νQ1.(µQ2.(p ∨ 〈a〉Q2) ∧ 〈a〉Q1)) = 2

Recall that, for a system with a single transition a and
fairness constraint k, the µ-calculus formula
corresponding to EG f is

νZ . f ∧ 〈a〉(µY . (Z ∧ k) ∨ (f ∧ 〈a〉Y)).

This formula has an alternation depth of two.

Automatic Verification 2009: Model Checking µ-Calculus – 23/46

IM NTU

A Better Algorithm

An algorithm by Emerson and Lei demonstrates that the
value of a fixpoint formula can be computed with
O((|f | · n)d) iterations, where d is the alternation depth of
f .

The basic idea exploits sequences of fixpoints that have
the same type to reduce the complexity of the algorithm.

It is unnecessary to re-initialize computations of inner
fixpoints with False or True.

Instead, to compute a least fixpoint, it is enough to start
iterating with any approximation known to be below the
fixpoint.

Automatic Verification 2009: Model Checking µ-Calculus – 24/46

IM NTU

Lemma 22

Let τ : 2S → 2S be monotonic and S be finite.

If W ⊆
⋃

i τ
i(False), then

⋃
i τ

i(W) =
⋃

i τ
i(False).

Proof:
⋃

i τ
i(W) ⊆

⋃
i τ

i(False):

W ⊆
⋃

i
τ i(False)

τ(W) ⊆ τ(
⋃

i
τ i(False)) =

⋃
i
τ i(False)

...
τn(W) ⊆

⋃
i
τ i(False)

...⋃
i
τ i(W) ⊆

⋃
i
τ i(False)

Automatic Verification 2009: Model Checking µ-Calculus – 25/46

IM NTU

Lemma 22 (cont.)
⋃

i τ
i(False) ⊆

⋃
i τ

i(W):

False ⊆ W = τ0(W)

τ(False) ⊆ τ(W)

...
τn(False) ⊆ τn(W)

...⋃
i
τ i(False) ⊆

⋃
i
τ i(W)

So, to compute a least fixpoint, it is enough to start
iterating with any approximation below the fixpoint.

Automatic Verification 2009: Model Checking µ-Calculus – 26/46

IM NTU

Emerson-Lei Algorithm

Function EL-Eval(f , e)
if f = p then return {s | p ∈ L(s)};
if f = Q then return e(Q);
if f = g1 ∧ g2 then return EL-Eval(g1, e) ∩ EL-Eval(g2, e);
if f = g1 ∨ g2 then return EL-Eval(g1, e) ∪ EL-Eval(g2, e);
if f = 〈a〉g then return

{s | ∃t(s
a
→ t and t ∈ EL-Eval(g, e))};

if f = [a]g then return

{s | ∀t(s
a
→ t implies t ∈ EL-Eval(g, e))};

if f = µQi.g(Qi) then return EL-Lfp(g, e,Qi);
if f = νQi.g(Qi) then return EL-Gfp(g, e,Qi);

Automatic Verification 2009: Model Checking µ-Calculus – 27/46

IM NTU

Emerson-Lei Algorithm (cont.)

The algorithm uses an array A[1..N] to store the
approximations to the fixpoints.

Initially, A[i] is set to False if the ith fixpoint formula is a
least fixpoint and to True otherwise.

The approximation values A[i] are not reset when
evaluating the subformula µQi . g(Qi) or νQi . g(Qi).

