Model Checking μ -Calculus (Based on [Clarke *et al.* 1999])

Yih-Kuen Tsay

(original created by Kai-Fu Tang and Jinn-Shu Chang)

Dept. of Information Management National Taiwan University

Automatic Verification 2009: Model Checking μ -Calculus – 1/46

Outline

Introduction

- Solution The Propositional μ -Calculus
- Evaluating Fixpoint Formulae
- Solution Representing μ -Calculus Formulae Using OBDDs
- Solutions Translating CTL into the μ -Calculus
- Complexity Considerations

Introduction

- The propositional μ-calculus is a powerful language for expressing properties of transition systems by using least and greatest fixpoint operators.
- It is important for two reasons:
 - Many temporal and program logics can be encoded into the μ -calculus.
 - There exist efficient model checking algorithms for this formalism.

Introduction (cont.)

- Model checking algorithms for µ-calculus fall into two classes:
 - Local procedures:
 - for proving that a specific state satisfies the given formula
 - not having been combined with BDDs
 - Global procedures:
 - for proving that all states satisfy the given formula
 - those based on BDDs prove to be very efficient in practice
- Here, we consider only global model checking.

Extended Kripke Structures

- Formulae in the μ-calculus are interpreted relative to a transition system.
- To distinguish between different transitions in a system, we modify the definition of a Kripke structure slightly.
- An extended Kripke structure M over AP is a tuple $\langle S, T, L \rangle$:
 - \circledast S is a nonempty set of states,
 - rightarrow T is a set of transition relations, and
 - * $L: S \rightarrow 2^{AP}$ gives the set of atomic propositions true in a state.
- Solution We will refer to each $a \in T$ as a *transition* (instead of a transition relation).

μ -Calculus: Syntax

• Let $VAR = \{Q, Q_1, Q_2, ...\}$ be a set of *relational* variables.

- Solution Solution Solution Sector Se
- Solution The μ -calculus formulae are constructed as follows: If $p \in AP$, then p is a formula.
 - A relational variable is a formula.
 - * If f and g are formulae, then $\neg f, f \land g, f \lor g$ are formulae.
 - If f is a formula and a ∈ T, then $\langle a \rangle f$ and [a]f are formulae.
 - If $Q \in VAR$ and f is a syntactically monotone formula in Q, then $\mu Q.f$ and $\nu Q.f$ are formulae.

Syntactically Monotone Formulae

- A formula f is syntactically monotone in Q if all occurrences of Q within f fall under an even number of negations in f.
- Consider these formulae:

$$f_1 = \neg ((p \lor \neg Q_1) \land \neg \langle a \rangle Q_1)$$

$$f_2 = (Q_1 \land \langle a \rangle Q_1) \lor \neg \mu Q_2 . \neg (p \land [a] \neg Q_2)$$

- f_1 is syntactically monotone in Q_1 .
- f_2 is syntactically monotone in Q_1 , but not syntactically monotone in Q_2 .

Intuitive Meaning of $\mu\text{-}Calculus$ Formulae

- The formula $\langle a \rangle f$ means that f holds in at least one state reachable in one step by making an a-transition.
- The formula [a] f means that f holds in all states reachable in one step by making an a-transition.
- The formula $\mu Q.f(Q)$ computes the least fixpoint of f.
- Solution The formula $\nu Q.f(Q)$ computes the greatest fixpoint of f.
- The fixpoint operator is like a quantifier in first-order logic.
- Solution Variables can be *free* or *bound* by a fixpoint operator.
- Solution We write $f(Q_1, Q_2, ..., Q_n)$ to emphasize that a formula f contains free relational variables $Q_1, Q_2, ..., Q_n$.

μ -Calculus: Semantics

- The notation $s \xrightarrow{a} s'$ means $(s, s') \in a$.
- The *environment* $e: VAR \rightarrow 2^S$ is an interpretation for free variables.
- Solution We denote by $e[Q \leftarrow W]$ a new environment that is the same as e except that $e[Q \leftarrow W](Q) = W$.
- A formula f is interpreted as a set of states in which f is true, denoted $[\![f]\!]_M e$, where
 - \circledast M is a transition system and
 - e is an environment.

