Symbolic Model Checking

(Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay

(original created by Ming-Hsien Tsai and Jinn-Shu Chang)

Dept. of Information Management

National Taiwan University

Introduction

- We have studied
 - the operations on OBDDs and
 - * the encoding of a transition system in OBDDs.
- How does one use OBDDs in model checking?
 - Symbolic CTL model checking
 - Symbolic LTL model checking
- The model checking algorithms are symbolic, because they are based on the manipulation of Boolean functions (rather than state transition graphs).
- OBDDs represent sets of states and transitions.
- We can operate on entire sets rather than on individual states and transitions.

Fixpoints

- \bullet Let S be the set of all states of a system.
- A set $S' \in \mathcal{P}(S)$ is called a fixpoint of a function $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ if $\tau(S') = S'$.
- A temporal formula f can be viewed as a set S' of states such that
 - $\circledast S' \in \mathcal{P}(S)$ and
 - # f is true exactly on the states in S'.
- Each temporal logic operator can be characterized by a fixpoint.

Complete Lattices

- Recall that a complete lattice is a partially ordered set in which every subset of elements has a least upper bound (supremum) and a greatest lower bound (infimum).
- \bullet For a given set S, $\langle \mathcal{P}(S), \subseteq \rangle$ forms a complete lattice.
- Let $S' \subseteq \mathcal{P}(S)$, then
 - * the supremum of S', usually denoted sup(S'), equals $\bigcup S'$ and
 - \clubsuit the infimum of S', denoted inf(S'), equals $\bigcap S'$.
- The least element in $\mathcal{P}(S)$ is the empty set \emptyset , which we refer to as False.
- The greatest element in $\mathcal{P}(S)$ is the set S, which we refer to as True.

Predicate Transformer

- A predicate transformer on $\mathcal{P}(S)$ is a function $\tau:\mathcal{P}(S)\to\mathcal{P}(S)$.
- $\tau^i(Z)$ is used to denote *i* applications of τ to Z:

$$\stackrel{\text{\tiny $\#$}}{=} \tau^0(Z) = Z$$

Predicate Transformer (cont.)

- \bullet Let τ be a predicate transformer.
- \bullet τ is monotonic (order-preserving) provided that

$$P \subseteq Q$$
 implies $\tau(P) \subseteq \tau(Q)$.

 \bullet τ is \cup -continuous provided that

$$P_1 \subseteq P_2 \subseteq \cdots$$
 implies $\tau(\cup_i P_i) = \cup_i \tau(P_i)$.

 \bullet τ is \cap -continuous provided that

$$P_1 \supseteq P_2 \supseteq \cdots$$
 implies $\tau(\cap_i P_i) = \cap_i \tau(P_i)$.

LFP and GFP

- Since $\mathcal{P}(S)$ is a complete lattice and hence also a CPO, a monotonic predicate transformer τ on $\mathcal{P}(S)$ always has
 - \red a least fixpoint, μZ . $\tau(Z)$, and
 - \red a greatest fixpoint, νZ . $\tau(Z)$.

$$\mu Z \cdot \tau(Z) = \left\{ \begin{array}{l} \cap \{Z \mid \tau(Z) \subseteq Z\} \text{ whenever } \tau \text{ is monotonic} \\ \cup_i \tau^i(\mathit{False}) \text{ whenever } \tau \text{ is also } \cup \text{-continuous} \end{array} \right.$$

$$\nu Z \cdot \tau(Z) = \begin{cases} \cup \{Z \mid \tau(Z) \supseteq Z\} \text{ whenever } \tau \text{ is monotonic} \\ \cap_i \tau^i(\mathit{True}) \text{ whenever } \tau \text{ is also } \cap \text{-continuous} \end{cases}$$

- Lemma 5: If S is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous.
- Proof:
 - \clubsuit Because S is finite, there is j_0 such that
 - for every $j \geq j_0$, $P_j = P_{j_0}$, and
 - for every $j < j_0$, $P_j \subseteq P_{j_0}$.
 - \red Thus, $\cup_i P_i = P_{j_0}$ and $\tau(\cup_i P_i) = \tau(P_{j_0})$.
 - \clubsuit Because τ is monotonic,
 - \bullet $\tau(P_1) \subseteq \tau(P_2) \subseteq \ldots$, and thus
 - for every $j \geq j_0$, $\tau(P_j) = \tau(P_{j_0})$ and
 - for every $j < j_0$, $\tau(P_j) \subseteq \tau(P_{j_0})$.
 - \clubsuit As a result, $\bigcup_i \tau(P_i) = \tau(P_{j_0})$, and τ is \bigcup -continuous.
 - ***** The proof that τ is \cap -continuous is similar.

 \bullet Lemma 6: If τ is monotonic, then for every i

$$ilde{*}$$
 $au^i(False) \subseteq au^{i+1}(False)$, and

$$\stackrel{*}{\circledast} \tau^i(\mathit{True}) \supseteq \tau^{i+1}(\mathit{True}).$$

Proof sketch:

- # False $\subseteq \tau(False)$.
- $\ref{thm:} True \supseteq \tau(True)$.
- $\redsymbol{*}$ au is monotonic.

- \bullet Lemma 7: If τ is monotonic and S is finite, then
 - * there is an integer i_0 such that for every $j \geq i_0$, $\tau^j(False) = \tau^{i_0}(False)$, and
 - * similarly, there is some j_0 such that for every $j \geq j_0$, $\tau^j(\mathit{True}) = \tau^{j_0}(\mathit{True})$.

