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Partial Orders

Let P be a set.

A partial order , or simply order , on P is a binary
relation ≤ on P such that:
1. ∀x ∈ P, x ≤ x, (reflexivity)
2. ∀x, y, z ∈ P, x ≤ y ∧ y ≤ z → x ≤ z, (transitivity)
3. ∀x, y ∈ P, x ≤ y ∧ y ≤ x → x = y. (antisymmetry)

A set P equipped with a partial order ≤, often written as
〈P,≤〉, is called a partially ordered set , or simply
ordered set , sometimes abbreviated as poset .

A binary relation that is reflexive and transitive is called
a pre-order or quasi-order .

We write x < y to mean x ≤ y and x 6= y.
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Examples of Ordered Sets

〈N ,≤〉

N = {1, 2, 3, · · ·}, the set of natural numbers.
≤ is the usual “less than or equal to” relation.

Variant: 〈N0,≤〉 with N0 = N ∪ {0} = {0, 1, 2, 3, · · ·}.

〈P(X),⊆〉

P(X) is the powerset of X, consisting of all subsets
of X.
⊆ is the set inclusion relation.

〈Σ∗,≤〉

Σ∗ is the set of all finite strings over the alphabet Σ.
≤ is the “is a prefix of” relation.
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Order-Isomorphisms

We want to be able to tell when two ordered sets are
essentially the same.

Let 〈P,≤P 〉 and 〈Q,≤Q〉 be two ordered sets.

P and Q are said to be (order-)isomorphic, denoted
P ∼= Q, if there is a map ϕ from P onto Q such that
x ≤P y if and only if ϕ(x) ≤Q ϕ(y).

The map ϕ above is called an order-isomorphism.

For example, N0 and N are order-isomorphic with the
successor function n 7→ n + 1 as the order-isomorphism.

An order-isomorphism is necessarily bijective
(one-to-one and onto). Therefore, an
order-isomorphism ϕ : P → Q has a well-defined inverse
ϕ−1 : Q → P .
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Chains and Antichains

Let P be an ordered set.

P is called a chain if ∀x, y ∈ P, x ≤ y ∨ y ≤ x, i.e., any two
elements in P are comparable.

For example, 〈N ,≤〉 is a chain.

Alternative names for a chain are totally ordered set
and linearly ordered set .

P is called an antichain if ∀x, y ∈ P, x ≤ y → x = y, i.e.,
no two distinct elements in P are ordered.

Clearly, any subset of a chain (an antichain) is a chain
(an antichain).

We write n to denote a chain of n elements and n̄ an
antichain of n elements.
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Sums of Ordered Sets

Let P and Q be two disjoint ordered sets.

The disjoint union P ⊎ Q is defined by x ≤ y in P ⊎ Q if
and only if
1. x, y ∈ P and x ≤ y in P , or
2. x, y ∈ Q and x ≤ y in Q.

The linear sum P ⊕ Q is defined by x ≤ y in P ⊕ Q if and
only if
1. x, y ∈ P and x ≤ y in P , or
2. x, y ∈ Q and x ≤ y in Q, or
3. x ∈ P and y ∈ Q.
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Diagrams for Ordered Sets

All possible ordered sets with three elements:

•

•

•

• •

•

• •

•

•

•
•

• • •

3 2̄ ⊕ 1 1 ⊕ 2̄ 2 ⊎ 1 3̄

〈P({1, 2, 3}),⊆〉:

⊥ = ∅

⊤ = {1, 2, 3}

•

• • •

• • •

•
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Partial Maps

A (total) map or function f from X to Y is a binary
relation on X and Y satisfying the following conditions:
1. (single-valued) For every x ∈ X, there is at most one

y ∈ Y such that (x, y) is related by f .
In other words, if both (x, y1) and (x, y2) are related by
f , then y1 and y2 must be equal.

2. (total) For every x ∈ X, there is at least one y ∈ Y

such that (x, y) is related by f .

A partial map f from X to Y is a single-valued , not
necessarily total, binary relation on X and Y .

Representation of a total or partial map f from X to Y

as a subset of X × Y , or as an element of P(X × Y ), is
called the graph of f , denoted graph(f).
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Partial Maps as an Ordered Set

We write (X −7→ Y ) to denote the set of all partial maps
from X to Y .

