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Boolean Satisfiability (SAT)

Given a Boolean formula (propositional logic formula), find a variable
assignment such that the formula evaluates to 1, or prove that no
such assignment exists.

F = (a ∨ b) ∧ (ā ∨ b̄ ∨ c)

For n variables, there are 2n possible truth assignments to be checked.variables, there are 2 possible truth assignments to be 

First established NP-Complete problem.
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First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures,
Proceedings, Third Annual ACM Symp. on the Theory of Computing,

1971.
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Boolean Formula

If a is a Boolean variable, a is also a Boolean formula.

If g and h are Boolean formulas, then so are:

(g) ∨ (h)
(g) ∧ (h)
ḡ

For example:

Variables a and b belong to {0,1}.
a is a Boolean formula.
ā, a ∨ b, a ∧ b are Boolean formulas.
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Satisfiable and Unsatisfiable

Given a Boolean formula F

Unsatisfiable: for all assignemts such that F = 0.
Satisfiable: there exits one assignment such that F = 1.
Ex1: F = a is satisfiable.
Ex2: F = a ∧ b ∧ (ā ∨ b̄) is unsatisfiable.
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Boolean Satisfiability Solvers

Boolean SAT solvers have been very successful recent years in the
verification area.

Cooperate with BDDs
Applications: equivalence checking and model checking
Applicable even for million-gate designs in EDA

Most popular ones

MiniSat (2008 winner)
http://www.satcompetition.org/
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Types of Boolean Satisfiability Solvers

Conjunctive Normal Form (CNF) Based

A Boolean formula is represented as a CNF (i.e. Product of Sum).
For example:
(a ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c) ∧ (ā ∨ b ∨ c̄)
To be satisfied, all the clauses should be ‘1’.

Circuit-Based

A Boolean formula is represented as a circuit netlist.
The SAT algorithm is directly operated on the netlist.
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CNF

A conjunction of clauses, where a clause is a disjunction of literals.

For example, a CNF formula: (a ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c)

Variable: a, b, c in this CNF formula.
Literals: a, b, c are literals in (a ∨ b ∨ c).
Literals: ā, b̄, c are literals in (ā ∨ b̄ ∨ c).
Clauses: (a ∨ b ∨ c), (ā ∨ b̄ ∨ c) in this CNF formula.
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CNF-Based SAT Algorithms

Davis-Putnam (DP), 1960.

Explicit resolution based
May explode in memory

Davis-Putnam-Logemann-Loveland (DPLL), 1962.

Search based
Most successful, basis for almost all modern SAT solvers

GRASP, 1996

Conflict driven learning and non-chronological backtracking

zChaff, 2001.

Boolean constraint propagation (BCP) Algorithm
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Davis-Putnam Algorithm

M. Davis, H. Putnam, “A computing procedure for quantification
theory”, J. of ACM, 1960. (New York Univ.)

Three satisfiability-preserving (≈) transformations in DP:

Unit propagation rule
Pure literal rule
Resolutoin rule

By repeatedly applying these rules, eventually obtain:

a formula containing an empty clause indicates unsatisfiability or
a formula with no clauses indicates satisfiability.
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Unit Propagation Rule

Suppose (a) is a unit clause, i.e. a clause contains only one literal.

Remove any instances of ā from the formula.
Remove all clauses containing a.

Example:

(a) ∧ (ā ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄ ∨ d)
≈ (b ∨ c) ∧ (c̄ ∨ d)
(a) ∧ (a ∨ b) ≈ satisfiable

(a) ∧ (ā) ≈ ( ) unsatisfiable
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Pure Literal Rule

If a literal appears only positively or only negatively, delete all clauses
containing that literal.

Example:
(ā ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c) ∧ (b̄ ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄)
≈ (b̄ ∨ c ∨ d)
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Resolution Rule

For a single pair of clauses, (a ∨ l1 ∨ · · · ∨ lm) and (ā ∨ k1 ∨ · · · ∨ kn),
resolution on a forms the new clause (l1 ∨ · · · ∨ lm ∨ k1 ∨ · · · ∨ kn).

Example:
(a ∨ b) ∧ (ā ∨ c)
≈ (b ∨ c)

If a is true, then for the formula to be true, c must be true.

If a is false, then for the formula to be true, b must be true.

So regardless of a, for the formula to be true, b ∨ c must be true.
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Resolution Rule (cont.)

