Temporal Logic Model Checking (Based on [Clarke *et al.* 1999])

Yih-Kuen Tsay (original created by Yu-Fang Chen)

Department of Information Management National Taiwan University

Automatic Verification 2009: Temporal Logic Model Checking – 1/49

About Temporal Logic

- Temporal logic is a formalism for describing temporal ordering (or dependency) between occurrences of "events" (represented by propositions).
- It provides such expressive features by introducing temporal/modal operators into classic logic.
- These temporal operators usually do not explicitly mention time points.
- There are two principal views of the structure of time:
 Integrit in the structure of time
 - branching-time

Outline

Temporal Logics

- CTL* (generalized Computation Tree Logic)
- CTL (Computation Tree Logic; subset of CTL*)
- LTL (Linear Temporal Logic; subset of CTL*)
- 😚 Fairness
- Algorithmic Temporal Logic Verification
 - CTL Model Checking
 - LTL Model Checking
 - CTL* Model Checking

CTL*

- CTL* formulae describe properties of a computation tree (generated from a Kripke structure).
- They are composed of *path quantifiers* and *temporal* operators.
- Path quantifiers:
 - E (for some path)
 - A (for all paths)
- Temporal operators:
 - 🔅 X (next)
 - F (eventually or sometime in the future)
 - G (always or globally)
 - 鯵 **U** (until)

R (release)

Syntax of CTL*

- Let AP be a set of atomic propositions.
- The syntax of state formulae:
 - \clubsuit If $p \in AP$, then p is a state formula.
 - * If f_1 and f_2 are state formulae, then so are $\neg f_1$, $f_1 \lor f_2$ and $f_1 \land f_2$.
 - ***** If g is a path formula, then **E** g and **A** g are state formulae.
- The syntax of path formulae:
 - \circledast If f is a state formula, then f is also a path formula.
 - If g_1 and g_2 are path formulae, then so are ¬ g_1 , $g_1 ∨ g_2$, $g_1 ∧ g_2$, X g_1 , F g_1 , G g_1 , g_1 U g_2 , and g_1 R g_2 .
- CTL* is the set of state formulae generated by the above rules.

Example CTL* Formulae

- Sormula: AG (Req → AF Ack). Intended meaning: every request will eventually be granted.
- Formula: AG (EF Restart). Intended meaning: it is always possible at any time to get to the Restart state.

Kripke Structures

- Let AP be a set of atomic propositions.
- A Kripke structure M over AP is a tuple $\langle S, S_0, R, L \rangle$:
 - \clubsuit is a finite set of states,
 - $S_0 \subseteq S$ is the set of initial states,
 - $R \subseteq S \times S$ is a total transition relation, and
 - * $L: S \rightarrow 2^{AP}$ is a function labeling each state with a subset of propositions (which are true in that state).
- A *computation* or *path* π of M from a state s is an infinite sequence s_0, s_1, s_2, \cdots of states such that $s_0 = s$ and $(s_i, s_{i+1}) \in R$, for all $i \ge 0$.
- Solution In the sequel, π^i denotes the suffix of π starting at s_i .

Semantics of CTL*

- Solution f is a state formula, $M, s \models f$ means that f holds at state s in the Kripke structure M.
- Solution When f is a path formula, $M, \pi \models f$ means that f holds along the path π in the Kripke structure M.
- Assuming that f₁ and f₂ are state formulae and g₁ and g₂ are path formulae, the semantics of CTL* is as follows:
 M, s ⊨ p ⇔ p ∈ L(s)
 M, s ⊨ ¬f₁ ⇔ M, s ⊭ f₁
 M, s ⊨ f₁ ∨ f₂ ⇔ M, s ⊨ f₁ or M, s ⊨ f₂
 M, s ⊨ f₁ ∧ f₂ ⇔ M, s ⊨ f₁ and M, s ⊨ f₂
 M, s ⊨ **E** g₁ ⇔ for some path π from s, M, π ⊨ g₁
 M, s ⊨ **A** g₁ ⇔ for every path π from s, M, π ⊨ g₁

Semantics of CTL* (cont.)

