Satisfiability Solving and Tools [original created by Chun-Nan Chou]

Chih-Pin Tai

Dept. of Information Management National Taiwan University

May 13, 2009

Outline

- Fundamental concepts
- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

Boolean Satisfiability (SAT)

- Given a Boolean formula (propositional logic formula), find a variable assignment such that the formula evaluates to 1 , or prove that no such assignment exists.
$F=(a \vee b) \wedge(\bar{a} \vee \bar{b} \vee c)$
- For n variables, there are 2^{n} possible truth assignments to be checked.

First established NP-Complete problem.
© S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the Theory of Computing, 1971.

Boolean Formula

- If a is a Boolean variable, a is also a Boolean formula.
- If g and h are Boolean formulas, then so are:
* $(g) \vee(h)$
- $(g) \wedge(h)$
s \bar{g}
- For example:

Variables a and b belong to $\{0,1\}$.
a a is a Boolean formula.
$\bar{a}, a \vee b, a \wedge b$ are Boolean formulas.

Satisfiable and Unsatisfiable

Given a Boolean formula F
e Unsatisfiable: for all assignemts such that $F=0$.
Satisfiable: there exits one assignment such that $F=1$.
e Ex1: $F=a$ is satisfiable.
Ex2: $F=a \wedge b \wedge(\bar{a} \vee \bar{b})$ is unsatisfiable.

Boolean Satisfiability Solvers

- Boolean SAT solvers have been very successful recent years in the verification area.
- Cooperate with BDDs
- Applications: equivalence checking and model checking
e. Applicable even for million-gate designs in EDA
- Most popular ones
e MiniSat (2008 winner)
e http://www.satcompetition.org/

Types of Boolean Satisfiability Solvers

Conjunctive Normal Form (CNF) Based
A Boolean formula is represented as a CNF (i.e. Product of Sum).

* For example:
$(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{a} \vee b \vee \bar{c})$
* To be satisfied, all the clauses should be ' 1 '.
- Circuit-Based

A Boolean formula is represented as a circuit netlist.

* The SAT algorithm is directly operated on the netlist.

CNF

A conjunction of clauses, where a clause is a disjunction of literals.

- For example, a CNF formula: $(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c)$

Variable: a, b, c in this CNF formula.
Literals: a, b, c are literals in $(a \vee b \vee c)$.
Literals: \bar{a}, \bar{b}, c are literals in ($\bar{a} \vee \bar{b} \vee c$).
© Clauses: $(a \vee b \vee c),(\bar{a} \vee \bar{b} \vee c)$ in this CNF formula.

Outline

- Fundamental concepts
- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

CNF-Based SAT Algorithms

Davis-Putnam (DP), 1960.

* Explicit resolution based
\% May explode in memory
Davis-Putnam-Logemann-Loveland (DPLL), 1962.
© Search based
Most successful, basis for almost all modern SAT solvers
- GRASP, 1996
© Conflict driven learning and non-chronological backtracking
- zChaff, 2001.

3oolean constraint propagation (BCP) Algorithm

Davis-Putnam Algorithm

M. Davis, H. Putnam, "A computing procedure for quantification theory", J. of ACM, 1960. (New York Univ.)

- Three satisfiability-preserving (\approx) transformations in DP:

U Unit propagation rule

- Pure literal rule
. Resolutoin rule
- By repeatedly applying these rules, eventually obtain:
e a formula containing an empty clause indicates unsatisfiability or
- a formula with no clauses indicates satisfiability.

Unit Propagation Rule

- Suppose (a) is a unit clause, i.e. a clause contains only one literal.

Remove any instances of \bar{a} from the formula.
. Remove all clauses containing a.

- Example:
(a) $\wedge(\bar{a} \vee b \vee c) \wedge(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c} \vee d)$
$\approx(b \vee c) \wedge(\bar{c} \vee d)$
- $(a) \wedge(a \vee b) \approx$ satisfiable
e $(a) \wedge(\bar{a}) \approx()$ unsatisfiable

Pure Literal Rule

- If a literal appears only positively or only negatively, delete all clauses containing that literal.
Example:
$(\bar{a} \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{b} \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d})$ $\approx(\bar{b} \vee c \vee d)$

Resolution Rule

For a single pair of clauses, $\left(a \vee I_{1} \vee \cdots \vee I_{m}\right)$ and $\left(\bar{a} \vee k_{1} \vee \cdots \vee k_{n}\right)$, resolution on a forms the new clause $\left(I_{1} \vee \cdots \vee I_{m} \vee k_{1} \vee \cdots \vee k_{n}\right)$.