Automatic Verification 2009: Model Checking µ-Calculus – 28/46

IM NTU

Emerson-Lei Lfp

Function EL-Lfp(g, e, Qi)
forall top-level greatest fixpoint subformulae νQj .g

′(Qj) of g do
A[j]← True;

end

repeat
Qold ← A[i];
A[i]← EL-Eval(g, e[Qi ← A[i]]);

until A[i] = Qold ;
return A[i];

Automatic Verification 2009: Model Checking µ-Calculus – 29/46

IM NTU

Emerson-Lei Gfp

Function EL-Gfp(g, e, Qi)
forall top-level least fixpoint subformulae µQj .g

′(Qj) of g do
A[j]← False;

end

repeat
Qold ← A[i];
A[i]← EL-Eval(g, e[Qi ← A[i]]);

until A[i] = Qold ;
return A[i];

Automatic Verification 2009: Model Checking µ-Calculus – 30/46

IM NTU

A Run Sketch

Consider the calculation of µQ1.g1(Q1, µQ2.g2(Q1, Q2)).

We start with the initial approximation Q0
1 = False.

When computing Qiω
2 , we always begin with

Qi0
2 = Q

(i−1)ω
2 .

Compute the inner fixpoint starting from Q00
2 = False

until we reach the fixpoint Q0ω
2 .

Q1 is increased to Q1
1 = g1(Q

0
1, Q

0ω
2)

Compute the inner fixpoint starting from Q10
2 = Q0ω

2

until we reach the fixpoint Q1ω
2 .

Q1 is increased to Q2
1 = g1(Q

1
1, Q

1ω
2) . . .

This continues until we reach the fixpoint Qω
1 .

Automatic Verification 2009: Model Checking µ-Calculus – 31/46

IM NTU

A Run Sketch (cont.)

Summary of the calculation of µQ1.g1(Q1, µQ2.g2(Q1, Q2)):

Q0
1 = False

Q1
1 Q00

2 Q01
2 . . . Q0ω

2

= g1(Q
0
1, Q

0ω
2) = False; = g2(Q

0
1, Q

00
2);

Q2
1 Q10

2 Q11
2 . . . Q1ω

2

= g1(Q
1
1, Q

1ω
2) = Q0ω

2 ; = g2(Q
1
1, Q

10
2);

...
...

Qω
1 Q

(ω−1)0
2 Q

(ω−1)1
2 . . . Q

(ω−1)ω
2

= Q
(ω−2)ω
2 ; = g2(Q

(ω−1)
1 , Q

(ω−1)0
2);

Q0ω
2 = g2(Q

0
1, Q

0ω
2) ⊆ g2(Q

1
1, Q

0ω
2)

Q0ω
2 = µQ2.g2(Q

0
1, Q2) ⊆ µQ2.g2(Q

1
1, Q2)

Automatic Verification 2009: Model Checking µ-Calculus – 32/46

IM NTU

Complexity Analysis

In the naive algorithm, the innermost fixpoint requires
O(nk) iterations, where k is the maximum nesting depth
of fixpoint operators.

The number of iterations of Emerson-Lei algorithm is
O((|f | · n)d).
|f | is an upper bound on the number of consecutive
fixpoints of the same type in f .
The number of iterations for each such sequence is
O(|f | · n), each fixpoint requiring at most n iterations.

With d alternating sequences, we have O((|f | · n)d)
iterations.

Automatic Verification 2009: Model Checking µ-Calculus – 33/46

IM NTU

Representing Formulae Using OBDDs

The domain S is encoded by the vector ~x.

Each atomic proposition p has an OBDD associated
with it, denoted OBDDp(~x).

~y ∈ {0, 1}n satisfies OBDDp iff p ∈ L(~y).

Each transition a has an OBDD associated with it,
denoted OBDDa(~x, ~x′).

(~y, ~z) ∈ {0, 1}2n satisfies OBDDa iff (~y, ~z) ∈ a.

The environment is represented by a function assoc;
assoc[Qi] gives the OBDD corresponding to the set of
states associated with Qi.

assoc〈Q← BQ〉 creates a new association by associating
an OBDD BQ with Q.

Automatic Verification 2009: Model Checking µ-Calculus – 34/46

IM NTU

Representing Formulae Using OBDDs (cont.)

The procedure B given below takes a µ-calculus formula
f and an association list assoc and returns an OBDD
corresponding to the semantics of f .