The semantics of CTL* (cont.): $\circledast M, \pi \models f_1 \iff s$ is the first state of π and $M, s \models f_1$ $\circledast M, \pi \models \neg g_1 \iff M, \pi \not\models g_1$ $\circledast M, \pi \models g_1 \lor g_2 \iff M, \pi \models g_1 \text{ or } M, \pi \models g_2$ $\circledast M, \pi \models g_1 \land g_2 \iff M, \pi \models g_1 \text{ and } M, \pi \models g_2$ $\circledast M, \pi \models \mathbf{X} \ g_1 \Longleftrightarrow M, \pi^1 \models g_1$ $\bigstar M, \pi \models \mathbf{F} g_1 \iff \text{for some } k \ge 0, M, \pi^k \models g_1$ $\circledast M, \pi \models \mathbf{G} \ g_1 \iff \text{for all } i \ge 0, \ M, \pi^i \models g_1$ $\overset{\bullet}{=} M, \pi \models g_1 \ \mathbf{U} \ g_2 \iff \text{for some } k \ge 0, \ M, \pi^k \models g_2 \text{ and, for}$ all $0 \leq j \leq k, M, \pi^{j} \models q_1$ $\circledast M, \pi \models g_1 \mathbb{R} g_2 \iff$ for all $j \ge 0$, if for every i < j, $M, \pi^i \not\models g_1$, then $M, \pi^j \models g_2$

Minimalistic CTL*

- The operators \u2265, \u2267, X, U, and E are sufficient to express any other CTL* formula (in an equivalent way).
- 📀 In particular,
 - \clubsuit **F**f = true **U** f

$$\mathbf{\bullet} \mathbf{G}f = \neg \mathbf{F}(\neg f)$$

$$f \mathbf{R} g = \neg (\neg f \mathbf{U} \neg g)$$

 $\bigcirc \neg(\neg f \mathbf{U} \neg g)$ says that

it should not be that from some state *g* becomes *false* and until then *f* has never been *true*.

This is the same as saying that only an occurrence of f may allow g to become false (or f "releases" g), namely f R g.

CTL and LTL

- CTL and LTL are restricted subsets of CTL*.
- CTL is a branching-time logic, while LTL is linear-time.
- In CTL, each temporal operator X, F, G, U, or R must be immediately preceded by a path quantifier E or A.
- The syntax of path formulae in CTL is more restricted:
 If f₁ and f₂ are state formulae, then X f₁, F f₁, G f₁, f₁ U f₂, and f₁ R f₂ are path formulae.
- The syntax of state formulae remains the same:
 - \clubsuit If $p \in AP$, then p is a state formula.
 - If f_1 and f_2 are state formulae, then so are ¬ f_1 , $f_1 ∨ f_2$ and $f_1 ∧ f_2$.
 - If g is a path formula, then **E** g and **A** g are state formulae.

CTL and LTL (cont.)

- LTL consists of formulae that have the form A f, where f is a path formula in which atomic propositions are the only permitted state formulae.
- The syntax of path formulae in LTL is as follows:
 - \clubsuit If $p \in AP$, then p is a path formula.
 - * If g_1 and g_2 are path formulae, then so are $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, $\mathbf{X} g_1$, $\mathbf{F} g_1$, $\mathbf{G} g_1$, $g_1 \mathbf{U} g_2$, and $g_1 \mathbf{R} g_2$.

- CTL, LTL, and CTL* have distinct expressive powers.
- Some discriminating examples:
 - ***** A(FG p) in LTL, not expressible in CTL.
 - ***** AG(EF p) in CTL, not expressible in LTL.
 - ***** $A(FG p) \lor AG(EF p)$ in CTL*, not expressible in CTL or LTL.
- So, CTL* is strictly more expressive than CTL and LTL, the two of which are incomparable.

Fair Kripke Structures

- ◆ A fair Kripke structure is a 4-tuple M = (S, R, L, F), where S, L, and R are defined as before and $F \subseteq 2^S$ is a set of fairness constraints. (Generalized Büchi acceptance conditions)
- Solution Let $\pi = s_0, s_1, \ldots$ be a path in M.
- Define $\inf(\pi) = \{s \mid s = s_i \text{ for infinitely many } i\}.$
- We say that π is *fair* iff, for every $P \in F$, $inf(\pi) \cap P \neq \emptyset$.