- Lemma 8: If τ is monotonic and S is finite, then
 - * there is an integer i_0 such that μZ . $\tau(Z) = \tau^{i_0}(\mathit{False})$, and
 - * similarly, there is an integer j_0 such that νZ . $\tau(Z) = \tau^{j_0}(\mathit{True})$.

LFP Procedure

In a Kripke structure, if τ is monotonic, its least fixpoint can be computed by the following program.

```
function Lfp(\tau : PredicateTransformer) : PredicateQ := False; Q' := \tau(Q); while (Q \neq Q') do Q := Q'; Q' := \tau(Q); end while; return(Q); end function
```


Correctness of LFP Procedure

The invariant of the while loop is

$$(Q' = \tau(Q)) \wedge (Q \subseteq \mu Z \cdot \tau(Z))$$

(cf.
$$(Q' = \tau(Q)) \wedge (Q' \subseteq \mu Z \cdot \tau(Z))$$
)

- The number of iterations before the while loop terminates is bounded by |S|.
- When the loop does terminate, we will have
 - $Q = \tau(Q)$ (Q is a fixpoint) and
 - $Q \subseteq \mu Z \cdot \tau(Z)$.
- Since Q is also a fixpoint, μZ . $\tau(Z) \subseteq Q$.
- Hence $Q = \mu Z$. $\tau(Z)$.

GFP Procedure

• We can also see that, if τ is monotonic, its greatest fixpoint can be computed by the following program.

```
\begin{aligned} & \textbf{function } \mathsf{Gfp}(\tau : \mathsf{PredicateTransformer}) : \mathsf{Predicate} \\ & \mathit{Q} \coloneqq \mathit{True}; \\ & \mathit{Q'} \coloneqq \mathit{\tau(Q)}; \\ & \textbf{while } (\mathit{Q} \neq \mathit{Q'}) \ \textbf{do} \\ & \mathit{Q} \coloneqq \mathit{Q'}; \\ & \mathit{Q'} \coloneqq \mathit{\tau(Q)}; \\ & \textbf{end while}; \\ & \mathbf{return}(\mathit{Q}); \\ & \textbf{end function} \end{aligned}
```

 \bullet An analogous argument can be used to show that the procedure terminates and the value returns is νZ . $\tau(Z)$.

Characterization of CTL Operators

- Secondary Each CTL formula f is identified with the predicate $\{s \mid M, s \models f\}$ in $\mathcal{P}(S)$.
- If so, then each of the basic CTL operators may be characterized as a least or greatest fixpoint of an appropriate predicate transformer.
- Least fixpoints correspond to eventualities.
- Greatest fixpoints correspond to properties that should hold forever.
- We will take a closer look at two cases:
 - $\mathbf{*} \mathbf{EG} f = \nu Z \cdot f \wedge \mathbf{EX} Z$
 - $\stackrel{\clubsuit}{\bullet} \mathbf{E}[f_1 \mathbf{U} f_2] = \mu Z . f_2 \vee (f_1 \wedge \mathbf{EX}(Z))$

Characterization of EG

- Let $\tau(Z) = f \wedge \mathbf{EX} Z$.
- \bullet $\tau(True) = f \wedge \mathbf{EX} \ True = f$.
- \bullet $\tau^2(True) = f \wedge \mathbf{EX} f$.
- \bullet $\tau^3(True) = f \wedge \mathbf{EX}(f \wedge \mathbf{EX}f)$.
- . . .
- $\tau^i(\mathit{True}) = f \wedge \mathbf{EX} (f \wedge \mathbf{EX} (\cdots (f \wedge \mathbf{EX} f) \cdots))$ (EX is applied i-1 times on the inner most f).
- igoplus So intuitively, states in the limit of $au^i(\mathit{True})$ satisfy $\mathbf{EG}\,f$.

- Lemma 9: $\tau(Z) = f \wedge \mathbf{E} \mathbf{X} Z$ is monotonic.
- Proof:
 - \clubsuit Let $P_1 \subseteq P_2$.
 - \clubsuit Consider some state $s \in \tau(P_1)$.
 - \clubsuit To show that $s \in \tau(P_2)$, it is sufficient to show that
 - $s \models f$ and
 - there is a successor of s which is in P_2 .
 - \clubsuit Because $s \in \tau(P_1)$,
 - $s \models f$ and
 - there exists a state s' such that $(s, s') \in R$ and $s' \in P_1$.
 - \clubsuit Because $P_1 \subseteq P_2$, $s' \in P_2$.
 - \bullet Thus $s \in \tau(P_2)$.

- Lemma 10: Let $\tau(Z) = f \wedge \mathbf{EX} Z$ and let $\tau^{i_0}(\mathit{True})$ be the limit of the sequence $\mathit{True} \supseteq \tau(\mathit{True}) \supseteq \cdots$. For every $s \in S$, if $s \in \tau^{i_0}(\mathit{True})$ then $s \models f$, and there is a state s' such that $(s,s') \in R$ and $s' \in \tau^{i_0}(\mathit{True})$.
- Proof:
 - \clubsuit Let $s \in \tau^{i_0}(\mathit{True})$.
 - ** Because $\tau^{i_0}(\mathit{True})$ is a fixpoint of τ , $\tau^{i_0}(\mathit{True}) = \tau(\tau^{i_0}(\mathit{True}))$.
 - \clubsuit Thus $s \in \tau(\tau^{i_0}(\mathit{True}))$.
 - ** By definition of τ we get that $s \models f$ and there is a state s', such that $(s, s') \in R$ and $s' \in \tau^{i_0}(\mathit{True})$.