Choose a propositional variable p which occurs positively in at least
one clause and negatively in at least one other clause.

Let P be the set of all clauses in which p occurs positively.

Let N be the set of all clauses in which p occurs negatively.

Replace the clauses in P and N with those obtained by resolving each
clause in P with each clause in N.
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An Example

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (c ∨ d) ∧ (ā ∨ c̄) ∧ (d)

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(a) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(c) ∧ (c̄)

( )

KS
Unit Propagation Rule

��

%%KKK
KK

K
Resolution Rule

zzvvvvv

KS
Unit Progation Rule

��

��?
??

??
Resolution Rule

����
��

�

Unsatisfiable

Potential memory explosion problem!
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DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving”, Communications of ACM, 1962. (New York
Univ.)

The basic framework for many modern SAT solvers.

Decision Making
Unit Clause rule
Implication
Conflict Detection
Backtrack
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DPLL Algorithm

DPLL Pseudo Code

Function DPLL(Φ, A)

A ← Unit − Propagation(Φ, A);

if A is inconsistent then

return UNSAT;

if A assigns a value to every variable then

return SAT;

v ← a variable not assigned a value by A;

if DPLL(Φ, A ∪ { v = false }) = SAT

return SAT;

else

return DPLL(Φ, A ∪ { v = true });
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)

(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

'&%$ !"#a
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Basic DPLL Procedure - DFS
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(ā ∨ b̄ ∨ c)
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(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
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(ā ∨ b ∨ c̄)
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(ā ∨ b̄ ∨ c)

Implication Graph

'&%$ !"#a

/.-,()*+b

0

zztttttttt

'&%$ !"#c

0

����
��

��

⊥

0
����
��

⊥

1
��/

//
/

'&%$ !"#c

1⇐Forced Decision

��?
??

??
?

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 28 / 98



Basic DPLL Procedure - DFS
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(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
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Implications and Unit Clause Rule

Implication

A variable is forced to be True or False based on previous assignments.

Unit clause rule

A rule for elimination of one-literal clauses
An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

(a ∨ b̄ ∨ c) ∧ (b ∨ c̄) ∧ (ā ∨ c̄)

a = T , b = T , c is unassigned

Satisfied Literal , Unsatisfied Literal ,

Unassigned Literal

The unassigned literal is implied because of the unit clause.
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Boolean Constraint Propagation

Boolean Constraint Propagation (BCP)

Iteratively apply the unit clause rule until there is no unit clause
available.
a.k.a. Unit Propagation

Workhorse of DPLL based algorithms.
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Features of DPLL

Eliminate the exponential memory requirements of DP

Exponential time is still a problem

Limited practical applicability - largest use seen in automatic theorem
proving

Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (about 1300 clauses)
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GRASP

Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)

J. P. Marques-Silva and K. A. Sakallah, ”GRASP – A New Search
Algorithm for Satisfiability”, Proc.ICCAD, 1996.
J. P. Marques-Silva and Karem A. Sakallah, ”GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Trans. Computers,

1999.

Incorporate conflict driven learning and non-chronological
backtracking

Practical SAT problem instances can be solved in reasonable time
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SAT Improvements

Conflict driven learning

Once we encounter a conflict, figure out the cause(s) of this conflict
and prevent to see this conflict again.
Add learned clause (conflict clause) which is the negative proposition of
the conflict source.

Non-chronological backtracking

After getting a learned clause from the conflict analysis, we backtrack
to the “next-to-the-last” variable in the learned clause.
Instead of backtracking one decision at a time.
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Conflict Driven Learning
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Conflict Driven Learning
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)
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⇐ Backtrack

‘a’ is the next-to-the-last variable in the learned clause.

Backtrack c=0 and b=0.
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Non-Chronological Backtracking

(ā ∨ b ∨ c)
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)

(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a) Learned clause

Since there is only one variable in the learned clause, no one is the
next-to-thelast variable.

Backtrack all decisions
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Non-Chronological Backtracking
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Non-Chronological Backtracking
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What’s the big deal?

Significantly prune the search space because learned clause is useful
forever!

Useful in generating future conflict clauses.

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’
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Search Completeness

With conflict driven learning, SAT search is still guaranteed to be
complete.

SAT search becomes a decision stack instead of a binary decision tree.