- Example:
$(a \vee b) \wedge(\bar{a} \vee c)$
$\approx(b \vee c)$
- If a is true, then for the formula to be true, c must be true.
- If a is false, then for the formula to be true, b must be true.
- So regardless of a, for the formula to be true, $b \vee c$ must be true.

Resolution Rule (cont.)

Choose a propositional variable p which occurs positively in at least one clause and negatively in at least one other clause.

- Let P be the set of all clauses in which p occurs positively.

Let N be the set of all clauses in which p occurs negatively.
Replace the clauses in P and N with those obtained by resolving each clause in P with each clause in N.

An Example

$$
\begin{aligned}
& (a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{c}) \wedge(d) \\
& \Downarrow \text { Unit Propagation Rule } \\
& (a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c}) \\
& \text { Resolution Rule } \\
& \text { (a) } \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c}) \\
& \Uparrow \text { Unit Progation Rule } \\
& \text { (c) } \wedge(\bar{c}) \\
& \text { Resolution Rule } \\
& \text { () Unsatisfiable }
\end{aligned}
$$

Potential memory explosion problem!

DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", Communications of ACM, 1962. (New York Univ.)
The basic framework for many modern SAT solvers.
Decision Making
U Unit Clause rule

- Implication
e Conflict Detection
- Backtrack

DPLL Algorithm

DPLL Pseudo Code

```
Function DPLL(Ф, A)
```

 \(A \leftarrow\) Unit - Propagation \((\Phi, A)\);
 if \(A\) is inconsistent then
 return UNSAT;
 if \(A\) assigns a value to every variable then
 return SAT;
 \(v \leftarrow\) a variable not assigned a value by \(A\);
 if \(\operatorname{DPLL}(\Phi, A \cup\{v=\) false \(\})=S A T\)
 return \(S A T\);
 else
return $\operatorname{DPLL}(\Phi, A \cup\{v=$ true $\}) ;$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
(a)
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

```
(\overline{a}\veeb\veec)
(a\veec\veed)
(a\veec\vee\overline{d})
(a\vee\overline{c}\veed)
(a\vee\overline{c}\vee\overline{d})
(\overline{b}\vee\overline{c}\veed)
(\overline{a}\veeb\vee\overline{c})
(\overline{a}\vee\overline{b}\veec)
```


Implication Graph

Basic DPLL Procedure - DFS

```
(\overline{a}\veeb\veec)
(a\veec\veed)
(a\veec\vee\overline{d})
(a\vee\overline{c}\veed)
(a\vee\overline{c}\vee\overline{d})
(\overline{b}\vee\overline{c}\veed)
(\overline{a}\veeb\vee\overline{c})
(\overline{a}\vee\overline{b}\veec)
```


Implication Graph

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Implications and Unit Clause Rule

- Implication
* A variable is forced to be True or False based on previous assignments.
- Unit clause rule
- A rule for elimination of one-literal clauses

An unsatisfied clause is a unit clause if it has exactly one unassigned literal.

$$
\begin{gathered}
\qquad(a \vee \bar{b} \vee c) \wedge(b \vee \bar{c}) \wedge(\bar{a} \vee \bar{c}) \\
a=T, b=T, c \text { is unassigned } \\
\text { Satisfied Literal, Unsatisfied Literal, } \\
\text { Unassigned Literal }
\end{gathered}
$$

e. The unassigned literal is implied because of the unit clause.

Boolean Constraint Propagation

Boolean Constraint Propagation (BCP)
a Iteratively apply the unit clause rule until there is no unit clause available.

* a.k.a. Unit Propagation

Workhorse of DPLL based algorithms.

Features of DPLL

- Eliminate the exponential memory requirements of DP
- Exponential time is still a problem

Limited practical applicability - largest use seen in automatic theorem proving
Very limited size of problems are allowed
32K word memory
. Problem size limited by total size of clauses (about 1300 clauses)

GRASP

- Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)
* J. P. Marques-Silva and K. A. Sakallah, "GRASP - A New Search Algorithm for Satisfiability", Proc.ICCAD, 1996.
e J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, 1999.
- Incorporate conflict driven learning and non-chronological backtracking
- Practical SAT problem instances can be solved in reasonable time

SAT Improvements

- Conflict driven learning
. Once we encounter a conflict, figure out the cause(s) of this conflict and prevent to see this conflict again.
Add learned clause (conflict clause) which is the negative proposition of the conflict source.
- Non-chronological backtracking
* After getting a learned clause from the conflict analysis, we backtrack to the "next-to-the-last" variable in the learned clause.
e Instead of backtracking one decision at a time.

