# Ordered Sets and Fixpoints (Based on [Davey and Priestley 2002])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University



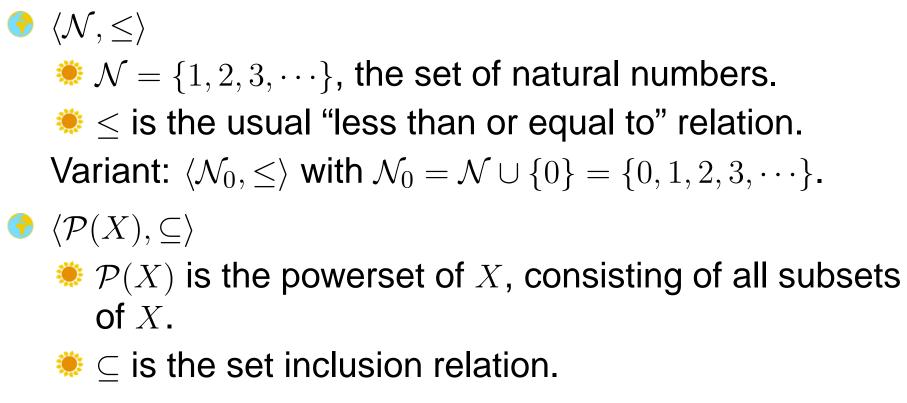
Automatic Verification 2009: Ordered Sets and Fixpoints - 1/31

#### **Partial Orders**

- Let P be a set.
- A partial order, or simply order, on P is a binary relation < on P such that:</p>
  - 1.  $\forall x \in P, x \leq x$ , (reflexivity)
  - **2.**  $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$ , (transitivity)
  - **3.**  $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$ . (antisymmetry)
- Solution A set *P* equipped with a partial order ≤, often written as ⟨*P*, ≤⟩, is called a *partially ordered set*, or simply *ordered set*, sometimes abbreviated as *poset*.
- A binary relation that is reflexive and transitive is called a pre-order or quasi-order.
- We write x < y to mean  $x \le y$  and  $x \ne y$ .



### **Examples of Ordered Sets**



- $\diamondsuit \ \langle \Sigma^*, \leq \rangle$ 
  - $\therefore$   $\Sigma^*$  is the set of all finite strings over the alphabet  $\Sigma$ .
  - $\ll \leq$  is the "is a prefix of" relation.



#### **Order-Isomorphisms**

- We want to be able to tell when two ordered sets are essentially the same.
- Solution Let  $\langle P, \leq_P \rangle$  and  $\langle Q, \leq_Q \rangle$  be two ordered sets.
- *P* and *Q* are said to be (*order*-)*isomorphic*, denoted  $P \cong Q$ , if there is a map  $\varphi$  from *P* onto *Q* such that  $x \leq_P y$  if and only if  $\varphi(x) \leq_Q \varphi(y)$ .
- The map  $\varphi$  above is called an order-isomorphism.
- Solution For example,  $\mathcal{N}_0$  and  $\mathcal{N}$  are order-isomorphic with the successor function  $n \mapsto n+1$  as the order-isomorphism.
- An order-isomorphism is necessarily *bijective* (one-to-one and onto). Therefore, an order-isomorphism  $\varphi: P \to Q$  has a well-defined inverse

## **Chains and Antichains**

- Let P be an ordered set.
- *P* is called a *chain* if  $\forall x, y \in P, x \leq y \lor y \leq x$ , i.e., any two elements in *P* are comparable.
- Solution For example,  $\langle \mathcal{N}, \leq \rangle$  is a chain.
- Alternative names for a chain are totally ordered set and linearly ordered set.
- Clearly, any subset of a chain (an antichain) is a chain (an antichain).
- Solution We write **n** to denote a chain of n elements and  $\overline{\mathbf{n}}$  and antichain of n elements.