For σ, τ ∈ (X −7→ Y ), we define σ ≤ τ if and only if
graph(σ) ⊆ graph(τ).
In other words, σ ≤ τ if and only if whenever σ(x) is
defined, τ(x) is also defined and equals σ(x).

〈(X −7→ Y ),≤〉 is an ordered set.
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Programs as Partial Maps

Two programs P and Q with common sets X and Y

respectively of initial states and final states may be
seen as defining two partial maps σP , σQ : X −7→ Y .

The two programs might be related by σP ≤ σQ,
meaning that

for any input state from which P terminates, Q also
terminates, and
for every case where P terminates, Q produces the
same output as P does.

When σP ≤ σQ does hold, we say P is refined by Q or Q

refines P . (Some prefer the opposite.)

The refinement relation between two programs as
defined is clearly a partial order.
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Dual of an Ordered Set

Given an ordered set P , we can form a new ordered set
P ∂ (the “dual of P ”) by defining x ≤ y to hold in P ∂ if and
only if y ≤ x holds in P .

For a finite P , a diagram for P ∂ can be obtained by
turning upside down a diagram for P :

• • •

•

•
•

• • •

•

•
•

P P ∂
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The Duality Principle

For a statement Φ about ordered sets, its dual
statement Φ∂ is obtained by replacing each occurrence
of ≤ with ≥ and vice versa.

The Duality Principle: Given a statement Φ about
ordered sets that is true for all ordered sets, the dual
statement Φ∂ is also true for all ordered sets.
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Bottom and Top

Let P be an ordered set.

P has a bottom element if there exists ⊥ ∈ P (“bottom”)
such that ⊥ ≤ x for all x ∈ P .

Dually, P has a top element if there exists ⊤ ∈ P (“top”)
such that x ≤ ⊤ for all x ∈ P .

⊥ is unique when it exists; dually, ⊤ is unique when it
exists.

In 〈P(X),⊆〉, we have ⊥ = ∅ and ⊤ = X.

A finite chain always has a bottom and a top elements;
this may not hold for an infinite chain.

Given a bottomless P , we may form P⊥ (P lifted or the
lifting of P ) by P⊥

∆
= 1 ⊕ P .
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Maximal and Minimal Elements

Let P be an ordered set and S ⊆ P .

An element a ∈ S is a maximal element of S if a ≤ x and
x ∈ S imply x = a.

If Q has a top element ⊤Q, it is called the greatest
element (or maximum) of Q.

A minimal element of S and the least element (or
minimum) of S (if it exists) are defined dually.
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Down-sets and Up-sets

Let P be an ordered set and S ⊆ P .

S is a down-set (order ideal) if, whenever x ∈ S, y ∈ P ,
and y ≤ x, we have y ∈ S.

Dually, S is a up-set (order filter) if, whenever x ∈ S,
y ∈ P , and y ≥ x, we have y ∈ S.

Given an arbitrary Q ⊆ P and x ∈ P , we define

↓ Q
∆
= {y ∈ P | ∃x ∈ Q, y ≤ x} (“down Q”),

↑ Q
∆
= {y ∈ P | ∃x ∈ Q, y ≥ x} (“up Q”),

↓ x
∆
= {y ∈ P | y ≤ x}, and

↑ x
∆
= {y ∈ P | y ≥ x}.

↓ Q is the smallest down-set containing Q and Q is a
down-set if and only if Q =↓ Q; dually for ↑ Q.
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Order-Preserving Maps

Let P and Q be ordered sets.

A map ϕ : P → Q is said to be order-preserving (or
monotone) if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in Q.

The composition of two order-preserving maps is also
order-preserving.

A map ϕ : P → Q is said to be an order-embedding
(denoted P →֒ Q) if x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in
Q.
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Upper and Lower Bounds

Let P be an ordered set and S ⊆ P .

An element x ∈ P is an upper bound of S if, for all s ∈ S,
s ≤ x.

Dually, an element x ∈ P is an lower bound of S if, for all
s ∈ S, s ≥ x (or x ≤ s).