Conflict Driven Learning

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Conflict Driven Learning

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$ Learned clause

Non-Chronological Backtracking

```
(\overline{a}\veeb\veec)
(a\veec\veed)
(a\veec\vee\overline{d})
(a\vee\overline{c}\veed)
(a\vee\overline{c}\vee\overline{d})
(\overline{b}\vee\overline{c}\veed)
(\overline{a}\veeb\vee\overline{c})
```



```
\((\bar{a} \vee \bar{b} \vee c)\)
\((a \vee c)\) Learned clause
```

- ' a ' is the next-to-the-last variable in the learned clause.
- Backtrack $c=0$ and $b=0$.

Non-Chronological Backtracking

```
\((\bar{a} \vee b \vee c)\)
\((a \vee c \vee d)\)
\((a \vee c \vee \bar{d})\)
\((a \vee \bar{c} \vee d)\)
\((a \vee \bar{c} \vee \bar{d})\)
\((\bar{b} \vee \bar{c} \vee d)\)
\((\bar{a} \vee b \vee \bar{c})\)
\((\bar{a} \vee \bar{b} \vee c)\)
\((a \vee c)\)
```


Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$
(a) Learned clause

- Since there is only one variable in the learned clause, no one is the next-to-thelast variable.
- Backtrack all decisions

Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$	
$(a \vee c \vee d)$	
$(a \vee c \vee d)$	
	$(a \vee \bar{C} V d)$
$(a \vee \bar{C} V d)$	
$(\bar{b} \vee \bar{c} \vee d)$	
	$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$	
	$(a \vee c)$
(a)	

Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$
(a)

What's the big deal?

- Significantly prune the search space because learned clause is useful forever!
- Useful in generating future conflict clauses.

Search Completeness

With conflict driven learning, SAT search is still guaranteed to be complete.
SAT search becomes a decision stack instead of a binary decision tree.

- When encountering a conflict, the conflict analysis does the following tasks:
- Learned clause
- Indicate where to backtrack
e. Learned implication

SAT Becomes Practical

- Conflict driven learning greatly increases the capacity of SAT solvers (several thousand variables) for structured problems.
- Realistic applications became plausible.
, Usually thousands and even millions of variables
* Typical EDA applications can make use of SAT including circuit verfication, FPGA routing and many other applications

Research direction changes towards more efficient implementations.

zChaff

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik," Chaff: Engineering an Efficient SAT Solver" Proc. DAC 2001. (UC Berkeley, MIT and Princeton Univ.)

- Make the core operations fast.
- After profiling, the most time-consuming parts are Boolean Constraint Propagation (BCP) and Decision.
- As always, good search space pruning (i.e. conflict driven learning) is important.

BCP Algorithm

- When can BCP occur?

All literals in a clause but one are assigned to False.

> The implied cases of $(v 1 \vee v 2 \vee v 3):$ $(0 \vee 0 \vee v 3)$ or $(0 \vee v 2 \vee 0)$ or $(v 1 \vee 0 \vee 0)$
e For an N-literal clause, this can only occur after $N-1$ of the literals have been assigned to False.

- So, (theoretically) we could completely ignore the first $N-2$ assignments to this clause.
e In reality, we pick two literals in each clause to "watch" and thus can ignore any assignments to the other literals in the clause.

BCP Algorithm

- Heuristically start with watching two unassigned literals in each clause.
- When one of the two watched literals is assigned True, this clause becomes True.
- When one of the two watched literals is assigned False, we send the clause into an Update-Watch queue to do :
e 1.updating (another unassigned literal exists)
2.BCP(only one watched literal unassigned)
e 3.conflict (all literals are False)

BCP Algorithm

- Let's illustrate this with an example:
e Green: watched literal
- Initially, we identify any two literals in each clause as the watched ones.
Clauses of size one are a special case.