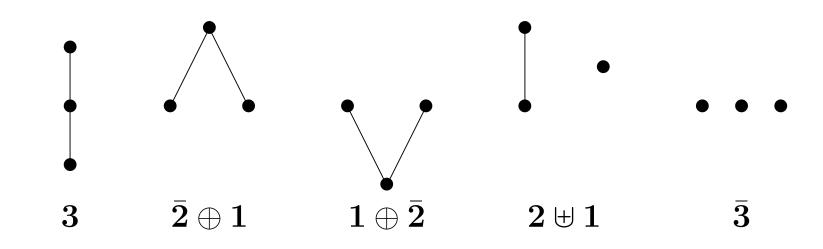
#### **Sums of Ordered Sets**

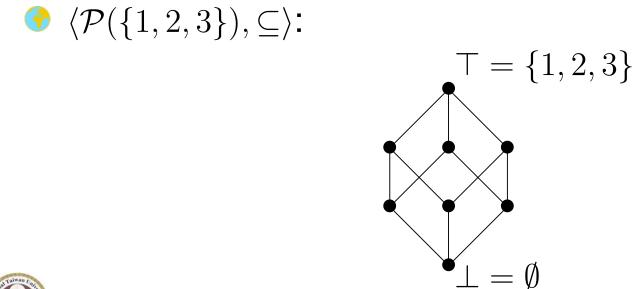
- Solution Let P and Q be two *disjoint* ordered sets.
- The disjoint union  $P \uplus Q$  is defined by  $x \le y$  in  $P \uplus Q$  if and only if
  - 1.  $x, y \in P$  and  $x \leq y$  in P, or
  - **2.**  $x, y \in Q$  and  $x \leq y$  in Q.
- Solution The linear sum  $P \oplus Q$  is defined by  $x \le y$  in  $P \oplus Q$  if and only if
  - **1.**  $x, y \in P$  and  $x \leq y$  in P, or
  - 2.  $x, y \in Q$  and  $x \leq y$  in Q, or
  - **3.**  $x \in P$  and  $y \in Q$ .



### **Diagrams for Ordered Sets**

All possible ordered sets with three elements:







Automatic Verification 2009: Ordered Sets and Fixpoints - 7/31

## **Partial Maps**

- A (total) map or function f from X to Y is a binary relation on X and Y satisfying the following conditions:
  - 1. (single-valued) For every  $x \in X$ , there is at most one  $y \in Y$  such that (x, y) is related by f. In other words, if both  $(x, y_1)$  and  $(x, y_2)$  are related by f, then  $y_1$  and  $y_2$  must be equal.
  - 2. (total) For every  $x \in X$ , there is at least one  $y \in Y$  such that (x, y) is related by f.
- A partial map f from X to Y is a single-valued, not necessarily total, binary relation on X and Y.
- Solution Representation of a total or partial map f from X to Y as a subset of  $X \times Y$ , or as an element of  $\mathcal{P}(X \times Y)$ , is called the *graph* of f, denoted graph(f).



## Partial Maps as an Ordered Set

- We write  $(X \rightarrow Y)$  to denote the set of all partial maps from X to Y.
- For  $\sigma, \tau \in (X \to Y)$ , we define  $\sigma \leq \tau$  if and only if  $\operatorname{graph}(\sigma) \subseteq \operatorname{graph}(\tau)$ . In other words,  $\sigma \leq \tau$  if and only if whenever  $\sigma(x)$  is defined,  $\tau(x)$  is also defined and equals  $\sigma(x)$ .
- $\langle (X \rightarrow Y), \leq \rangle$  is an ordered set.



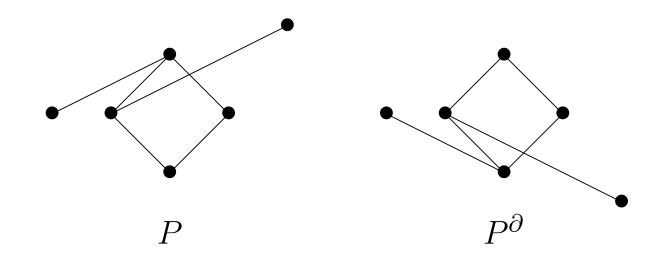
#### **Programs as Partial Maps**

- Two programs *P* and *Q* with common sets *X* and *Y* respectively of *initial* states and *final* states may be seen as defining two partial maps  $\sigma_P, \sigma_Q : X \rightarrow Y$ .
- Solution The two programs might be related by  $\sigma_P \leq \sigma_Q$ , meaning that
  - for any input state from which P terminates, Q also terminates, and
  - for every case where P terminates, Q produces the same output as P does.
- When  $\sigma_P \leq \sigma_Q$  does hold, we say *P* is refined by *Q* or *Q* refines *P*. (Some prefer the opposite.)
- The refinement relation between two programs as defined is clearly a partial order.