Fair Semantics

- Solution We write $M, s \models_F f$ to indicate that the state formula f is true in state s of the fair Kripke structure M.
- $M, \pi \models_F g$ indicates that the path formula g is true along the path π in M.
- Only the following semantic rules are different from the original ones:
 - * $M, s \models_F p \iff$ there exists a fair path starting from sand $p \in L(s)$.
 - [♣] M, s ⊨_F E(g₁) ⇔ there exists a fair path π starting from s s.t. M, π ⊨_F g₁.
 - * $M, s \models_F \mathbf{A}(g_1) \iff$ for every fair path π starting from $s, M, \pi \models_F g_1$.

CTL Model Checking

- Let M = (S, R, L) be a Kripke structure.
- Solution We want to determine which states in S satisfy the CTL formula f.
- The algorithm will operate by labelling each state s with the set label(s) of sub-formulae of f which are true in s.
 - \clubsuit Initially, label(s) is just L(s).
 - During the *i*-th stage, sub-formulae with i 1 nested CTL operators are processed.
 - When a sub-formula is processed, it is added to the labelling of each state in which it is true.
 - ♦ Once the algorithm terminates, we will have that $M, s \models f$ iff $f \in label(s)$.

Handling CTL Operators

- There are ten basic CTL temporal operators: AX and EX, AF and EF, AG and EG, AU and EU, and AR and ER.
- All these operators can be expressed in terms of EX, EU, and EG:

- $\mathbf{I} \mathbf{EF} f = \mathbf{E}[true \ \mathbf{U} \ f]$

- $\mathbf{A}[f \mathbf{U} g] = \neg \mathbf{E}[\neg g \mathbf{U} (\neg f \land \neg g)] \land \neg \mathbf{E}\mathbf{G} \neg g$

CTL Model Checking: AP, \neg , \lor , EX

So, for CTL model checking, it suffices to handle the following six cases: *atomic proposition*, \neg , \lor , **EX**, **EU** and **EG**.

- Atomic propositions are handled at the beginning of the algorithm (by the initial setting label(s) = L(s)).
- Solution For $\neg f$, we label those states that are not labelled by f.
- Solution For $f_1 \vee f_2$, we label any state that is labelled either by f_1 or by f_2 .
- For EX f, we label every state that has some successor labelled by f.

CTL Model Checking: EU

- To handle formulae of the form E[f₁Uf₂], we follow these steps:
 - \circledast Find all states that are labelled with f_2 .
 - Work backward using the converse of the transition relation R and find all states that can be reached by a path in which *each state* is labelled with f_1 .
 - \clubsuit Label all such states by $\mathbf{E}[f_1\mathbf{U}f_2]$.
- This requires time O(|S| + |R|).

CTL Model Checking: EU (cont.)

```
procedure CheckEU(f_1, f_2)
   T := \{s \mid f_2 \in label(s)\};\
   for all s \in T do label(s) := label(s) \cup \{ \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \};
   while T \neq \emptyset do
       choose s \in T;
       T := T \setminus \{s\};
       for all t s.t. R(t,s) do
           if \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \notin label(t) and f_1 \in label(t) then
               label(t) := label(t) \cup \{ \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \};
               T := T \cup \{t\};
           end if;
       end for all;
   end while;
end procedure;
```


CTL Model Checking: EG

To handle formulae of the form EG f, we need the following lemma:

Let M' = (S', R', L'), where $S' = \{s \in S \mid M, s \models f\}$. $M, s \models \mathbf{EG}f$ iff the following two conditions hold: 1. $s \in S'$.

- 2. There exists a path in M' that leads from s to some node t in a *nontrivial* strongly connected component (SCC) C of the graph (S', R').
- Note: an SCC is nontrivial if either it contains at least two nodes or it contains only one node with a self loop.

CTL Model Checking: EG (cont.)