- Lemma 11: EG f is a fixpoint of the function $\tau(Z) = f \wedge \mathbf{EX}(Z)$.
- Proof:
 - * Suppose $s_0 \models \mathbf{EG} f$.
 - * By the definition of \models , there is a path s_0, s_1, \cdots in M such that for all k, $s_k \models f$.
 - \clubsuit This implies that $s_0 \models f$ and $s_1 \models \mathbf{EG} f$.
 - \clubsuit In other words, $s_0 \models f$ and $s_0 \models \mathbf{EX} \mathbf{EG} f$.
 - \clubsuit Thus, EG $f \subseteq f \land EX$ EG f.
 - \clubsuit Similarly, if $s_0 \models f \land \mathbf{EX} \mathbf{EG} f$, then $s_0 \models \mathbf{EG} f$.
 - \clubsuit Thus, $f \land \mathbf{EX} \mathbf{EG} f \subseteq \mathbf{EG} f$.
 - \red Consequently, $\mathbf{EG}\,f=f\wedge\mathbf{EX}\,\mathbf{EG}\,f$.

- Lemma 12: $\mathbf{EG} f$ is the greatest fixpoint of the function $\tau(Z) = f \wedge \mathbf{EX}(Z)$.
- Proof:
 - * Because τ is monotonic (Lemma 9), by Lemma 5 it is also \cap -continuous.
 - * In order to show that $\mathbf{EG} f$ is the greatest fixpoint of τ , it is sufficient to prove that $\mathbf{EG} f = \bigcap_i \tau^i(\mathit{True})$.

Lemma 12 (cont.)

- Proof (continued):
 - $\mathbf{*}$ **EG** $f \subseteq \cap_i \tau^i(\mathit{True})$.
 - We prove this direction by induction.
 - Base case:
 - \bullet Clearly, EG $f \subseteq True$.
 - Induction step:
 - Assume that $\mathbf{EG} f \subseteq \tau^n(\mathit{True})$.
 - Because τ is monotonic, $\tau(\mathbf{EG}\,f)\subseteq \tau^{n+1}(\mathit{True})$.
 - By Lemma 11, $\tau(\mathbf{EG} f) = \mathbf{EG} f$.
 - Hence, EG $f \subseteq \tau^{n+1}(True)$.

Lemma 12 (cont.)

- Proof (continued):
 - $\stackrel{*}{\circledast} \cap_i \tau^i(\mathit{True}) \subseteq \mathbf{EG} f.$
 - Consider some state $s \in \cap_i \tau^i(\mathit{True})$.
 - The state s is included in every $\tau^i(\mathit{True})$.
 - Hence, it is also in the fixpoint $\tau^{i_0}(\mathit{True})$.
 - By Lemma 10, s is the start of an infinite sequence of states in which each state is related to the previous one by the relation R.
 - Furthermore, each state in the sequence satisfies f.
 - Thus $s \models \mathbf{EG} f$.

Characterization of EU: Lemma 13

- **E**[$f_1 \cup f_2$] is the least fixpoint function of the function $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX}(Z))$.
- Proof:
 - * $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX}(Z))$ is monotonic, hence τ is \cup -continuous.
 - $\mathbf{E}[f_1 \mathbf{U} f_2]$ is a fixpoint of $\tau(Z)$.
 - * We still need to prove that $\mathbf{E}[f_1 \mathbf{U} f_2]$ is the least fixpoint of $\tau(Z)$.
 - \red It is sufficient to show that $\mathbf{E}[f_1 \mathbf{U} f_2] = \cup_i \tau^i(False)$

Lemma 13 (cont.)

Proof:

- $\stackrel{*}{\circledast} \cup_i \tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$
 - We prove this direction by induction on i.
 - Base case: $False \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$
 - Ind. Hypo.: For every $i \leq k$, $\tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$.
 - When i = k + 1, $\tau^{k+1}(False) = \tau(\tau^k(False))$.
 - Note that $\tau(Z)$ is monotonic, so $\tau(\tau^k(False)) \subseteq \tau(\mathbf{E}[f_1 \mathbf{U} f_2])$ (by Ind. Hypo.)
 - Since $\mathbf{E}[f_1 \mathbf{U} f_2]$ is a fixpoint of $\tau(Z)$, $\tau(\mathbf{E}[f_1 \mathbf{U} f_2]) = \mathbf{E}[f_1 \mathbf{U} f_2]$.
 - Hence, we have $\tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$ for all i.
 - Consequently, we have that $\cup_i \tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$.

Lemma 13 (cont.)

- Proof (continued):
 - \clubsuit $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \cup_i \tau^i(False)$
 - We prove this direction by induction on the length of the prefix of the path along with $f_1f_2\mathbf{U}$ is satisfied.
 - If there's a state $s \models \mathbf{E}[f_1 \cup f_2]$, then there's a path $\pi = s_1, s_2, \ldots$, with $s = s_1$ and $j \ge 1$ such that $s_j \models f_2$ and for all l < j, $s_l \models f_1$.
 - We show that for every such state s, $s \in \tau^{j}(False)$.