When encountering a conflict, the conflict analysis does the following
tasks:

Learned clause
Indicate where to backtrack
Learned implication
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SAT Becomes Practical

Conflict driven learning greatly increases the capacity of SAT solvers
(several thousand variables) for structured problems.

Realistic applications became plausible.

Usually thousands and even millions of variables
Typical EDA applications can make use of SAT including circuit
verfication, FPGA routing and many other applications

Research direction changes towards more efficient implementations.
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zChaff

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,”Chaff:
Engineering an Efficient SAT Solver” Proc. DAC 2001. (UC Berkeley,
MIT and Princeton Univ.)

Make the core operations fast.

After profiling, the most time-consuming parts are Boolean Constraint
Propagation (BCP) and Decision.

As always, good search space pruning (i.e. conflict driven learning) is
important.
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BCP Algorithm

When can BCP occur ?

All literals in a clause but one are assigned to False.

The implied cases of (v1 ∨ v2 ∨ v3) :

(0 ∨ 0 ∨ v3) or (0 ∨ v2 ∨ 0) or (v1 ∨ 0 ∨ 0)

For an N-literal clause, this can only occur after N − 1 of the literals
have been assigned to False.
So, (theoretically) we could completely ignore the first N − 2
assignments to this clause.
In reality, we pick two literals in each clause to ”watch” and thus can
ignore any assignments to the other literals in the clause.

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 57 / 98



BCP Algorithm

Heuristically start with watching two unassigned literals in each
clause.

When one of the two watched literals is assigned True, this clause
becomes True.

When one of the two watched literals is assigned False, we send the
clause into an Update-Watch queue to do :

1.updating (another unassigned literal exists)
2.BCP(only one watched literal unassigned)
3.conflict (all literals are False)
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BCP Algorithm

Let’s illustrate this with an example:

Green: watched literal

Initially, we identify any two literals in each clause as the watched
ones.

Clauses of size one are a special case.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v1 Detect unit clauseoo
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BCP Algorithm

We begin by processing the assignemt v1 = F (which is implied by
the size one clause)

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :
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BCP Algorithm

Examine each clause where the assignment being processed has set a
watched literal to F.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :

+3

+3
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BCP Algorithm

We need not process clauses where a watched literal has been set to
T , because the clause is now satisfied and so can not become unit.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :

+3
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BCP Algorithm

We certainly need not process any clauses where neither watched
literal changes state (in this example, where v1 is not watched).

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :

+3
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BCP Algorithm

Now let’s actually process the second and third clauses:

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :
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BCP Algorithm

For the second clause, we replace v1 with v3 as a new watched literal
because v3 is not assigned to F .

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :

State : (v1 = F )

Pending :

+3
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BCP Algorithm

The third clause is unit. We record the new implication of v2, and
add it to the queue of assignments to process.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F )

Pending :

State : (v1 = F )

Pending : (v2 = F )

+3
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BCP Algorithm

Next, we process v2. We only examine the first two clauses.

For the first clause, we replace v2 with v4 as a new watched literal
since v4 is not assigned to F .
The second clause is unit. We record the new implication of v3, and
add it to the queue of assignments to process.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F , v2 = F )

Pending :

State : (v1 = F , v2 = F )

Pending : (v3 = F )

+3
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BCP Algorithm

Next, we process v3. We only examine the first clause.

For the first clause, we replace v3 with v5 as a new watched literal
since v5 is not assigned to F .
Since there are no pending assignments, and no conflict, BCP
terminates and we make a decision. Both v4 and v5 are unassigned.
Let’s say we decide to assign v4 = T and proceed.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F , v2 = F , v3 = F )

Pending :

State : (v1 = F , v2 = F , v3 =

Pending :

+3
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BCP Algorithm

Next, we process v4. We do nothing at all.

Since there are no pending assignments, and no conflict, BCP
terminates and we make a decision. Only v5 is unassigned. Let’s say
we decide to assign v5 = F and proceed.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F , v2 = F , v3 = F ,

v4 = F )

State : (v1 = F , v2 = F , v3 =

v4 = F )

+3
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BCP Algorithm

Next, we process v5 = F . We examine the first clause.

The first clause is already satisfied by v4 so we ignore it.
Since there are no pending assignments, and no conflict, BCP
terminates and we make a decision. No variables are unassigned, so the
instance is SAT, and we are done.