### **Dual of an Ordered Set**

- Given an ordered set P, we can form a new ordered set  $P^{\partial}$  (the "dual of P") by defining  $x \leq y$  to hold in  $P^{\partial}$  if and only if  $y \leq x$  holds in P.
- Solution For a finite P, a diagram for  $P^{\partial}$  can be obtained by turning upside down a diagram for P:





## **The Duality Principle**

- For a statement  $\Phi$  about ordered sets, its dual statement  $\Phi^{\partial}$  is obtained by replacing each occurrence of  $\leq$  with  $\geq$  and vice versa.
- Solution The Duality Principle: Given a statement  $\Phi$  about ordered sets that is true for all ordered sets, the dual statement  $\Phi^{\partial}$  is also true for all ordered sets.



## **Bottom and Top**

- Solution Let P be an ordered set.
- P has a bottom element if there exists  $\bot \in P$  ("bottom") such that  $\bot \leq x$  for all  $x \in P$ .
- Solution Dually, *P* has a top element if there exists  $\top \in P$  ("top") such that  $x \leq \top$  for all  $x \in P$ .
- Is unique when it exists; dually, ⊤ is unique when it exists.
- In  $\langle \mathcal{P}(X), \subseteq \rangle$ , we have  $\bot = \emptyset$  and  $\top = X$ .
- A finite chain always has a bottom and a top elements; this may not hold for an infinite chain.
- Given a bottomless P, we may form  $P_{\perp}$  (P lifted or the lifting of P) by  $P_{\perp} \triangleq \mathbf{1} \oplus P$ .



## **Maximal and Minimal Elements**

- Solution Let P be an ordered set and  $S \subseteq P$ .
- An element  $a \in S$  is a *maximal element* of S if  $a \le x$  and  $x \in S$  imply x = a.
- If Q has a top element  $\top_Q$ , it is called the *greatest* element (or *maximum*) of Q.
- A minimal element of S and the least element (or minimum) of S (if it exists) are defined dually.



#### **Down-sets and Up-sets**

- Solution Let P be an ordered set and  $S \subseteq P$ .
- S is a *down-set* (order ideal) if, whenever  $x \in S$ ,  $y \in P$ , and  $y \leq x$ , we have  $y \in S$ .
- Solution Dually, *S* is a *up-set* (order filter) if, whenever  $x \in S$ ,  $y \in P$ , and  $y \ge x$ , we have  $y \in S$ .
- Solution  $\mathbf{A}$  is a strain  $Q \subseteq P$  and  $x \in P$ , we define



### **Order-Preserving Maps**

#### Solution P and Q be ordered sets.

- A map  $\varphi: P \to Q$  is said to be order-preserving (or monotone) if  $x \leq y$  in P implies  $\varphi(x) \leq \varphi(y)$  in Q.
- The composition of two order-preserving maps is also order-preserving.
- A map  $\varphi: P \to Q$  is said to be an order-embedding (denoted  $P \hookrightarrow Q$ ) if  $x \leq y$  in P if and only if  $\varphi(x) \leq \varphi(y)$  in Q.



### **Upper and Lower Bounds**

- Let P be an ordered set and  $S \subseteq P$ .
- An element  $x \in P$  is an *upper bound* of *S* if, for all  $s \in S$ ,  $s \leq x$ .
- Solution Dually, an element  $x \in P$  is an *lower bound* of *S* if, for all  $s \in S$ ,  $s \ge x$  (or  $x \le s$ ).
- The set of all upper bounds of S is denoted by  $S^u$  ("S upper");  $S^u = \{x \in P \mid \forall s \in S, s \leq x\}.$
- The set of all lower bounds of S is denoted by  $S^{l}$  ("S lower");  $S^{l} = \{x \in P \mid \forall s \in S, s \geq x\}.$
- Solution,  $\emptyset^u = P$  and  $\emptyset^l = P$ .
- Since  $\leq$  is transitive,  $S^u$  is an up-set and  $S^l$  a down-set.



## Least Upper and Greatest Lower Bounds

- Solution Let P be an ordered set and  $S \subseteq P$ .
- If  $S^u$  has a least element, it is called the *least upper* bound (supremum) of S, denoted  $\sup(S)$ .
- General Equivalently, x is the least upper bound of S if *i x* is an upper bound of S, and *i y* for every upper bound y of S, x ≤ y.
- Dually, if  $S^l$  has a greatest element, it is called the greatest lower bound (infimum) of S, denoted  $\inf(S)$ .
- Solution When *P* has a top element,  $P^u = \{\top\}$  and  $\sup(P) = \top$ . Dually, if *P* has a bottom element,  $P^l = \{\bot\}$  and  $\inf(P) = \bot$ .