Lemma 13 (cont.)

- Proof (continued):
 - ** Base case is trivial. If j = 1, $s \models f_2$ and therefore $s \in \tau(False) = f_2 \lor (f_1 \land \mathbf{EX}(False))$.
 - * For the inductive step, assume that for every s and every $j \le n$, $s \in \tau^j(False)$ always holds.
 - * Let s be the start of the path $\pi = s_1, s_2, \ldots$ such that $s_{n+1} \models f_2$ and for every l < n+1, $s_l \models f_1$.
 - * Consider the state s_2 on the path. It is the start of a prefix of length n along which $f_1 f \mathbf{U}_2$ holds.
 - \clubsuit By the induction hypothesis, $s_2 \in \tau^n(False)$.
 - \clubsuit Because $(s, s_2) \in R$ and $s \models f_1$, $s \in f_1 \land \mathbf{EX} (\tau^n(False))$,
 - \clubsuit thus, $s \in \tau^{n+1}(False)$.

An Example

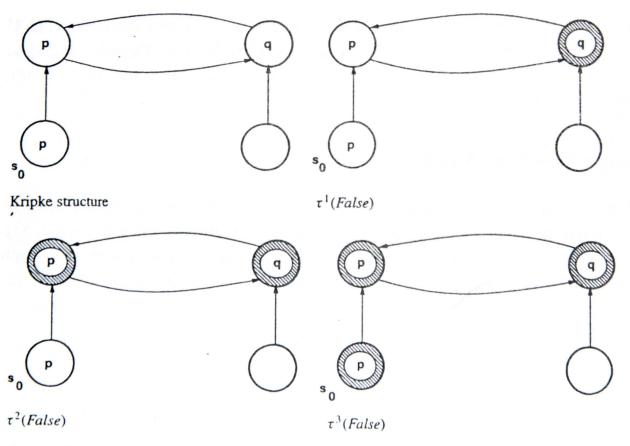


Figure 6.3 Sequence of approximations for $E[p \ U \ q]$.

Source: [Clarke et al. 1999]. Names of states (clockwise): s_0 , s_1 , s_2 , s_3 .

An Example (cont.)

Sequence of approximations for

$$\mathbf{E}[p \mathbf{U} q] = \mu Z \cdot q \vee (p \wedge \mathbf{EX} Z)$$
:

$$\tau^{1}(False) = q \lor (p \land \mathbf{EX} \ False)
= q
\tau^{2}(False) = q \lor (p \land \mathbf{EX} \ \tau(False))
= q \lor (p \land \mathbf{EX} \ q)
= q \lor (p \land \{s_{1}, s_{3}\})
= q \lor \{s_{1}\}
\tau^{3}(Fasle) = q \lor (p \land \mathbf{EX} \ \tau^{2}(Fasle))
= q \lor (p \land \mathbf{EX} \ (q \lor \{s_{1}\}))
= q \lor (p \land \{s_{0}, s_{1}, s_{2}, s_{3}\})
= q \lor p$$

Characterization of CTL Operators (cont.)

- $\mathbf{A}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{AX}(Z))$
- $\mathbf{E}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{EX}(Z))$
- $\mathbf{A}[f \mathbf{R} g] = \nu Z \cdot g \wedge (f \vee \mathbf{A} \mathbf{X} (Z))$

Symbolic Model Checking for CTL

- There is a quite fast explicit state model checking algorithms for CTL, but a state explosion problem may occur.
- In the following, we will present a Symbolic Model Checking (SMC) algorithm for CTL which operates on Kripke structures represented symbolically using OBDDs.
- For this, the logic of Quantified Boolean Formulae (QBF) is used to have a more succinct notation for complex operations on Boolean formulae.

Quantified Boolean Formulae (QBF)

- Given a set $V = \{v_0, \dots, v_{n-1}\}$ of propositional variables, QBF(V) is the smallest set of formulae such that
 - \circledast every variable in V is a formula,
 - $\red f$ if f and g are formulae, then $\neg f$, $f \lor g$, and $f \land g$ are formulae, and
 - * if f is a formula and $v \in V$, then $\exists v f$ and $\forall v f$ are formulae.
- An OBDD is associated to a QBF formula.

Truth Assignment

- A *truth assignment* for QBF(V) is a function $\sigma: V \to \{0,1\}$.
- If $a \in \{0, 1\}$, then the notation $\sigma \langle v \leftarrow a \rangle$ is used for the truth assignment defined by

$$\sigma \langle v \leftarrow a \rangle(w) = \left\{ \begin{array}{ll} a & \text{if } v = w \\ \sigma(w) & \text{otherwise} \end{array} \right.$$

Models of QBF

 \bullet The notation $\sigma \models f$ denotes that f is true under the assignment σ

$$\begin{split} \sigma &\models v & \text{iff} \quad \sigma(v) = 1 \\ \sigma &\models \neg f & \text{iff} \quad \sigma \not\models f \\ \sigma &\models f \lor g & \text{iff} \quad \sigma \models f \text{ or } \sigma \models g \\ \sigma &\models f \land g & \text{iff} \quad \sigma \models f \text{ and } \sigma \models g \\ \sigma &\models \exists vf & \text{iff} \quad \sigma\langle v \leftarrow 0 \rangle \models f \text{ or } \sigma\langle v \leftarrow 1 \rangle \models f \\ \sigma &\models \forall vf & \text{iff} \quad \sigma\langle v \leftarrow 0 \rangle \models f \text{ and } \sigma\langle v \leftarrow 1 \rangle \models f \end{split}$$