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \frac{v 1}{v 1} \stackrel{v 4}{v 1} \quad \text { Detect unit clause }
\end{aligned}
$$

BCP Algorithm

We begin by processing the assignemt $v 1=F$ (which is implied by the size one clause)

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$ Pending :

BCP Algorithm

Examine each clause where the assignment being processed has set a watched literal to F.

$$
\begin{array}{ll}
& \quad v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
\Rightarrow & v 1 \vee v 2 \vee \overline{v 3} \\
\Rightarrow & \frac{v 1 \vee \overline{v 2}}{} \\
& v 1 \vee v 4
\end{array}
$$

State: $(v 1=F)$ Pending :

BCP Algorithm

- We need not process clauses where a watched literal has been set to T, because the clause is now satisfied and so can not become unit.

$$
\begin{aligned}
& \quad v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& \quad v 1 \vee v 2 \vee \overline{v 3} \\
& \Rightarrow \quad \\
& \quad \overline{v 1} \vee \overline{v 2} \\
& \\
& v 1 \\
& v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

We certainly need not process any clauses where neither watched literal changes state (in this example, where $v 1$ is not watched).

$$
\begin{aligned}
& \Rightarrow \quad v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$ Pending :

BCP Algorithm

Now let's actually process the second and third clauses:

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

For the second clause, we replace $v 1$ with $\overline{v 3}$ as a new watched literal because $\overline{v 3}$ is not assigned to F.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} \\
\overline{v 1} \vee v 4
\end{array} \Longrightarrow \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& \frac{v 1 \vee \overline{v 2}}{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
State: $(v 1=F)$
Pending :

BCP Algorithm

The third clause is unit. We record the new implication of $\overline{v 2}$, and add it to the queue of assignments to process.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee \vee 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} & \Longrightarrow
\end{array} \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 4 \\
& \text { State }:(v 1=F) \\
& \text { Pending }:
\end{aligned}
$$

BCP Algorithm

- Next, we process $\overline{v 2}$. We only examine the first two clauses.
* For the first clause, we replace $v 2$ with $v 4$ as a new watched literal since $v 4$ is not assigned to F.
The second clause is unit. We record the new implication of $\overline{v 3}$, and add it to the queue of assignments to process.

\[

\]

BCP Algorithm

Next, we process $\overline{v 3}$. We only examine the first clause.

* For the first clause, we replace $v 3$ with $v 5$ as a new watched literal since $v 5$ is not assigned to F.
- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Both $v 4$ and $v 5$ are unassigned. Let's say we decide to assign $v 4=T$ and proceed.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} & \\
\overline{v 1} \vee v 4 & \\
& v 1 \vee v 2 \vee v 1 \vee v 4 \vee v 5 \\
\text { State }:(v 1=F, v 2=F, v 3=F) & \frac{v 1 \vee \overline{v 2}}{v 1 \vee v 4} \\
\text { Pending : } & \text { State }:(v 1=F, v 2=F, v 3= \\
& \text { Pending : }
\end{array}
$$

BCP Algorithm

- Next, we process $v 4$. We do nothing at all.
- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Only v5 is unassigned. Let's say we decide to assign $v 5=F$ and proceed.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} & \Longrightarrow
\end{array} \quad \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 4 \\
& \\
& \\
& \text { State }:(v 1=F, v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& v 4=F) \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

BCP Algorithm

Next, we process $v 5=F$. We examine the first clause.
\% The first clause is already satisfied by $v 4$ so we ignore it.

- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. No variables are unassigned, so the instance is SAT, and we are done.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} & \Longrightarrow
\end{array} \quad \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 4 \\
& \\
& \\
& \text { State }:(v 1=F, v 2 \vee \overline{v 3} \\
& v 4 \vee \overline{v 2} \\
& v 4=F, v 5=F)
\end{aligned} \quad \begin{aligned}
& \overline{v 1} \vee v 4
\end{aligned}
$$

BCP Algorithm Summary

During forward progress: Decisions and Implications

- Only need to examine clauses where watched literal is set to F
- Can ignore any assignments of literals to T
. Can ignore any assignments to non-watched literals
During backtrack: Unwind Assignment Stack
, No action is required at all to unassign variables
Qut it is compute-intensive part in SATO
- Overall minimize clause access

The Timeline of the SAT Solver

Outline

- Fundamental concepts
- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

Make Decision

Beause we want to prove that the target Boolean formula is satisfiable or not, we should start with guessing the state (true or false) of a variable until the proof is done.
Random

- Dynamic largest individual sum (DLIS)
- Variable State Independent Decaying Sum (VSIDS)
© BerkMin

RAND and DLIS

- Random

Simply select the next decision randomly from among the unassigned variables and its value.