M NT

Since  $\emptyset^u = \emptyset^l = P$ ,  $\sup(\emptyset)$  exists if P has a bottom element; dually,  $\inf(\emptyset)$  exists if P has a top element.

### **Join and Meet**

- Solution We write x ∨ y ("x join y") in place of sup({x,y}) when it exists and x ∧ y ("x meet y") in place of inf({x,y}) when it exists.
- Let *P* be an ordered set. If  $x, y \in P$  and  $x \leq y$ ,  $x \lor y = y$ and  $x \land y = x$ .
- $\bigcirc$  In the following two cases,  $a \lor b$  does not exist.



Analogously, we write  $\lor S$  (the "join of S") and  $\land S$  (the "meet of S").



## **Lattices and Complete Lattices**

- Let P be a non-empty ordered set.
- P is called a *lattice* if  $x \lor y$  and  $x \land y$  exist for all  $x, y \in P$ .
- *P* is called a *complete lattice* if  $\bigvee S$  and  $\bigwedge S$  exist for all  $S \subseteq P$ .

Note: as *S* may be empty, the definition implies that every complete lattice is *bounded*, i.e., it has *top* and *bottom* elements.

Every finite lattice is complete.



## **Fixpoints**

- Given an ordered set *P* and a map  $F : P \to P$ , an element  $x \in P$  is called a *fixpoint* of *F* if F(x) = x.
- The set of fixpoints of F is denoted fix(F).
- The least element of fix(F), when it exists, is denoted  $\mu(F)$ , and the greatest by  $\nu(F)$  if it exists.



## **A Fixpoint Theorem for Complete Lattices**

#### The Knaster-Tarski Fixpoint Theorem

Let *L* be a complete lattice and  $F : L \rightarrow L$  an orderpreserving map. Then,

$$\mu(F) = \bigwedge \{ x \in L \mid F(x) \le x \}.$$

Dually,  $\nu(F) = \bigvee \{x \in L \mid x \leq F(x)\}.$ 

- Let  $M = \{x \in L \mid F(x) \leq x\}$  and  $\alpha = \bigwedge M$ . We need to show (1)  $F(\alpha) = \alpha$  and (2) for every  $\beta \in fix(F)$ ,  $\alpha \leq \beta$ .
- For all  $x \in M$ ,  $\alpha \leq x$  and so  $F(\alpha) \leq F(x) \leq x$ . Thus,  $F(\alpha) \in M^l$  and hence  $F(\alpha) \leq \alpha$  (=  $\land M$ ).

•  $F(F(\alpha)) \leq F(\alpha)$ , implying  $F(\alpha) \in M$  and so  $\alpha \leq F(\alpha)$ .

For every  $\beta \in fix(F)$ ,  $\beta \in M$  and hence  $\alpha \leq \beta$ .

### **Galois Connections**

#### Solution P and Q be ordered sets.

A pair (▷, ⊲) of maps ▷ : P → Q ("right") and ⊲ : Q → P
 ("left") is a Galois connection between P and Q if, for all p ∈ P and q ∈ Q,

$$p^{\rhd} \le q \leftrightarrow p \le q^{\lhd}$$

- The map 
  is called the lower adjoint of 
  and the map 
  the upper adjoint of 
  .
- Solution Alternatively, (▷, ⊲) is a Galois connection between P and Q if, for all p, p<sub>1</sub>, p<sub>2</sub> ∈ P, q, q<sub>1</sub>, q<sub>2</sub> ∈ Q,

1. 
$$p \leq p^{\rhd \lhd}$$
 and  $q^{\lhd \rhd} \leq q$  and

**2.**  $p_1 \le p_2 \to p_1^{\triangleright} \le p_2^{\triangleright}$  and  $q_1 \le q_2 \to q_1^{\triangleleft} \le q_2^{\triangleleft}$ .