Quantification

The quantifiers in QBF can be implemented as combinations of the restrict and apply operators.

$$\exists x f = f|_{x \leftarrow 0} \lor f|_{x \leftarrow 1}$$

$$\forall x f = f|_{x \leftarrow 0} \land f|_{x \leftarrow 1}$$

SMC Algorithm

- The SMC algorithm is implemented by a procedure Check.
 - Arguments: a CTL formula
 - Returns: an OBDD that represents exactly those states of the system that satisfy the formula

SMC Algorithm (cont.)

```
Check(a) = \text{the OBDD representing the set of states} 
satisfying the atomic proposition a
Check(f) \land g) = Check(f) \land Check(g)
Check(\neg f) = \neg Check(f)
Check(\mathbf{EX} f) = CheckEX(Check(f))
Check(\mathbf{E}[f \mathbf{U} g]) = CheckEU(Check(f), Check(g))
Check(\mathbf{EG} f) = CheckEG(Check(f))
```


CheckEX

The formula EX f is true in a state if the state has a successor in which f is true.

$$CheckEX(f(\bar{v})) = \exists \bar{v}'[f(\bar{v}') \land R(\bar{v}, \bar{v}')],$$

where $R(\bar{v}, \bar{v}')$ is the OBDD representation of the transition relation.

CheckEU

• CheckEU is based on the least fixpoint characterization for the CTL operator EU.

$$\mathbf{E}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{E} \mathbf{X} Z)$$

The function Lfp is used to compute a sequence of approximations

$$Q_0, Q_1, \ldots, Q_i, \ldots$$

that converges to $\mathbf{E}[f \mathbf{U} g]$ in a finite number of steps.

CheckEU (cont.)

- If we have OBDDs for f, g, and the current approximation Q_i , then we can compute an OBDD for the next approximation Q_{i+1} .
- When $Q_i = Q_{i+1}$ (it is easy to test because OBDDs provide a canonical form of Boolean functions), the function Lfp terminates.

CheckEG

• CheckEG is based on the greatest fixpoint characterization for the CTL operator EG.

$$\mathbf{EG} f = \nu Z \cdot f \wedge \mathbf{EX} Z$$

Fairness in SMC

- Assume the fairness constraints are given by a set of CTL formulae $F = \{P_1, \dots, P_n\}$.
- A fair path is a path which each formula in F holds infinitely often on.
- We define a new procedure *CheckFair* for checking CTL formulae relative to the fairness constructions in *F*.
- We do this by defining new intermediate procedures CheckFairEX, CheckFairEU, and CheckFairEG, which correspond to the intermediate procedures used to define Check.

$\mathbf{EG} f$ with Fairness

- igoplus Consider the formula $\mathbf{EG} f$ given fairness constraints F.
- The formula means that there exists a fair path beginning with the current state on which *f* holds globally.
- The set of such states Z is the largest set with the following two properties:
 - \circledast all of the states in Z satisfy f, and
 - * for all $P_k \in F$ and all $s \in Z$, there is a sequence of states of length one or greater from s to a state in Z satisfying P_k such that all states on the path satisfy f. (cf. There exists a path in S', where f holds, that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').)

$\mathbf{EG} f$ with Fairness (cont.)

The characterization can be expressed by means of a fixpoint as follows:

$$\mathbf{EG} f = \nu Z \cdot f \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (Z \wedge P_k)]$$

- Note that the formula is not directly expressible in CTL.
- We are going to prove the correctness of this equation.
- We split it into two lemmas.

Lemma 14

Lemma 14: The fair version of EG f is a fixpoint of the equation

$$Z = f \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U}(Z \wedge P_k)].$$

Proof: It suffices to show that

$$\mathbf{EG} f \subseteq f \land \bigwedge_{k=1}^{n} \mathbf{EX} \mathbf{E}[f \mathbf{U} (\mathbf{EG} f \land P_k)]$$

and

$$f \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \wedge P_k)] \subseteq \mathbf{EG} f.$$

Lemma 14 (cont.)

- Case 1: $\mathbf{EG} f \subseteq f \land \bigwedge_{k=1}^{n} \mathbf{EX} \mathbf{E}[f \mathbf{U} (\mathbf{EG} f \land P_k)].$
 - * Let $s \models \mathbf{EG} f$, then s is the start of a fair path π , all of whose states satisfy f.
 - * Let s_i be the first state on π such that $s_i \in P_i$ and $s_i \neq s$.
 - * The state s_i is also a start of a fair path along which all states satisfy f.
 - \red Thus, $s_i \in \mathbf{EG}\,f$.
 - * It follows that for every i, $s \models f \land \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \land P_i)].$
 - * Therefore, $s \models f \land \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \land P_k)].$

Lemma 14 (cont.)

- Case 2: $f \land \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \land P_k)] \subseteq \mathbf{EG} f$.
 - ** If $s \models f \land \bigwedge_{k=1}^{\infty} \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \land P_k)]$, then there is a finite path starting from s to a state s' such that $s' \models (\mathbf{EG} f \land P_k)$.
 - \clubsuit Every state on the path from s to s' satisfies f.
 - * s' is the beginning of a fair path such that each state on the path satisfies f.
 - \red Thus, $s \models \mathbf{EG} f$.