- Dynamic largest individual sum (DLIS)

Simple and intuitive: At each decision simply choose the assignment that satisfies the most unsatisfied clauses.
3. However, considerable work is required to maintain the statistics necessary for this heuristic.

* The total effort required for this and similar decision heuristics is much more than for the BCP algorithm in zChaff.

VSIDS

- Variable State Independent Decaying Sum (VSIDS)

Each variable in each polarity has a counter which is initialized to zero.
When a new clause is added to the database, the counter associated with each literal in this clause is incremented.

* The (unassigned) variable and polarity with the highest counter is chosen at each decision.
- Ties are broken randomly by default configuration.
* Periodically, all the counters are divided by a constant.

VSIDS

VSIDS attempts to satisfy the conflict clauses but particularly attempts to satisfy recent learned clauses.

- Difficult problems generate many conflicts (and therefore many conflict clauses), the conflict clauses dominate the problem in terms of literal count.
Since it is independent of the variable state, it has very low overhead.
The average rum time overhead in zChaff:
- BCP: about 80\%
© Decision: about 10\%
. Conflict analysis: about 10\%

BerkMin

E. Goldberg, and Y. Novikov, "BerkMin: A Fast and Robust Sat-Solver", Proc. DATE 2002. (Cadence Berkeley Labs and Academy of Sciences in Belarus)
BerkMin tries to satisfy the most recent clause.

- The clause database is organized as a stack.

The clauses of the original Boolean formula are located at the bottom of the stack and each new conflict clause is added to the top of the stack.
The current top clause is the an unsatisfied clause which is the closet to the top of the stack.

- When making decision, choose the most active unassigned variable in the current top clause by using VSIDS.

Outline

- Fundamental concepts
- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

Restart Motivation

- Best time to restart: when algorithm spends too much time under a wrong branch

Restart

- Motivation: avoid spending too much time in "bad" branches.

3o no easy-to-find satisfying assignment
no opportunity for fast learning of strong clauses.

- All modern SAT solvers use a restart policy.

Following various criteria, the solver is forced to backtrack to level 0.

* Abandon the current search tree and reconstruct a new one.
. The clauses learned prior to the restart are still there after the restart and can help pruning the search space.
- Restarts have crucial impact on performance.
\% Helps reduce variance - adds to robustness in the solver.

The basic measure for restarts

All existing techniques use the number of conflicts learned as of the previous restart.

The difference is only in the method of calculating the threshold.

Restarts strategies

Arithmetic (or fixed) series.
e Parameters: x, y
e $\operatorname{Init}(t)=x$
e $\operatorname{Next}(t)=t+y$

- Used in:

Berkmin $(550,0)$
e Eureka $(2000,0)$

- Zchaff $2004(700,0)$
, Siege $(16000,0)$

Restart Strategies

- Geometric series.
e Parameters: x, y
- $\operatorname{Init}(t)=x$
(3ext $(t)=t * y$

- Used in

Minisat 2007 (100, 1.5)

Restart Strategies

- Inner-Outer Geometric series.
e Parameters: x, y, z
e $\operatorname{Init}(t)=x$
e if $(t * y<z)$
$\operatorname{Next}(t)=t * y$
else

$$
\begin{aligned}
& \operatorname{Next}(t)=x \\
& \operatorname{Next}(z)=z * y
\end{aligned}
$$

- Used in
e Picosat (100, 1.1, 1000)

Outline

- Fundamental concepts
- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

SAT competitions

- The international SAT Competitions http://www.satcompetition.org/
- SAT Race
http://baldur.iti.uka.de/sat-race-2008/

SAT 2007 competition

- Industrial
e SAT + UNSAT: Rsat > Picosat > Minisat
SAT: Picosat $>$ Rsat $>$ Minisat
UNSAT: Rsat > Minisat > TiniSatELite
- Handmade

SAT + UNSAT: SATzilla CRAFTED > Minisat > MXC

- SAT: March KS > SATzilla CRAFTED > Minisat
e UNSAT: SATzilla > TTS > Minisat
- Random
e SAT + UNSAT: SATzilla RANDOM > March KS > KCNFS 2004
SAT: gnovelty $+>$ adaptg2wsat0 $>$ adaptg2wsat +
e UNSAT: March KS > KCNFS 2004 > SATzilla RANDOM