B(p, assoc) = OBDDp(~x)

B(Qi, assoc) = assoc[Qi]

B(¬f, assoc) = ¬B(f, assoc)

B(f ∧ g, assoc) = B(f, assoc) ∧ B(g, assoc)

B(f ∨ g, assoc) = B(f, assoc) ∨ B(g, assoc)

B(〈a〉f, assoc) = ∃~x′(OBDDa(~x, ~x′) ∧ B(f, assoc)(~x′))

B([a]f, assoc) = B(¬〈a〉¬f, assoc)

B(µQ.f, assoc) = FIX(f, assoc,OBDDFalse)

B(νQ.f, assoc) = FIX(f, assoc,OBDDTrue)

Automatic Verification 2009: Model Checking µ-Calculus – 35/46

IM NTU

Representing Formulae Using OBDDs (cont.)

Function FIX(f , assoc, BQ)
bddresult ← BQ;
repeat

bddold ← bddresult;
bddresult ← B(f, assoc〈Q← bddold〉);

until equal(bddold, bddresult) ;
return bddresult;

Automatic Verification 2009: Model Checking µ-Calculus – 36/46

IM NTU

An example

Let the state space S be encoded by n boolean
variables x1, x2, . . . , xn.

Let OBDDq(~x) be the interpretation for q.

The OBDD corresponding to the transition a is
OBDDa(~x, ~x′).

Given an association list assoc that pairs the OBDD

BY (~x) with Y .

Consider the following formula:

f = µZ . ((q ∧ Y) ∨ 〈a〉Z)

Automatic Verification 2009: Model Checking µ-Calculus – 37/46

IM NTU

An example (cont.)

In the execution of FIX, bddresult is initially set to:

N0(~x) = OBDDFalse .

At the end of the i-th iteration, the value of bddresult is
given by:

N i+1(~x) = (OBDDq(~x)∧BY (~x))∨∃~x′(OBDDa(~x, ~x′)∧N i(~x′)).

The iteration stops when N i(~x) = N i+1(~x).

Automatic Verification 2009: Model Checking µ-Calculus – 38/46

IM NTU

Translating CTL into the µ-Calculus

Consider systems with just one transition a.

The algorithm Tr takes as its input a CTL formula and
outputs an equivalent µ-calculus formula:

Tr(p) = p

Tr(¬f) = ¬Tr(f)

Tr(f ∧ g) = Tr(f) ∧ Tr(g)

Tr(EX f) = 〈a〉Tr(f)

Tr(E[f U g]) = µY.(Tr(g) ∨ (Tr(f) ∧ 〈a〉Y))

Tr(EG f) = νY.(Tr(f) ∧ 〈a〉Y)

Automatic Verification 2009: Model Checking µ-Calculus – 39/46

IM NTU

Translating CTL into the µ-Calculus (cont.)

Example:

Tr(EG(E[p U q])) = νY.(µZ.(q ∨ (p ∧ 〈a〉Z)) ∧ 〈a〉Y)

Any resulting µ-calculus formula is closed.

We can omit the environment e from the translation.

Automatic Verification 2009: Model Checking µ-Calculus – 40/46

IM NTU

NP and co-NP

We will see model checking µ-calculus is in NP ∩ co-NP.

A language L is in NP if there exists a polynomial-time
nondeterministic algorithm M such that:

if x ∈ L, then M(x) = “yes” for some computation
path, and
if x /∈ L, then M(x) = “no” for all computation paths.

A language L is in co-NP if there exists a
polynomial-time nondeterministic algorithm M such
that:

if x ∈ L, then M(x) = “yes” for all computation paths,
and
if x /∈ L, then M(x) = “no” for some computation path.

co-NP = {L | L̄ ∈ NP}.