## **Chain Conditions**

- Let P be an ordered set.
- Solution P satisfies the ascending chain condition (ACC), if given any sequence  $x_1 \le x_2 \le \cdots \le x_n \le \cdots$  of elements in P, there exists  $k \in N$  such that  $x_k = x_{k+1} = \cdots$ .
- Solution Dually, *P* satisfies the descending chain condition (DCC), if given any sequence  $x_1 \ge x_2 \ge \cdots \ge x_n \ge \cdots$  of elements in *P*, there exists  $k \in N$  such that

 $x_k = x_{k+1} = \cdots$ 



#### **Directed Sets**

- Let S be a non-empty subset of an ordered set.
- S is said to be *directed* if, for every pair of elements  $x, y \in S$  there exists  $z \in S$  such that  $z \in \{x, y\}^u$ .
- S is directed if and only if, for every finite subset F of S, there exists  $z \in S$  such that  $z \in F^u$ .
- In an ordered set with the ACC, a set is directed if and only if it has a greatest element.
- Solution When D is directed for which  $\lor D$  exists, we write  $\sqcup D$  in place of  $\lor D$ .



# **Complete Partial Orders (CPO)**

- An ordered set P is called a Complete Partial Order (CPO) if
  - **1.** *P* has a bottom element  $\perp$  and
  - **2.**  $\Box D$  exists for each directed subset D of P.
- Alternatively, P is a CPO if each chain of P has a least upper bound in P.
- Any complete lattice is a CPO.
- For an ordered *P* satisfying Condition 2 above (called a pre-CPO), its lifting  $P_{\perp}$  is a CPO.



#### **Continuous Maps**

- Let P and Q be CPOs.
- A map  $\varphi: P \rightarrow Q$  is said to be continuous if, for every directed set D in P,
  - 1. the subset  $\varphi(D)$  of Q is directed and
  - **2.**  $\varphi(\bigsqcup D) = \bigsqcup \varphi(D)$ .
- A continuous map need not preserve bottoms, since by definition the empty set is not directed.
- A map  $\varphi: P \to Q$  such that  $\varphi(\bot) = \bot$  is called strict.



## **A Fixpoint Theorem for CPOs**

- Solution The *n*-fold composite  $F^n$  of  $F : P \to P$  is defined as follows.
  - 1.  $F^0$  is the identity.
  - **2.**  $F^n = F \circ F^{n-1}$  for  $n \ge 1$ .

If F is order-preserving, so is  $F^n$ .

**CPO Fixpoint Theorem I** Let *P* be a CPO and *F* : *P*  $\rightarrow$  *P* an *order-preserving* map. Define  $\alpha \triangleq \bigsqcup_{n \ge 0} F^n(\bot)$ . 1. If  $\alpha \in \operatorname{fix}(F)$ , then  $\alpha = \mu(F)$ . 2. If *F* is continuous, then  $\mu(F)$  exists and equals  $\alpha$ .



# Proof of CPO Fixpoint Theorem I (1)

- ◆  $\bot \leq F(\bot)$ . So,  $F^n(\bot) \leq F^{n+1}(\bot)$ , for all *n*, inducing a chain in P:
  - $\perp \leq F(\perp) \leq F^2(\perp) \leq \cdots \leq F^n(\perp) \leq F^{n+1}(\perp) \leq \cdots$
- Since P is a CPO,  $\alpha \triangleq \bigsqcup_{n \ge 0} F^n(\bot)$  exists.
- Solution Let  $\beta$  be any fixpoint of F; we need to show that  $\alpha \leq \beta$ .
- Solution,  $F^n(\beta) = \beta$ , for all n.
- We have  $\bot \leq \beta$ , hence  $F^n(\bot) \leq F^n(\beta) = \beta$ .
- Solution of  $\alpha$  then ensures  $\alpha \leq \beta$ .



# **Proof of CPO Fixpoint Theorem I (2)**

• It suffices to show that  $\alpha \in fix(F)$ .

We have

$$F(\bigsqcup_{n\geq 0} F^{n}(\bot)) = \bigsqcup_{n\geq 0} F(F^{n}(\bot)) \quad (F \text{ continuous})$$
$$= \bigsqcup_{n\geq 1} F^{n}(\bot)$$
$$= \bigsqcup_{n\geq 0} F^{n}(\bot) \quad (\bot \leq F^{n}(\bot) \text{ for all } n)$$



Automatic Verification 2009: Ordered Sets and Fixpoints - 30/31

### **Another Fixpoint Theorem for CPOs**

#### **CPO Fixpoint Theorem II**

Let *P* be a CPO and  $F : P \rightarrow P$  an *order-preserving* map. Then *F* has a least fixpoint.