Lemma 15

Solution Lemma 15: The greatest fixpoint of the following equation is included in $\mathbf{EG} f$.

$$Z = f \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (Z \wedge P_k)]$$

Lemma 15 (cont.)

- Proof:
 - \clubsuit Let Z be an arbitrary fixpoint of the formula.
 - \clubsuit Assume that $s \in Z$. Then $s \models f$.
 - ** s has a successor s' that is a start of a path to a state s_1 such that
 - all states on this path satisfy f and
 - s_1 satisfies $Z \wedge P_1$.
 - ** Because $s_1 \in \mathbb{Z}$ we can conclude by the same argument that there is a path from s_1 to a state s_2 in P_2 .

Lemma 15 (cont.)

- Proof (continued):
 - * Using this argument n times we conclude that s is the start of a path along which all states satisfy f and which passes through P_1, \ldots, P_k .
 - * The last state on the path is in \mathbb{Z} , and thus there is a path from this state back to some state in \mathbb{P}_1 .
 - * Induction can be used to show that there exists a fair path starting at s such that f is satisfied along the path, i.e., $s \models \mathbf{EG} f$.

CheckFairEG

• $CheckFairEG(f(\bar{v}))$ is based on the following fixpoint characterization:

$$\nu Z(\bar{v}) \cdot f(\bar{v}) \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f(\bar{v}) \mathbf{U} (Z(\bar{v}) \wedge P_k)].$$

CheckFair

The set of all states which are the start of some fair computation is

$$fair(\bar{v}) = CheckFair(\mathbf{EG}\ True).$$

CheckFairEX

The formula $\mathbf{E}\mathbf{X} f$ under fairness constraints is equivalent to the formula $\mathbf{E}\mathbf{X} f \wedge fair$ without fairness constraints.

$$CheckFairEX(f(\bar{v})) = CheckEX(f(\bar{v}) \land fair(\bar{v}))$$

CheckFairEU

The formula $\mathbf{E}[f \mathbf{U} g]$ under fairness constraints is equivalent to the formula $\mathbf{E}[f \mathbf{U} g \wedge fair]$ without fairness constraints.

$$CheckFairEU(f(\bar{v}),g(\bar{v})) = CheckEU(f(\bar{v}),g(\bar{v}) \land fair(\bar{v}))$$

LTL Model Checking

- Let A f be a linear temporal logic formula where f is a restricted path formula.
- A formula *f* is a restricted path formula if all state subformulae in *f* are atomic propositions.
- The problem is to determine all of those states $s \in S$ such that $M, s \models \mathbf{A} f$.
- Since $M, s \models \mathbf{A} f$ iff $M, s \models \neg \mathbf{E} \neg f$, it is sufficient to check the truth of formulae of the form $\mathbf{E} f$.

LTL Model Checking (cont.)

- Given a formula $\mathbf{E} f$ and a Kripke structure M, the procedure of LTL model checking is:
 - \clubsuit Construct a tableau T for the path formula f.
 - $t ilde{*}$ Compose T with M.
 - Find a path in the composition.
- The tableau can be represented by OBDDs.

States of the Tableau

- Each state in the tableau is a set of elementary formulae obtained from f.
- The set of elementary subformulae of f is denoted by el(f) and is defined recursively as follows.

$$el(p) = \{p\} \text{ if } p \in AP_f$$

$$el(\neg g) = el(g)$$

$$el(g \lor h) = el(g) \cup el(h)$$

$$el(\mathbf{X}g) = \{\mathbf{X}g\} \cup el(g)$$

$$el(g \mathbf{U}h) = \{\mathbf{X}(g \mathbf{U}h)\} \cup el(g) \cup el(h)$$

• The set of states S_T of T is $\mathcal{P}(el(f))$.

Transition Relation of the Tableau

An additional function sat is defined recursively as follows.

$$sat(g) = \{s \mid g \in s\} \text{ where } g \in el(f)$$

 $sat(\neg g) = \{s \mid s \notin sat(g)\}$
 $sat(g \lor h) = sat(g) \cup sat(h)$
 $sat(g \lor h) = sat(h) \cup (sat(g) \cap sat(\mathbf{X}(g \lor h)))$

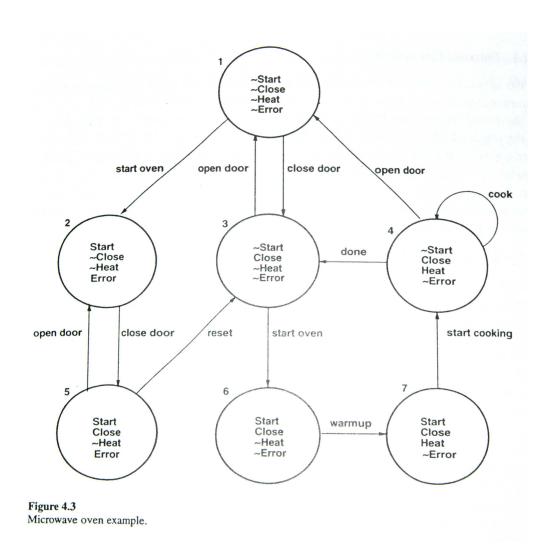
 \bullet The transition relation R_T of T is defined as

$$R_T(s, s') = \bigwedge_{\mathbf{X}g \in el(f)} s \in sat(\mathbf{X}g) \Leftrightarrow s' \in sat(g)$$

Transition Relation of the Tableau (cont.)