The set of all upper bounds of S is denoted by Su (“S
upper”); Su = {x ∈ P | ∀s ∈ S, s ≤ x}.

The set of all lower bounds of S is denoted by Sl (“S
lower”); Sl = {x ∈ P | ∀s ∈ S, s ≥ x}.

By convention, ∅u = P and ∅l = P .

Since ≤ is transitive, Su is an up-set and Sl a down-set.
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Least Upper and Greatest Lower Bounds

Let P be an ordered set and S ⊆ P .

If Su has a least element, it is called the least upper
bound (supremum) of S, denoted sup(S).

Equivalently, x is the least upper bound of S if
x is an upper bound of S, and
for every upper bound y of S, x ≤ y.

Dually, if Sl has a greatest element, it is called the
greatest lower bound (infimum) of S, denoted inf(S).

When P has a top element, P u = {⊤} and sup(P ) = ⊤.
Dually, if P has a bottom element, P l = {⊥} and
inf(P ) = ⊥.

Since ∅u = ∅l = P , sup(∅) exists if P has a bottom
element; dually, inf(∅) exists if P has a top element.
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Join and Meet

We write x ∨ y (“x join y”) in place of sup({x, y}) when it
exists and x ∧ y (“x meet y”) in place of inf({x, y}) when
it exists.

Let P be an ordered set. If x, y ∈ P and x ≤ y, x ∨ y = y

and x ∧ y = x.

In the following two cases, a ∨ b does not exist.

•
a

•
b a b

c d

• •

• •

Analogously, we write
∨

S (the “join of S”) and
∧

S (the
“meet of S”).
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Lattices and Complete Lattices

Let P be a non-empty ordered set.

P is called a lattice if x ∨ y and x ∧ y exist for all x, y ∈ P .

P is called a complete lattice if
∨

S and
∧

S exist for all
S ⊆ P .
Note: as S may be empty, the definition implies that
every complete lattice is bounded, i.e., it has top and
bottom elements.

Every finite lattice is complete.

Automatic Verification 2009: Ordered Sets and Fixpoints – 20/31



IM NTU

Fixpoints

Given an ordered set P and a map F : P → P , an
element x ∈ P is called a fixpoint of F if F (x) = x.

The set of fixpoints of F is denoted fix(F ).

The least element of fix(F ), when it exists, is denoted
µ(F ), and the greatest by ν(F ) if it exists.
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A Fixpoint Theorem for Complete Lattices

The Knaster-Tarski Fixpoint Theorem
Let L be a complete lattice and F : L → L an order-
preserving map. Then,

µ(F ) =
∧
{x ∈ L | F (x) ≤ x}.

Dually, ν(F ) =
∨
{x ∈ L | x ≤ F (x)}.

Let M = {x ∈ L | F (x) ≤ x} and α =
∧

M . We need to
show (1) F (α) = α and (2) for every β ∈ fix(F ), α ≤ β.

For all x ∈ M , α ≤ x and so F (α) ≤ F (x) ≤ x. Thus,
F (α) ∈ M l and hence F (α) ≤ α (=

∧
M ).

F (F (α)) ≤ F (α), implying F (α) ∈ M and so α ≤ F (α).

For every β ∈ fix(F ), β ∈ M and hence α ≤ β.
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Galois Connections

Let P and Q be ordered sets.

A pair (�, �) of maps � : P → Q (“right”) and � : Q → P

(“left”) is a Galois connection between P and Q if, for all
p ∈ P and q ∈ Q,

p� ≤ q ↔ p ≤ q�

The map � is called the lower adjoint of � and the map
� the upper adjoint of �.

Alternatively, (�, �) is a Galois connection between P

and Q if, for all p, p1, p2 ∈ P , q, q1, q2 ∈ Q,
1. p ≤ p�� and q�� ≤ q and
2. p1 ≤ p2 → p1

� ≤ p2
� and q1 ≤ q2 → q1

� ≤ q2
�.
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Chain Conditions

Let P be an ordered set.

P satisfies the ascending chain condition (ACC), if given
any sequence x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · of elements in P ,
there exists k ∈ N such that xk = xk+1 = · · ·.

Dually, P satisfies the descending chain condition
(DCC), if given any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of
elements in P , there exists k ∈ N such that
xk = xk+1 = · · ·.
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Directed Sets

Let S be a non-empty subset of an ordered set.