- With the lemma, we can handle EG f by the following steps:
 - 1. Construct the restricted Kripke structure M'.
 - 2. Partition the (S', R') into SCCs. (Complexity: O(|S'| + |R'|)).
 - 3. Find those states that belong to nontrivial components.
 - 4. Work backward using the converse of R' and find all of those states that can be reached by a path in which each state is labelled with f. (Complexity: O(|S| + |R|))

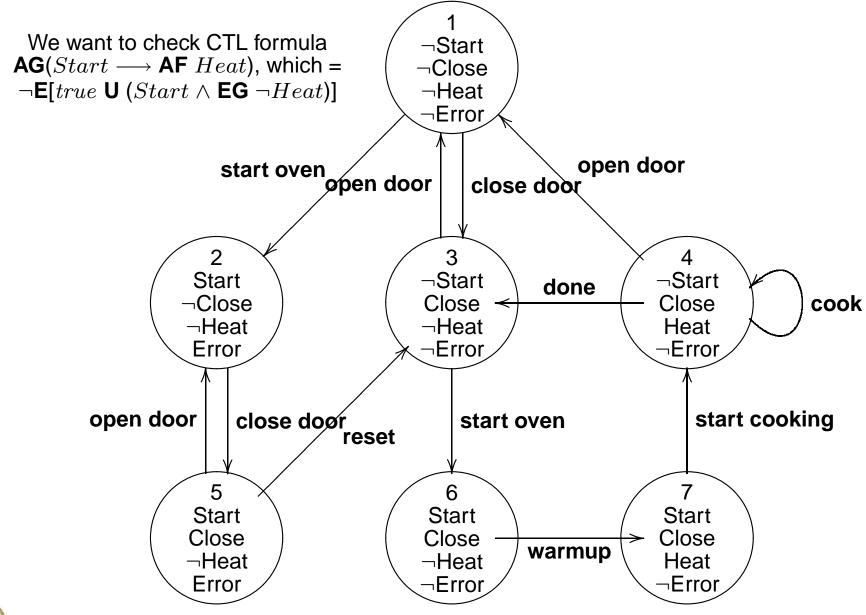
CTL Model Checking: EG (cont.)

```
procedure CheckEG(f)
   S' := \{s \mid f \in label(s)\};\
   SCC := \{C \mid C \text{ is a nontrivial SCC of S'}\};
   T := \bigcup_{C \in SCC} \{ s \mid s \in C \};
   for all s \in T do label(s) := label(s) \cup \{ \mathsf{EG}_f \};
   while T \neq \emptyset do
       choose s \in T;
      T := T \setminus \{s\};
      for all t s.t. t \in S' and R(t, s) do
          if \mathbf{EG}f \notin label(t) and f \in label(t) then
              label(t) := label(t) \cup \{ \mathbf{EG} f \};
              T := T \cup \{t\};
          end if;
       end for all;
   end while; end procedure;
```

CTL Model Checking (cont.)

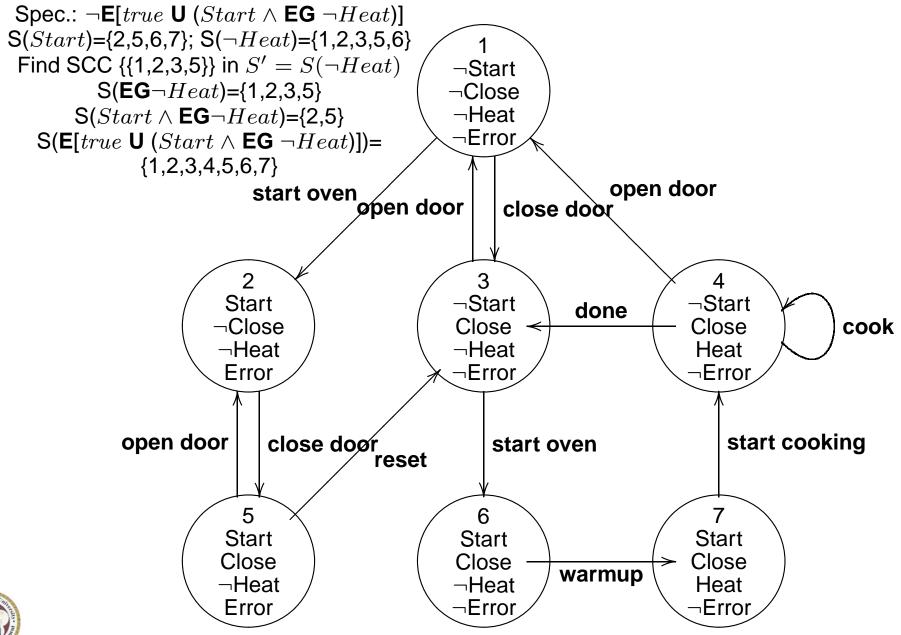
- We successively apply the state-labelling algorithm to the sub-formulae of *f*, starting with the shortest, most deeply nested, and work outward to include the whole formula.
- By proceeding in this manner, we guarantee that whenever we process a sub-formula of *f* all its sub-formulae have already been processed.
- Solution There are at most |f| sub-formulae, and each formula takes at most O(|S| + |R|) time.
- The complexity of this algorithm is $O((|f| \cdot (|S| + |R|)))$.