μ -Calculus: Semantics (cont.)

• $[\![p]\!]_M e = \{s \mid p \in L(s)\}$

$$[Q] _M e = e(Q)$$

- $\ \, [\![\neg f]\!]_M e = S \setminus [\![f]\!]_M e$
- $\ \, [\hspace{-1.5pt}] f \wedge g]\hspace{-1.5pt}]_M e = [\hspace{-1.5pt}] f]\hspace{-1.5pt}]_M e \cap [\hspace{-1.5pt}] g]\hspace{-1.5pt}]_M e$
- $\ \, [\![f \lor g]\!]_M e = [\![f]\!]_M e \cup [\![g]\!]_M e$
- $[\langle a \rangle f]_M e = \{s \mid \exists t [s \xrightarrow{a} t \text{ and } t \in [[f]_M e]\}$
- $\llbracket \mu Q.f \rrbracket_M e$ is the least fixpoint of the predicate transformer $\tau : 2^S \to 2^S$, where $\tau(W) = \llbracket f \rrbracket_M e[Q \leftarrow W]$
- $\llbracket \nu Q.f \rrbracket_M e$ is the greatest fixpoint of the predicate transformer $\tau : 2^S \to 2^S$, where $\tau(W) = \llbracket f \rrbracket_M e[Q \leftarrow W]$

An Example

$$f = p \land [a]Q$$

$$\tau(W) = \llbracket f \rrbracket_M e[Q \leftarrow W]$$

$$= \llbracket p \land [a]Q \rrbracket_M e[Q \leftarrow W]$$

$$= \llbracket p \rrbracket_M e[Q \leftarrow W] \cap \llbracket [a]Q \rrbracket_M e[Q \leftarrow W]$$

$$= \{s \mid p \in L(s)\} \cap$$

$$\{s \mid \forall t(s \xrightarrow{a} t \text{ implies } t \in \llbracket Q \rrbracket_M e[Q \leftarrow W])\}$$

$$= \{s \mid p \in L(s)\} \cap$$

$$\{s \mid \forall t(s \xrightarrow{a} t \text{ implies } t \in W)\}$$

A CTL Formula in μ -Calculus

- Solution $\mathbf{EG} f$ with fairness constraint k.
- Recall that this property can be expressed as a fixpoint:

$$\nu Z \cdot f \wedge \mathbf{EX} \mathbf{E}[f \mathbf{U} (Z \wedge k)]$$

Using the fixpoint characterization of EU, we obtain

$$\mathbf{E}[f \ \mathbf{U} \ (Z \land k)] = \mu Y \ . \ (Z \land k) \lor (f \land \mathbf{EX} \ Y)$$

Substituting the right-hand side of the second formula in the first one gives

$$\nu Z \cdot f \wedge \mathbf{EX} (\mu Y \cdot (Z \wedge k) \vee (f \wedge \mathbf{EX} Y))$$

A CTL Formula in μ -Calculus (cont.)

- Suppose the system under consideration has just one transition a.
- Replace **EX** by $\langle a \rangle$, we obtain the μ -calculus formula

 $\nu Z \cdot f \wedge \langle a \rangle (\mu Y \cdot (Z \wedge k) \vee (f \wedge \langle a \rangle Y))$

Negation and Monotonicity

All negations can be pushed down to the atomic propositions:

$$\neg [a]f \equiv \langle a \rangle \neg f$$

$$\neg \langle a \rangle f \equiv [a] \neg f$$

$$\neg \mu Q.f(Q) \equiv \nu Q.\neg f(\neg Q)$$

$$\neg \nu Q.f(Q) \equiv \mu Q.\neg f(\neg Q)$$

- Every logical connective except negation is monotonic.
- Bound variables are under an even number of negations, thus they can be made negation-free.
- Therefore, each possible formula in a fixpoint operator is monotonic.

This ensures the existence of the fixpoints.

Fixpoint Reviewed

Solution Let $\tau: 2^S \to 2^S$ be a monotonic function.