Automatic Verification 2009: Model Checking µ-Calculus – 41/46

IM NTU

Relations between P, NP, and co-NP

Current consensus (still open):
P 6= NP
NP 6= co-NP
P 6= NP ∩ co-NP

If an NP-complete problem is in co-NP, then NP =
co-NP.

Let L ∈ co-NP be NP-complete.
Let NTM M decide L.
For any L′ ∈ NP, there is a reduction R from L′ to L.
L′ ∈ co-NP as it is decided by NTM M(R(·)).
Hence NP ⊆ co-NP.
The other direction co-NP ⊆ NP is symmetric.

Automatic Verification 2009: Model Checking µ-Calculus – 42/46

IM NTU

Complexity of Model Checking µ-Calculus

Problem: Given a finite model M , a state s, and a
µ-calculus formula f , does M, s |= f?

Best known upper bound for this problem is NP ∩ co-NP.

Automatic Verification 2009: Model Checking µ-Calculus – 43/46

IM NTU

Model Checking µ-Calculus is in NP

Consider the following nondeterministic algorithm.

Guess the greatest fixpoints, and compute the least fix
points by iteration.

The guess for a greatest fixpoint can be easily checked
to see that it is a fixpoint.

The greatest fixpoint must contain any verified guess.

By monotonicity, this nondeterministic algorithm
computes a subset of the real interpretation of the
formula.

There is a run of the algorithm which calculates the set
of states satisfying the µ-calculus formula.

Consequently, the problem is in NP.

Automatic Verification 2009: Model Checking µ-Calculus – 44/46

IM NTU

Model Checking µ-Calculus is in co-NP

Recall that co-NP = {L | L̄ ∈ NP}.

Consider the following nondeterministic algorithm.

Negate the formula.

Apply the algorithm in the last page.

Consequently, the problem is in co-NP.

Hence, the problem is in NP ∩ co-NP.

Automatic Verification 2009: Model Checking µ-Calculus – 45/46

IM NTU

Open Problem

Open Problem: Is there a polynomial model checking
algorithm for the µ-calculus?

It is a long standing open problem.

Clarke et al. conjecture NO in the book.

If the problem was NP-complete, then NP = co-NP,
which is believed to be unlikely.

This suggests that it would be very difficult to prove the
conjecture.

Automatic Verification 2009: Model Checking µ-Calculus – 46/46

	Outline
	Introduction
	Introduction (cont.)
	Extended Kripke Structures
	$mu $-Calculus: Syntax
	Syntactically Monotone Formulae
	Intuitive Meaning of $mu $-Calculus Formulae
	$mu $-Calculus: Semantics
	$mu $-Calculus: Semantics (cont.)
	An Example
	A CTL Formula in $mu $-Calculus
	A CTL Formula in $mu $-Calculus (cont.)
	Negation and Monotonicity
	Fixpoint Reviewed
	Naive Algorithm
	Naive Least Fixpoint Procedure
	Naive Greatest Fixpoint Procedure
	A Run Sketch
	A Run Sketch (cont.)
	Complexity Analysis
	Alternation Depth
	Alternation Depth (cont.)
	A Better Algorithm
	Lemma 22
	Lemma 22 (cont.)
	Emerson-Lei Algorithm
	Emerson-Lei Algorithm (cont.)
	Emerson-Lei Lfp
	Emerson-Lei Gfp
	A Run Sketch
	A Run Sketch (cont.)
	Complexity Analysis
	Representing Formulae Using OBDDs
	Representing Formulae Using OBDDs (cont.)
	Representing Formulae Using OBDDs (cont.)
	An example
	An example (cont.)
	Translating CTL into the $mu $-Calculus
	Translating CTL into the $mu $-Calculus (cont.)
	NP and co-NP
	Relations between P, NP, and co-NP
	Complexity of Model Checking $mu $-Calculus
	Model Checking $mu $-Calculus is in NP
	Model Checking $mu $-Calculus is in co-NP
	Open Problem