An Example



Automatic Verification 2009: Temporal Logic Model Checking - 25/49

An Example (cont.)



Automatic Verification 2009: Temporal Logic Model Checking – 26/49

Fairness Constraints

Solution Let M = (S, R, L, F) be a fair Kripke structure.

• Let
$$F = \{P_1, \ldots, P_k\}.$$

- We say that a SCC C is *fair* w.r.t F iff for each $P_i \in F$, there is a state $t_i \in (C \cap P_i)$.
- To handle formulae of the form EG f in a fair kripke structure, we need the following lemma:

Let M' = (S', R', L', F'), where $S' = \{s \in S \mid M, s \models_F f\}$. $M, s \models_F EGf$ iff the following two conditions holds: 1. $s \in S'$.

2. There exists a path in S' that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').

Fairness Constraints

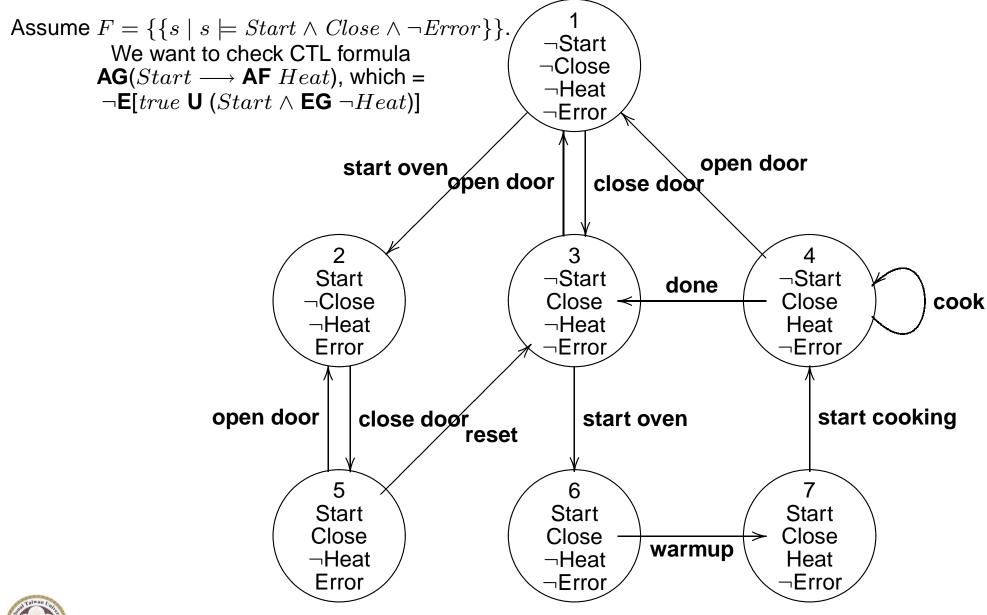
- We can create a CheckFairEG algorithm which is very similar to the CheckEG algorithm based on this lemma.
- Solution The complexity of *CheckFairEG* is $O((|S| + |R|) \cdot |F|)$, since we have to check which SCC is fair.
- To check other CTL formulae, we introduce another proposition *fair* and stipulate that

$$M, s \models fair \text{ iff } M, s \models_F \mathbf{EG} true.$$

• $M, s \models_F p$, for some $p \in AP$, we check $M, s \models p \land fair$.