- If S is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous.
- $\mu Q.\tau(Q) = \bigcup_i \tau^i(False)$, i.e., $\mu Q.\tau(Q)$ is the union of the following ascending chain of approximations:

$$False \subseteq \tau(False) \subseteq \tau^2(False) \subseteq \cdots \subseteq \tau^n(False) \subseteq \cdots$$

• $\nu Q.\tau(Q) = \bigcap_i \tau^i(True)$, i.e., $\nu Q.\tau(Q)$ is the intersection of the following descending chain of approximations:

$$True \supseteq \tau(True) \supseteq \tau^2(True) \supseteq \cdots \supseteq \tau^n(True) \supseteq \cdots$$

Function Eval(*f*, *e*) if f = p then return $\{s \mid p \in L(s)\}$; if f = Q then return e(Q); if $f = g_1 \wedge g_2$ then return $\text{Eval}(g_1, e) \cap \text{Eval}(g_2, e)$; if $f = g_1 \vee g_2$ then return $\text{Eval}(g_1, e) \cup \text{Eval}(g_2, e)$; if $f = \langle a \rangle q$ then return $\{s \mid \exists t(s \xrightarrow{a} t \text{ and } t \in \texttt{Eval}(q, e))\}$; if f = [a]g then return $\{s \mid \forall t(s \xrightarrow{a} t \text{ implies } t \in \texttt{Eval}(g, e))\};$ if $f = \mu Q.g(Q)$ then return Lfp(g, e, Q); if $f = \nu Q.g(Q)$ then return Gfp(g, e, Q);

Naive Least Fixpoint Procedure

Function Lfp(
$$g, e, Q$$
)
 $Q_{val} \leftarrow False;$
repeat
 $Q_{old} \leftarrow Q_{val};$
 $Q_{val} \leftarrow Eval(g, e[Q \leftarrow Q_{val}]);$
until $Q_{val} = Q_{old};$
return $Q_{val};$

Naive Greatest Fixpoint Procedure

Function Gfp(
$$g, e, Q$$
)
 $Q_{val} \leftarrow True;$
repeat
 $Q_{old} \leftarrow Q_{val};$
 $Q_{val} \leftarrow Eval(g, e[Q \leftarrow Q_{val}]);$
until $Q_{val} = Q_{old};$
return $Q_{val};$

Automatic Verification 2009: Model Checking μ -Calculus – 18/46

A Run Sketch

- Consider the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$.
- Solution We start with the initial approximation $Q_1^0 = False$.
 - * Compute the inner fixpoint starting from $Q_2^{00} = False$ until we reach the fixpoint $Q_2^{0\omega}$.
- Q_1 is increased to $Q_1^1 = g_1(Q_1^0, Q_2^{0\omega})$.
 - * Compute the inner fixpoint starting from $Q_2^{10} = False$ until we reach the fixpoint $Q_2^{1\omega}$.
- Q_1 is increased to $Q_1^2 = g_1(Q_1^1, Q_2^{1\omega}) \dots$
- \clubsuit This continues until we reach the fixpoint Q_1^{ω} .

A Run Sketch (cont.)

Summary of the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$:

Complexity Analysis

- Let k be the maximum nesting depth of fixpoint operators.
- Solution The naive algorithm runs in $O(|M| \cdot |f| \cdot n^k)$ time, where M is the Kripke structure and n the number of states.
 - ***** The innermost fixpoint will be evaluated $O(n^k)$ times.
 - **Solution** Each individual iteration takes $O(|M| \cdot |f|)$ steps.

Alternation Depth

- Top-level v-subformula of f: a subformula vQ.g that is not contained within any other greatest fixpoint subformula of f.
- The alternation depth of a formula f is the number of alternations in the nesting of least and greatest fixpoints in f, denoted d(f):

Alternation Depth (cont.)