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v3

v1 ∨ v2

v1 ∨ v4

State : (v1 = F , v2 = F , v3 = F ,

v4 = F , v5 = F )

State : (v1 = F , v2 = F , v3 =

v4 = F , v5 = F )

+3
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BCP Algorithm Summary

During forward progress: Decisions and Implications

Only need to examine clauses where watched literal is set to F
Can ignore any assignments of literals to T
Can ignore any assignments to non-watched literals

During backtrack: Unwind Assignment Stack

No action is required at all to unassign variables
But it is compute-intensive part in SATO

Overall minimize clause access
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The Timeline of the SAT Solver

2001
Chaff
10k var

1986
BDDs
100 var

1992
GSAT
300 var

1996
Stålmarck

1000 var

1996
GRASP

1k var

1960
DP

10 var

1988
SOCRATES

3k var

1994
Hannibal

3k var

1962
DLL
10 var

1952
Quine
10 var

1996
SATO
1k var

2002
Berkmin
10k var
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Outline

Fundamental concepts

Algorithms for satisfiability problems

Decision heuristics

Restart

SAT competitions

A satisfiability example using MiniSat
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Make Decision

Beause we want to prove that the target Boolean formula is
satisfiable or not, we should start with guessing the state (true or
false) of a variable until the proof is done.

Random
Dynamic largest individual sum (DLIS)
Variable State Independent Decaying Sum (VSIDS)
BerkMin
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RAND and DLIS

Random

Simply select the next decision randomly from among the unassigned
variables and its value.

Dynamic largest individual sum (DLIS)

Simple and intuitive: At each decision simply choose the assignment
that satisfies the most unsatisfied clauses.
However, considerable work is required to maintain the statistics
necessary for this heuristic.
The total effort required for this and similar decision heuristics is much
more than for the BCP algorithm in zChaff.
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VSIDS

Variable State Independent Decaying Sum (VSIDS)

Each variable in each polarity has a counter which is initialized to zero.
When a new clause is added to the database, the counter associated
with each literal in this clause is incremented.
The (unassigned) variable and polarity with the highest counter is
chosen at each decision.
Ties are broken randomly by default configuration.
Periodically, all the counters are divided by a constant.
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VSIDS

VSIDS attempts to satisfy the conflict clauses but particularly
attempts to satisfy recent learned clauses.

Difficult problems generate many conflicts (and therefore many
conflict clauses), the conflict clauses dominate the problem in terms
of literal count.

Since it is independent of the variable state, it has very low overhead.

The average rum time overhead in zChaff:

BCP: about 80%
Decision: about 10%
Conflict analysis: about 10%
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BerkMin

E. Goldberg, and Y. Novikov, ”BerkMin: A Fast and Robust
Sat-Solver”, Proc. DATE 2002. (Cadence Berkeley Labs and
Academy of Sciences in Belarus)

BerkMin tries to satisfy the most recent clause.

The clause database is organized as a stack.

The clauses of the original Boolean formula are located at the bottom
of the stack and each new conflict clause is added to the top of the
stack.

The current top clause is the an unsatisfied clause which is the closet
to the top of the stack.

When making decision, choose the most active unassigned variable in
the current top clause by using VSIDS.
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Outline

Fundamental concepts

Algorithms for satisfiability problems

Decision heuristics

Restart

SAT competitions
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Restart Motivation

Best time to restart: when algorithm spends too much time under a
wrong branch
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Restart

Motivation: avoid spending too much time in “bad” branches.

no easy-to-find satisfying assignment
no opportunity for fast learning of strong clauses.

All modern SAT solvers use a restart policy.

Following various criteria, the solver is forced to backtrack to level 0.
Abandon the current search tree and reconstruct a new one.
The clauses learned prior to the restart are still there after the restart
and can help pruning the search space.

Restarts have crucial impact on performance.

Helps reduce variance - adds to robustness in the solver.

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 81 / 98



The basic measure for restarts

All existing techniques use the number of conflicts learned as of the
previous restart.

The difference is only in the method of calculating the threshold.
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Restarts strategies

Arithmetic (or fixed) series.

Parameters: x , y

Init(t) = x

Next(t) = t + y

Used in:

Berkmin (550, 0)
Eureka (2000, 0)
Zchaff 2004 (700, 0)
Siege (16000, 0)
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Restart Strategies

Geometric series.