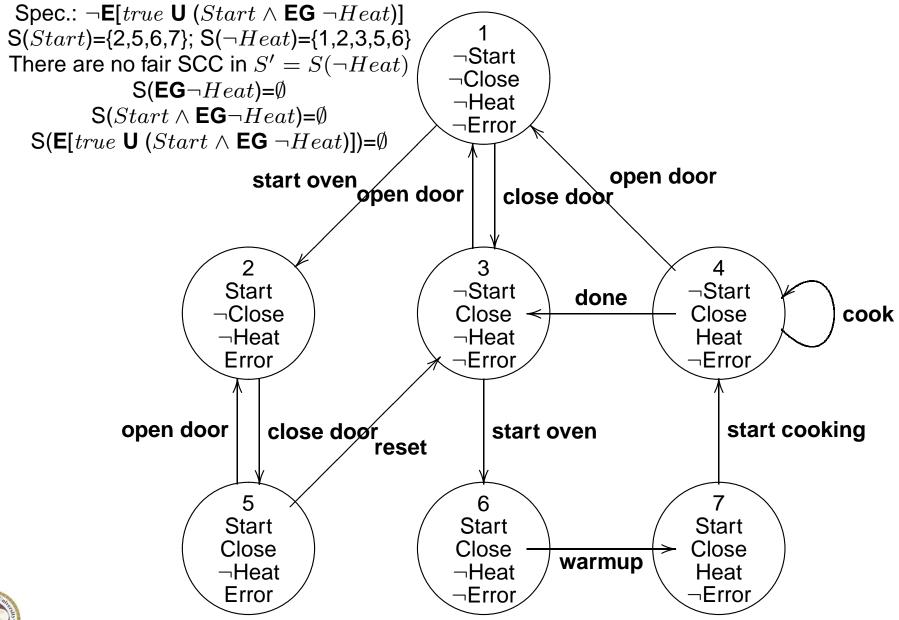
- $M, s \models_F \mathsf{EX} f$, we check $M, s \models \mathsf{EX}(f \land fair)$.
- $M, s \models_F \mathbf{E}[f_1 \mathbf{U} f_2]$, we check $M, s \models \mathbf{E}[f_1 \mathbf{U} (f_2 \wedge fair)]$.
- Overall complexity: $O(|f| \cdot (|S| + |R|) \cdot |F|)$.

An Example



Automatic Verification 2009: Temporal Logic Model Checking – 29/49

An Example (cont.)



IM NTU

Automatic Verification 2009: Temporal Logic Model Checking - 30/49

The LTL Model Checking Problem

- Let M = (S, R, L) be a Kripke structure with $s \in S$.
- Let A g be an LTL formula (so, g is a restricted path formula).
- Solution We want to check if $M, s \models \mathbf{A} g$.
- $M, s \models \mathbf{A} g \text{ iff } M, s \models \neg \mathbf{E} \neg g.$
- Solution Therefore, it suffices to be able to check $M, s \models \mathbf{E} f$, where f is a restricted path formula.

Complexity of LTL Model Checking

- The problem is PSPACE-complete.
- We can more easily show this problem to be NP-hard by a reduction from the Hamiltonian path problem.
- Solution Consider a directed graph G = (V, A) where $V = \{v_1, v_2, \dots, v_n\}.$
- Solution Determining whether *G* has a directed Hamiltonian path is reducible to the problem of determining whether $M, s \models f$, where
 - \circledast M is a finite Kripke structure (constructed from G),
 - \circledast is a state in M, and
 - f is the formula (using atomic propositions p_1, \ldots, p_n):

$$\mathbf{E}[\mathbf{F}p_1 \wedge \ldots \wedge \mathbf{F}p_n \wedge \mathbf{G}(p_1 \to \mathbf{X}\mathbf{G} \neg p_1) \wedge \ldots \wedge \mathbf{G}(p_n \to \mathbf{X}\mathbf{G} \neg p_n)].$$

Complexity of LTL Model Checking (cont.)