Examples:

- $\stackrel{\text{\tiny{\textcircled{}}}}{=} d(\mu Q.p \lor \langle a \rangle Q) = 1$
- $d(\nu Q.(q \land (p \lor [a]Q)) = 1$
- $d(\nu Q_1 (\nu Q_2 (p \land [a]Q_2) \land \langle a \rangle Q_1)) = 1$
- $d(\nu Q_1.(\mu Q_2.(p \lor \langle a \rangle Q_2) \land \langle a \rangle Q_1)) = 2$
- Recall that, for a system with a single transition a and fairness constraint k, the μ-calculus formula corresponding to EG f is

 $\nu Z \cdot f \wedge \langle a \rangle (\mu Y \cdot (Z \wedge k) \vee (f \wedge \langle a \rangle Y)).$

This formula has an alternation depth of two.

A Better Algorithm

- An algorithm by Emerson and Lei demonstrates that the value of a fixpoint formula can be computed with O((|f| · n)^d) iterations, where d is the alternation depth of f.
- The basic idea exploits sequences of fixpoints that have the same type to reduce the complexity of the algorithm.
- It is unnecessary to re-initialize computations of inner fixpoints with *False* or *True*.
- Instead, to compute a least fixpoint, it is enough to start iterating with any approximation known to be below the fixpoint.

Lemma 22

Automatic Verification 2009: Model Checking μ -Calculus – 25/46

Lemma 22 (cont.)

 $\bigcirc \bigcup_i \tau^i(False) \subseteq \bigcup_i \tau^i(W)$:

$$False \subseteq W = \tau^{0}(W)$$

$$\tau(False) \subseteq \tau(W)$$

$$\vdots$$

$$\tau^{n}(False) \subseteq \tau^{n}(W)$$

$$\vdots$$

$$\bigcup_{i} \tau^{i}(False) \subseteq \bigcup_{i} \tau^{i}(W)$$

So, to compute a least fixpoint, it is enough to start iterating with any approximation below the fixpoint.

Automatic Verification 2009: Model Checking μ -Calculus – 26/46

Function EL-Eval(*f*, *e*) if f = p then return $\{s \mid p \in L(s)\}$; if f = Q then return e(Q); if $f = g_1 \wedge g_2$ then return $\text{EL-Eval}(g_1, e) \cap \text{EL-Eval}(g_2, e)$; if $f = q_1 \vee q_2$ then return EL-Eval $(q_1, e) \cup$ EL-Eval (q_2, e) ; if $f = \langle a \rangle g$ then return $\{s \mid \exists t(s \xrightarrow{a} t \text{ and } t \in \texttt{EL-Eval}(g, e))\};$ if f = [a]g then return $\{s \mid \forall t(s \xrightarrow{a} t \text{ implies } t \in \texttt{EL-Eval}(q, e))\};$ if $f = \mu Q_i g(Q_i)$ then return EL-Lfp (g, e, Q_i) ; if $f = \nu Q_i g(Q_i)$ then return EL-Gfp (g, e, Q_i) ;

Emerson-Lei Algorithm (cont.)

- The algorithm uses an array A[1..N] to store the approximations to the fixpoints.
- Initially, A[i] is set to False if the i^{th} fixpoint formula is a least fixpoint and to True otherwise.
- The approximation values A[i] are not reset when evaluating the subformula $\mu Q_i \cdot g(Q_i)$ or $\nu Q_i \cdot g(Q_i)$.

Emerson-Lei Lfp

Function $EL-Lfp(g, e, Q_i)$

forall top-level greatest fixpoint subformulae $\nu Q_j.g'(Q_j)$ of g do $A[j] \leftarrow True$;

end

repeat $Q_{old} \leftarrow A[i];$ $A[i] \leftarrow \texttt{EL-Eval}(g, e[Q_i \leftarrow A[i]]);$ until $A[i] = Q_{old};$ return A[i];

Emerson-Lei Gfp

Function EL-Gfp(g, e, Q_i)

forall top-level least fixpoint subformulae $\mu Q_j.g'(Q_j)$ of g do $A[j] \leftarrow False$;

end

repeat $Q_{old} \leftarrow A[i];$ $A[i] \leftarrow \texttt{EL-Eval}(g, e[Q_i \leftarrow A[i]]);$ until $A[i] = Q_{old};$ return A[i];