S is said to be directed if, for every pair of elements
x, y ∈ S there exists z ∈ S such that z ∈ {x, y}u.

S is directed if and only if, for every finite subset F of S,
there exists z ∈ S such that z ∈ F u.

In an ordered set with the ACC, a set is directed if and
only if it has a greatest element.

When D is directed for which
∨

D exists, we write ⊔D in
place of

∨
D.
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Complete Partial Orders (CPO)

An ordered set P is called a Complete Partial Order
(CPO) if
1. P has a bottom element ⊥ and
2. ⊔D exists for each directed subset D of P .

Alternatively, P is a CPO if each chain of P has a least
upper bound in P .

Any complete lattice is a CPO.

For an ordered P satisfying Condition 2 above (called a
pre-CPO), its lifting P⊥ is a CPO.
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Continuous Maps

Let P and Q be CPOs.

A map ϕ : P → Q is said to be continuous if, for every
directed set D in P ,
1. the subset ϕ(D) of Q is directed and
2. ϕ(

⊔
D) =

⊔
ϕ(D).

A continuous map need not preserve bottoms, since by
definition the empty set is not directed.

A map ϕ : P → Q such that ϕ(⊥) = ⊥ is called strict.
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A Fixpoint Theorem for CPOs

The n-fold composite Fn of F : P → P is defined as
follows.
1. F 0 is the identity.
2. Fn = F ◦ Fn−1 for n ≥ 1.

If F is order-preserving, so is Fn.

CPO Fixpoint Theorem I
Let P be a CPO and F : P → P an order-preserving

map. Define α
∆
=

⊔
n≥0 Fn(⊥).

1. If α ∈ fix(F ), then α = µ(F ).

2. If F is continuous, then µ(F ) exists and equals α.
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Proof of CPO Fixpoint Theorem I (1)

⊥ ≤ F (⊥). So, Fn(⊥) ≤ Fn+1(⊥), for all n, inducing a
chain in P:

⊥ ≤ F (⊥) ≤ F 2(⊥) ≤ · · · ≤ Fn(⊥) ≤ Fn+1(⊥) ≤ · · ·

Since P is a CPO, α
∆
=

⊔
n≥0 Fn(⊥) exists.

Let β be any fixpoint of F ; we need to show that α ≤ β.

By induction, Fn(β) = β, for all n.

We have ⊥ ≤ β, hence Fn(⊥) ≤ Fn(β) = β.

The definition of α then ensures α ≤ β.
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Proof of CPO Fixpoint Theorem I (2)

It suffices to show that α ∈ fix(F ).

We have

F (
⊔

n≥0 Fn(⊥)) =
⊔

n≥0 F (Fn(⊥)) (F continuous)

=
⊔

n≥1 Fn(⊥)

=
⊔

n≥0 Fn(⊥) (⊥ ≤ Fn(⊥) for all n)
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Another Fixpoint Theorem for CPOs

CPO Fixpoint Theorem II
Let P be a CPO and F : P → P an order-preserving
map. Then F has a least fixpoint.

Automatic Verification 2009: Ordered Sets and Fixpoints – 31/31


	Partial Orders
	Examples of Ordered Sets
	Order-Isomorphisms
	Chains and Antichains
	Sums of Ordered Sets
	Diagrams for Ordered Sets
	Partial Maps
	Partial Maps as an Ordered Set
	Programs as Partial Maps
	Dual of an Ordered Set
	The Duality Principle
	Bottom and Top
	Maximal and Minimal Elements
	Down-sets and Up-sets
	Order-Preserving Maps
	Upper and Lower Bounds
	Least Upper and Greatest Lower Bounds
	Join and Meet
	Lattices and Complete Lattices
	Fixpoints
	A Fixpoint Theorem for Complete Lattices
	Galois Connections
	Chain Conditions
	Directed Sets
	Complete Partial Orders (CPO)
	Continuous Maps
	A Fixpoint Theorem for CPOs
	Proof of CPO Fixpoint Theorem I (1)
	Proof of CPO Fixpoint Theorem I (2)
	Another Fixpoint Theorem for CPOs