Solution The Kripke structure M = (U, B, L) is obtained from G = (V, A) as follows:

 $U = V \cup \{u_1, u_2\}$ where $u_1, u_2 \notin V$.

 $B = A \cup \{ (u_1, v_i) \mid v_i \in V \} \cup \{ (v_i, u_2) \mid v_i \in V \} \cup \{ (u_2, u_2) \}.$

- \therefore L is an assignment of propositions to states s.t.:
 - \bullet p_i is true in v_i for $1 \le i \le n$,
 - p_i is false in v_j for $1 \le i, j \le n$, $i \ne j$, and
 - p_i is false in u_1, u_2 for $1 \le i \le n$.
- \bigcirc Let s be u_1 .
- $M, u_1 \models f$ iff there is a directed infinite path in M starting at u_1 that goes through every $v_i \in V$ exactly once and ends in the self loop at u_2 .

LTL Model Checking

Here we introduce an algorithm by Lichtenstein and Pnueli.

- The algorithm is exponential in the length of the formula, but linear in the size of the state graph.
- It involves an implicit tableau construction.
- A tableau is a graph derived from the formula from which a model for the formula can be extracted iff the formula is satisfiable.
- To check whether M satisfies f, the algorithm composes the tableau and the Kripke structure and determines whether there exists a computation of the structure that is a path in the tableau.

Closure

- Like before, we need only deal with X and U.
- Solution The closure CL(f) of f contains formulae whose truth values can influence the truth value of f.
- It is the smallest set containing f and satisfying:
 - $= \neg f_1 \in CL(f)$ iff $f_1 \in CL(f)$,
 - \circledast if $f_1 \wedge f_2 \in CL(f)$, then $f_1, f_2 \in CL(f)$,
 - $if \mathbf{X} f_1 \in CL(f)$, then $f_1 \in CL(f)$,
 - \circledast if $\neg \mathbf{X} f_1 \in CL(f)$, then $\mathbf{X} \neg f_1 \in CL(f)$,
 - $if f_1 U f_2 \in CL(f)$, then $f_1, f_2, X[f_1 U f_2] \in CL(f)$.

Atom

- An *atom* is a pair $A = (s_A, K_A)$ with $s_A \in S$ and $K_A \subseteq CL(f) \cup AP$ s.t.:
 - ***** for each proposition $p \in AP$, $p \in K_A$ iff $p \in L(s_A)$,
 - \clubsuit for every $f_1 \in CL(f)$, $f_1 \in K_A$ iff $\neg f_1 \notin K_A$,
 - for every $f_1 \lor f_2 \in CL(f)$, $f_1 \lor f_2 \in K_A$ iff $f_1 \in K_A$ or $f_2 \in K_A$,
 - \circledast for every $\neg \mathbf{X} f_1 \in CL(f)$, $\neg \mathbf{X} f_1 \in K_A$ iff $\mathbf{X} \neg f_1 \in K_A$,
 - ♦ for every $f_1 \ \mathbf{U} \ f_2 \in CL(f)$, $f_1 \ \mathbf{U} \ f_2 \in K_A$ iff $f_2 \in K_A$ or $f_1, \mathbf{X}[f_1 \ \mathbf{U} \ f_2] \in K_A.$
- Intuitively, an atom (s_A, K_A) is defined so that K_A is a maximal consistent set of formulae that are also consistent with the labelling of s_A .

Behavior Graph and Self-Fulfilling SCC

- A graph G is constructed with the set of atoms as the set of vertices.
- (A, B) is an edge of G iff
 - $(s_A, s_B) \in R$ and
 - \clubsuit for every formula $\mathbf{X}f_1 \in CL(f)$, $\mathbf{X}f_1 \in K_A$ iff $f_1 \in K_B$.
- A nontrivial SCC *C* of the graph *G* is said to be self-fulfilling iff for every atom *A* in *C* and for every $f_1 \ \mathbf{U} \ f_2 \in K_A$ there exists an atom *B* in *C* s.t. $f_2 \in K_B$.
- Subscription Lemma: $M, s \models Ef \Leftrightarrow$ there exists an atom (s, K) in Gs.t. $f \in K$ and there is a path in G from (s, K) to a self-fulfilling SCC.