Parameters: x , y

Init(t) = x

Next(t) = t ∗ y

Used in

Minisat 2007 (100, 1.5)
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Restart Strategies

Inner-Outer Geometric series.
Parameters: x , y , z

Init(t) = x

if (t ∗ y < z)
Next(t) = t ∗ y

else
Next(t) = x

Next(z) = z ∗ y

Used in
Picosat (100, 1.1, 1000)
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SAT competitions

The international SAT Competitions
http://www.satcompetition.org/

SAT Race
http://baldur.iti.uka.de/sat-race-2008/
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SAT 2007 competition

Industrial

SAT + UNSAT : Rsat > Picosat > Minisat
SAT : Picosat > Rsat > Minisat
UNSAT : Rsat > Minisat > TiniSatELite

Handmade

SAT + UNSAT : SATzilla CRAFTED > Minisat > MXC
SAT : March KS > SATzilla CRAFTED > Minisat
UNSAT : SATzilla > TTS > Minisat

Random

SAT + UNSAT : SATzilla RANDOM > March KS > KCNFS 2004
SAT : gnovelty+ > adaptg2wsat0 > adaptg2wsat+
UNSAT : March KS > KCNFS 2004 > SATzilla RANDOM
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SAT-Race 2008

The Race

The Race itself will take place during or shortly before the SAT’08
conference.
Each solver will have to process 100 SAT instances.
Per SAT instance and solver a run-time limit of 15 minutes will be
imposed.

Execution Environment

Operating System: Scientific Linux 2.6.18, both 32-bit and 64-bit
executables supported.
Processor(s): 2x Dual-Core Intel Xeon 5150, 2.66 GHz.
Memory: 8 GB (7 GB memory limit for solver processes enforced).
Cache: 4 MB L2 (shared).
Compilers: GCC 4.1.1, javac 1.5.0 11.
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SAT-Race 2008

Results: MiniSat 2.1 ¿ pMiniSat ¿ Barcelogic

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 90 / 98



Outline

Fundamental concepts

Algorithms for satisfiability problems

Decision heuristics

Restart

SAT competitions

A satisfiability example using MiniSat

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 91 / 98



The usage of the MiniSat

Use MiniSat to find a solution to F = (x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2).
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Hamiltonian Cycle

Hamiltonian cycle, also called a Hamiltonian circuit, is a graph cycle
(i.e., closed loop) through a graph that visits each node exactly once.
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Encoding

Encode the Hamiltonian cycle problem into SAT problem by the
following way:

Assume that there is a path of length n which is the number of nodes.
And each Boolean variables xi ,j represent the ith node in the jth
position of this path.
So there are n2 Boolean variables in SAT problem by this encoding
method.
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Add Constraint Clauses

First constraints: Each node only exist one position of this path.

Second constraints: Each position of this path contains only one node.

Third constraints: Two consecutive nodes are connected by an edge.
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First Constraints

Each node only exist one position of this path

Each node is in the path:

(xi ,0 ∨ xi ,1 ∨ · · · ∨ xi ,n−1), where 0 ≤ i ≤ n − 1

Each node has only position (one hot):

(xi ,0 ∨ xi ,1) ∧ (xi ,0 ∨ xi ,2) ∧ . . .

(xi ,0 ∨ xi ,n−1) ∧ (xi ,1 ∨ xi ,2) ∧ . . .

(xi ,j ∨ xi ,k) ∧ . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 2, j + 1 ≤ k ≤ n + 1
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Second Constraints

Each position of this path contains only one node

Each position contains nodes:

(x0,i ∨ x1,i ∨ · · · ∨ xn−1,i), where 0 ≤ i ≤ n − 1

Each position contains only one node (one hot):

(x0,i ∨ x1,i) ∧ (x0,i ∨ x2,i ) ∧ . . .

(x0,i ∨ xn−1,i) ∧ (x1,i ∨ x2,i) ∧ . . .

(xj,i ∨ xk,i ) ∧ . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 2, j + 1 ≤ k ≤ n + 1

Chih-Pin Tai (SVVRL @ IM.NTU) Satisfiability Solving and Tools May 13, 2009 97 / 98



Third Constraints

Two consecutive nodes are connected by an edge

There is an edge between the ith node and the jth node:

Don′t add constraint clauses into solver .

There are no edge between the ith node and the jth node:

(xi ,0 ∨ xj,1) ∧ (xi ,1 ∨ xj,2) ∧ . . .

(xi ,n−2 ∨ xj,n−1)

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1, and i 6= j
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