SAT-Race 2008

- The Race
. The Race itself will take place during or shortly before the SAT'08 conference.
Each solver will have to process 100 SAT instances.
- Per SAT instance and solver a run-time limit of 15 minutes will be imposed.
- Execution Environment

Operating System: Scientific Linux 2.6.18, both 32-bit and 64-bit executables supported.
e Processor(s): $2 \times$ Dual-Core Intel Xeon 5150, 2.66GHz.
. Memory: 8 GB (7 GB memory limit for solver processes enforced).

- Cache: 4 MB L2 (shared).
© Compilers: GCC 4.1.1, javac 1.5.0_11.

SAT-Race 2008

Results: MiniSat 2.1 ¿ pMiniSat ¿ Barcelogic

Outline

Fundamental concepts

- Algorithms for satisfiability problems
- Decision heuristics
- Restart
- SAT competitions

A satisfiability example using MiniSat

The usage of the MiniSat

Use MiniSat to find a solution to $F=\left(x_{0} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$.

Hamiltonian Cycle

- Hamiltonian cycle, also called a Hamiltonian circuit, is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once.

Encoding

- Encode the Hamiltonian cycle problem into SAT problem by the following way:

Assume that there is a path of length n which is the number of nodes.
e. And each Boolean variables $x_{i, j}$ represent the $i_{t h}$ node in the $j_{t h}$ position of this path.

* So there are n^{2} Boolean variables in SAT problem by this encoding method.

Add Constraint Clauses

First constraints: Each node only exist one position of this path.
Second constraints: Each position of this path contains only one node.

- Third constraints: Two consecutive nodes are connected by an edge.

First Constraints

- Each node only exist one position of this path

Each node is in the path:

$$
\left(x_{i, 0} \vee x_{i, 1} \vee \cdots \vee x_{i, n-1}\right), \text { where } 0 \leq i \leq n-1
$$

Each node has only position (one hot):

$$
\begin{aligned}
& \left(\overline{x_{i, 0}} \vee \overline{x_{i, 1}}\right) \wedge\left(\overline{x_{i, 0}} \vee \overline{x_{i, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, 0}} \vee \overline{x_{i, n-1}}\right) \wedge\left(\overline{\overline{x_{i, 1}}} \vee \overline{x_{i, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, j}} \vee \overline{x_{i, k}}\right) \wedge \ldots \\
& \text { where } 0 \leq i \leq n-1,0 \leq j \leq n-2, j+1 \leq k \leq n+1
\end{aligned}
$$

Second Constraints

Each position of this path contains only one node
Each position contains nodes:

$$
\left(x_{0, i} \vee x_{1, i} \vee \cdots \vee x_{n-1, i}\right), \text { where } 0 \leq i \leq n-1
$$

- Each position contains only one node (one hot):

$$
\begin{aligned}
& \left(\overline{x_{0, i}} \vee \overline{x_{1, i}}\right) \wedge\left(\overline{x_{0, i}} \vee \overline{x_{2, i}}\right) \wedge \ldots \\
& \left(\overline{x_{0, i}} \vee \overline{x_{n-1, i}}\right) \wedge\left(\overline{x_{1, i}} \vee \overline{x_{2, i}}\right) \wedge \ldots \\
& \left(\overline{x_{j, i}} \vee \overline{x_{k, i}}\right) \wedge \ldots \\
& \text { where } 0 \leq i \leq n-1,0 \leq j \leq n-2, j+1 \leq k \leq n+1
\end{aligned}
$$

Third Constraints

- Two consecutive nodes are connected by an edge
e There is an edge between the $i_{t h}$ node and the $j_{t h}$ node:

> Don't add constraint clauses into solver.
. There are no edge between the $i_{t h}$ node and the $j_{t h}$ node:

$$
\begin{aligned}
& \left(\overline{x_{i, 0}} \vee \overline{x_{j, 1}}\right) \wedge\left(\overline{x_{i, 1}} \vee \overline{x_{j, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, n-2}} \vee \overline{x_{j, n-1}}\right) \\
& \text { where } 0 \leq i \leq n-1, \quad 0 \leq j \leq n-1, \text { and } i \neq j
\end{aligned}
$$