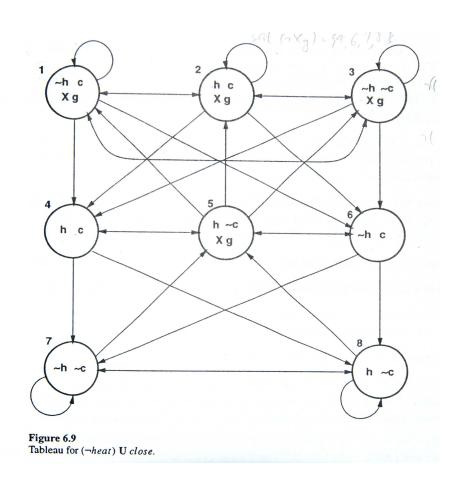
- An additional condition is necessary in order to identify those paths along which f holds.
- A path π that starts from a state $s \in sat(f)$ will satisfy f iff
 - * for every subformula $g \cup h$ and for every state s on π , if $s \in sat(g \cup h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

The Microwave Oven Example



Source: [Clarke et al. 1999].

The Microwave Oven Example



Source: [Clarke et al. 1999].

Eventuality

- \bullet A path π that starts from a state $s \in sat(f)$ will satisfy f if and only if
 - •• for every subformulae $g \mathbf{U} h$ and for every state s on π , if $s \in sat(g \mathbf{U} h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

Additional Notations

- $\pi' = s'_0, s'_1, \ldots$ represents a path in M.
- For the suffix $\pi'_i = s'_i, s'_{i+1}, \ldots$ of π , we define

$$s_i = \{ \psi \mid \psi \in el(f) \text{ and } M, \pi' \models \psi \}$$

Lemma 16

- Lemma 16: Let sub(f) be the set of all subformulae of f. For all $g \in sub(f) \cup el(f)$, $M, \pi'_i \models g$ if and only if $s_i \in sat(g)$.
 - \clubsuit Case 1: Let $g \in el(f)$.
 - $M, \pi'_i \models g \text{ iff } g \in s_i.$
 - $g \in s_i \text{ iff } s_i \in sat(g).$
 - \clubsuit Case 2: Let $g = \neg g_1$ or $g = g_1 \lor g_2$.
 - \red Case 3: Let $g = g_1 \cup g_2$.
 - $M, \pi'_i \models g_1 \cup g_2 \text{ iff } M, \pi'_i \models g_2 \text{ or } (M, \pi'_i \models g_1 \text{ and } M, \pi'_i \models \mathbf{X}(g_1 \cup g_2)).$
 - $M, \pi'_i \models g_2 \text{ or } (M, \pi'_i \models g_1 \text{ and } M, \pi'_i \models \mathbf{X}(g_1 \mathbf{U} g_2)) \text{ iff } s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(\mathbf{X}(g_1 \mathbf{U} g_2))).$
 - $s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(\mathbf{X}(g_1 \mathbf{U} g_2)))$ iff $s_i \in sat(g_1 \mathbf{U} g_2)$.

Lemma 17

Lemma 17: Let $\pi' = s'_0 s'_1 \dots$ be a path in M. For all $i \ge 0$, let s_i be the tableau state. Then $\pi = s_0 s_1 \dots$ is a path in T.

Theorem 4

Theorem 4: Let T be the tableau for the path formula f. Then, for every Kripke structure M and every path π' of M, if $M, \pi' \models f$ then there is a path π in T that starts in a state in sat(f), such that $label(\pi') \mid_{AP_f} = label(\pi)$.

Composition of T and M

- P = (S, R, L) is the product of the tableau $T = (S_T, R_T, L_T)$ and the Kripke structure $M = (S_M, R_M, L_M)$.
 - $S = \{(s, s') \mid s \in S_T, s' \in S_M \text{ and } L_M(s') \mid_{AP_f} = L_T(s)\}.$
 - R((s,s'),(t,t')) iff $R_T(s,t)$ and $R_M(s',t')$.
 - $\stackrel{*}{\circledast} L((s,s')) = L_T(s).$
- The function sat is extended to be defined over S by $(s, s') \in sat(g)$ if and only if $s \in sat(g)$.

Lemma 18

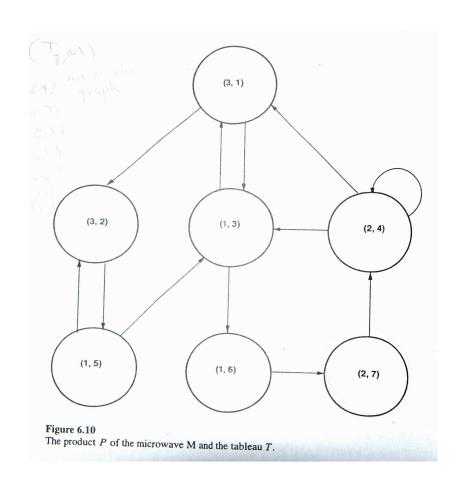
 $extstyle \pi'' = (s_0, s_0'), (s_1, s_1'), \dots$ is a path in P with $L_P((s_i, s_i')) = L_T(s_i)$ for all $i \geq 0$ if and only if there exists a path $\pi = s_0, s_1, \dots$ in T, and a path $\pi' = s_0', s_1', \dots$ in M with $L_T(s_i) = L_M(s_i) \mid_{AP_f}$ for all $i \geq 0$.