A Run Sketch

- Consider the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$.
- We start with the initial approximation $Q_1^0 = False$.
- Solution When computing $Q_2^{i\omega}$, we always begin with $Q_2^{i0} = Q_2^{(i-1)\omega}$.
 - Sompute the inner fixpoint starting from $Q_2^{00} = False$ until we reach the fixpoint $Q_2^{0\omega}$.
 - $\bigotimes Q_1$ is increased to $Q_1^1 = g_1(Q_1^0, Q_2^{0\omega})$
 - * Compute the inner fixpoint starting from $Q_2^{10} = Q_2^{0\omega}$ until we reach the fixpoint $Q_2^{1\omega}$.
 - $igendrightarrow Q_1$ is increased to $Q_1^2 = g_1(Q_1^1, Q_2^{1\omega}) \dots$
 - This continues until we reach the fixpoint Q_1^{ω} .

A Run Sketch (cont.)

Summary of the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$:

•
$$Q_2^{0\omega} = g_2(Q_1^0, Q_2^{0\omega}) \subseteq g_2(Q_1^1, Q_2^{0\omega})$$

• $Q_2^{0\omega} = \mu Q_2.g_2(Q_1^0, Q_2) \subseteq \mu Q_2.g_2(Q_1^1, Q_2)$

Automatic Verification 2009: Model Checking μ -Calculus – 32/46

Complexity Analysis

- In the naive algorithm, the innermost fixpoint requires $O(n^k)$ iterations, where k is the maximum nesting depth of fixpoint operators.
- Solution The number of iterations of Emerson-Lei algorithm is $O((|f| \cdot n)^d)$.
 - |f| is an upper bound on the number of consecutive fixpoints of the same type in f.
 - * The number of iterations for each such sequence is $O(|f| \cdot n)$, each fixpoint requiring at most n iterations.
 - With *d* alternating sequences, we have $O((|f| \cdot n)^d)$ iterations.

Representing Formulae Using OBDDs

- The domain S is encoded by the vector \vec{x} .
- Solution Each atomic proposition p has an OBDD associated with it, denoted $OBDD_p(\vec{x})$.

 $\notin \vec{y} \in \{0,1\}^n$ satisfies $OBDD_p$ iff $p \in L(\vec{y})$.

Solution by Each transition *a* has an OBDD associated with it, denoted $OBDD_a(\vec{x}, \vec{x}')$.

 $(\vec{y}, \vec{z}) \in \{0, 1\}^{2n}$ satisfies $OBDD_a$ iff $(\vec{y}, \vec{z}) \in a$.

Solution The environment is represented by a function *assoc*; $assoc[Q_i]$ gives the OBDD corresponding to the set of states associated with Q_i .

Soc $\langle Q \leftarrow B_Q \rangle$ creates a new association by associating an OBDD B_Q with Q.

Representing Formulae Using OBDDs (cont

The procedure B given below takes a μ-calculus formula f and an association list assoc and returns an OBDD corresponding to the semantics of f.

Representing Formulae Using OBDDs (cont

Function FIX(f, assoc, B_Q)

$$bdd_{result} \leftarrow B_Q;$$

repeat

$$\begin{aligned} bdd_{old} \leftarrow bdd_{result}; \\ bdd_{result} \leftarrow \mathsf{B}(f, assoc\langle Q \leftarrow bdd_{old}\rangle); \\ \textbf{until equal}(bdd_{old}, bdd_{result}); \\ \textbf{return } bdd_{result}; \end{aligned}$$

An example

- Solution Let the state space *S* be encoded by *n* boolean variables x_1, x_2, \ldots, x_n .
- Solution Let $OBDD_q(\vec{x})$ be the interpretation for q.
- The *OBDD* corresponding to the transition *a* is $OBDD_a(\vec{x}, \vec{x}')$.
- Given an association list *assoc* that pairs the *OBDD* $B_Y(\vec{x})$ with *Y*.
- Source the following formula:

$$f = \mu Z \cdot ((q \wedge Y) \vee \langle a \rangle Z)$$

An example (cont.)