Theorem 5

• $M, s' \models \mathbf{E} f$ if and only if there is a state s in T such that $(s, s') \in sat(f)$ and $P, (s, s') \models \mathbf{EG} \ True$ under fairness constraints

 $\{sat(\neg(g\mathbf{U}h)\vee h)\mid g\mathbf{U}h \text{ occurs in } f\}.$

The Microwave Oven Example



Source: [Clarke et al. 1999].

Summary of LTL Model Checking

- Given a Kripke structure M, a state s' in M and a LTL formula f.
- Construct a symbolic representation of M.
- igoplus Construct a symbolic representation of $T_{\neg f}$.
- $igoplus {f Construct}$ the product P of M and $T_{\neg f}$.
- igoplus Use the symbolic CTL model checking algorithm to check if there is a state s in $T_{\neg f}$ such that
 - $(s,s') \in sat(\neg f)$ and

 $\{sat(\neg(g\mathbf{U}h)\vee h)\mid g\mathbf{U}h \text{ occurs in } f\}.$

SMC for LTL [Kesten et al 1995]

- Here we slightly modify the definition of Kripke structures and the symbolic algorithm in [Kesten et al. 1995].
- A Kripke structure M is a tuple (V, S_0, R) where
 - * V is a set of system variables and thus the set of states S is the set of all valuations for V,
 - * S_0 is the initial condition defined upon V, and
 - $R \subseteq S \times S$ is the transition relation which is total.
- The problem is to check, given a Kripke structure M and a formula f, whether $M \models f$ (all paths of M satisfy f).

SMC for LTL [Kesten et al 1995] (cont.)

- Let V_f be the set of all propositions in f. Without loss of generality, we assume $V_f = V$ (of the Kripke structure).
- For each elementary formula $p \in el(f)$, a Boolean variable (elementary variable) x_p is associated.
- The set of elementary variables are represented by a vector $\bar{x} = x_1, x_2, \dots, x_m$ where m = |el(f)|.
- lacktriangle Note that a valuation for \bar{x} constitutes a state in M and a state in T_f .

Formulae in Elementary Formulae

- Let CL(f) denote the closure of the LTL formula f.
- For each formula $p \in CL(f)$, we define a Boolean function $\chi_p(\bar{x})$ which expresses p in terms of the elementary variables:

For
$$p \in el(f)$$
, $\chi_p(\bar{x}) = x_p$
For $p = \neg q$, $\chi_p = \neg \chi_q$
For $q \wedge r$, $\chi_p = \chi_q \wedge \chi_r$
For $p = q \mathbf{U} r$, $\chi_p = \chi_r \vee (\chi_q \wedge x_{\mathbf{X}(q \mathbf{U} r)})$
For $p = q \mathbf{S} r$, $\chi_p = \chi_r \vee (\chi_q \wedge x_{\mathbf{Y}(q \mathbf{S} r)})$

Note: Y is the "previous" operator.

LTL Model Checking

There exists a computation in M satisfying f iff $sat_{M,f}$ as defined below is true.

$$sat_{M,f}: \exists \bar{x}, \bar{y}: init(\bar{x}) \land E^*(\bar{x}, \bar{y}) \land scf^E(\bar{y})$$

Initial Condition

- The following formula identifies an initial state in the product of M and T_f .
 - \clubsuit It is an initial state in M.
 - \circledast It is also an initial atom in T_f .

$$init(\bar{x}): \chi_f(\bar{x}) \wedge (\bigwedge_{\mathbf{Y}p \in CL(f)} \neg x_{\mathbf{Y}p}) \wedge S_0(\bar{x})$$

Transition Relation

The following formula identifies the set of transitions in the product:

$$E(\bar{x},\bar{y}):e(\bar{x},\bar{y})\wedge R(\bar{x},\bar{y})$$

where

$$e(\bar{x}, \bar{y}) : \bigwedge_{\mathbf{X}p \in el(f)} (x_{\mathbf{X}p} \leftrightarrow \chi_p(\bar{y})) \land \bigwedge_{\mathbf{Y}p \in el(f)} (\chi_p(\bar{x}) \leftrightarrow y_{\mathbf{Y}p})$$

$$E^{+}(\bar{x}, \bar{y}) = E(\bar{x}, \bar{y}) \vee \exists \bar{z} : E^{+}(\bar{x}, \bar{z}) \wedge E(\bar{z}, \bar{y})$$
$$E^{*}(\bar{x}, \bar{y}) : (\bar{x} = \bar{y}) \vee E^{+}(\bar{x}, \bar{y})$$

The definitions of $e^+(\bar x, \bar y)$ and $e^*(\bar x, \bar y)$ are similar to $E^+(\bar x, \bar y)$ and $E^*(\bar x, \bar y)$.

Fulfilling Atoms

The following formula identifies fulfilling atoms.

$$scf^{E}(\bar{x}): E^{+}(\bar{x}, \bar{x}) \wedge \bigwedge_{p \mathbf{U} q \in CL(f)} (\chi_{p \mathbf{U} q}(\bar{x}) \to \mathbb{I}\bar{z}: E^{*}(\bar{x}, \bar{z}) \wedge \chi_{q}(\bar{z}) \wedge E^{*}(\bar{z}, \bar{x}))$$