In the execution of FIX, bdd_{result} is initially set to:

 $N^0(\vec{x}) = OBDD_{False}.$

At the end of the *i*-th iteration, the value of bdd_{result} is given by:

 $N^{i+1}(\vec{x}) = (OBDD_q(\vec{x}) \land B_Y(\vec{x})) \lor \exists \vec{x}' (OBDD_a(\vec{x}, \vec{x}') \land N^i(\vec{x}')).$

Solution The iteration stops when $N^{i}(\vec{x}) = N^{i+1}(\vec{x})$.

Translating CTL into the μ -Calculus

- Consider systems with just one transition a.
- The algorithm Tr takes as its input a CTL formula and outputs an equivalent µ-calculus formula:

Tr(p) = p
 Tr(¬f) = ¬Tr(f)
 Tr(f \land g) = Tr(f) \land Tr(g)
 Tr(EX f) = \langle a \rangle Tr(f)
 Tr(E[f U g]) =
$$\mu Y.(Tr(g) \lor (Tr(f) \land \langle a \rangle Y))$$
 Tr(EG f) = $\nu Y.(Tr(f) \land \langle a \rangle Y)$

Translating CTL into the μ -Calculus (cont.)

Example:

 $\operatorname{Tr}(\mathsf{EG}(\mathsf{E}[p \ \mathsf{U} \ q])) = \nu Y.(\mu Z.(q \lor (p \land \langle a \rangle Z)) \land \langle a \rangle Y)$

Solutions formula is closed. Any resulting μ -calculus formula is closed.

 \clubsuit We can omit the environment e from the translation.

NP and co-NP

- We will see model checking μ -calculus is in NP \cap co-NP.
- A language L is in NP if there exists a polynomial-time nondeterministic algorithm M such that:
 - * if $x \in L$, then M(x) = "yes" for some computation path, and

***** if $x \notin L$, then M(x) = "no" for all computation paths.

- A language L is in co-NP if there exists a polynomial-time nondeterministic algorithm M such that:
 - ***** if $x \in L$, then M(x) = "yes" for all computation paths, and

♦ if $x \notin L$, then M(x) = "no" for some computation path.

Relations between P, NP, and co-NP

- Current consensus (still open):
 - $\circledast P \neq NP$
 - \circledast NP \neq co-NP
 - $\circledast \mathbf{P} \neq \mathbf{NP} \cap \mathbf{co}\textbf{-NP}$
- If an NP-complete problem is in co-NP, then NP = co-NP.
 - ***** Let $L \in \text{co-NP}$ be NP-complete.
 - **\bullet** Let NTM *M* decide *L*.
 - ***** For any $L' \in NP$, there is a reduction R from L' to L.

 - \circledast Hence NP \subseteq co-NP.
 - ***** The other direction co-NP \subseteq NP is symmetric.

Complexity of Model Checking $\mu\text{-Calculus}$

- Solution Problem: Given a finite model M, a state s, and a μ -calculus formula f, does $M, s \models f$?
- Sest known upper bound for this problem is NP \cap co-NP.

Model Checking $\mu\text{-}Calculus$ is in NP

- Consider the following nondeterministic algorithm.
- Guess the greatest fixpoints, and compute the least fix points by iteration.
- The guess for a greatest fixpoint can be easily checked to see that it is a fixpoint.
- The greatest fixpoint must contain any verified guess.
- By monotonicity, this nondeterministic algorithm computes a subset of the real interpretation of the formula.
- There is a run of the algorithm which calculates the set of states satisfying the µ-calculus formula.
- Consequently, the problem is in NP.

Model Checking $\mu\text{-}Calculus$ is in co-NP

- Solution Recall that co-NP = $\{L \mid \overline{L} \in NP\}$.
- Consider the following nondeterministic algorithm.
- Negate the formula.
- Apply the algorithm in the last page.
- Consequently, the problem is in co-NP.
- Solution Hence, the problem is in NP \cap co-NP.

Open Problem

- Open Problem: Is there a polynomial model checking algorithm for the μ-calculus?
- It is a long standing open problem.
- Sclarke et al. conjecture NO in the book.
- If the problem was NP-complete, then NP = co-NP, which is believed to be unlikely.
- This suggests that it would be very difficult to prove the conjecture.