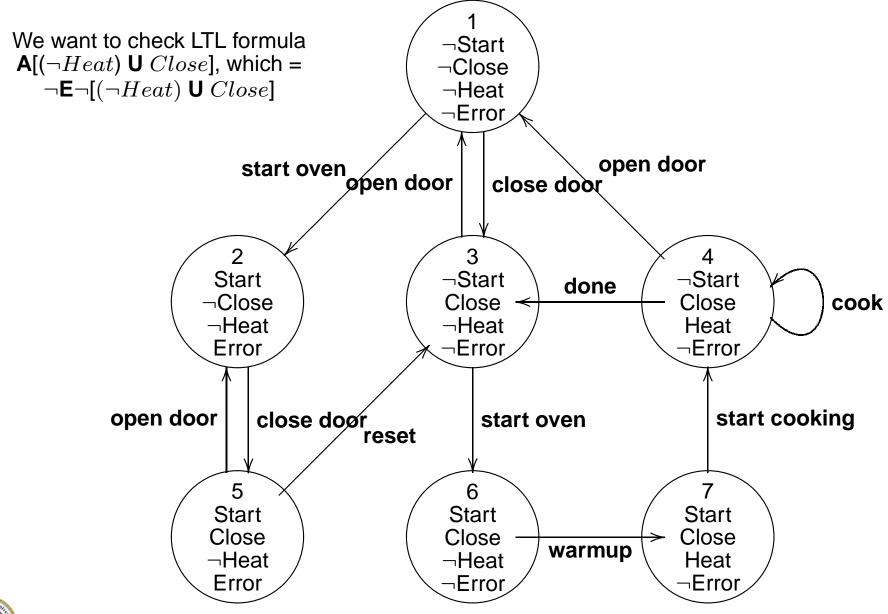
Sketch of the Correctness Proof

- A path ρ in *G* (generated from *M* and *f*) is an *eventuality* sequence if $f_1 \cup f_2 \in K_A$ for some atom *A* on ρ , then there exists an atom *B*, reachable from *A* along π , such that $f_2 \in K_B$.
- Solution Claim: $M, s \models \mathbf{E}f \Leftrightarrow$ there exists an eventuality sequence starting from (s, K) such that $f \in K$.
 - If π corresponds to an eventuality sequence, then for every g ∈ CL(f) and every i ≥ 0, πⁱ ⊨ g iff g ∈ K_i.
 - * For a path $\pi = s_0(=s), s_1, s_2, \cdots$ such that $M, \pi \models f$, define $K_i = \{g \mid g \in CL(f) \text{ and } \pi^i \models g\}$, then $(s_0, K_0), (s_1, K_1), \cdots$ is an eventuality sequence.
- Claim: there exists an eventuality sequence starting from $(s, K) \Leftrightarrow$ there is a path in *G* from (s, K) to a self-fulfilling SCC.

The LTL Model Checking Algorithm

- Given a Kripke structure M = (S, R, L), we want to check if $M, s \models \mathbf{E}f$, where f is a restricted path formula.
 - **Construct the behavior graph** G = (V, E).
 - **Find initial atom set** $A = \{(s, K) \mid (s, K) \in V \land f \in K\}.$
 - Consider nontrivial self-fulfilling SCCs, traverse backward using the converse of E and mark all reachable states.
 - **If any state in** A is marked, $M, s \models \mathbf{E}f$ is true.
- Solution Time complexity: $O((|S| + |R|) \cdot 2^{O(|f|)})$.
- Solution For a fair Kripke structure M' = (S', R', L', F'), we should check if there exists any self-fulfilling and fair SCC.

An Example



Automatic Verification 2009: Temporal Logic Model Checking - 40/49

An Example (cont.)

Solution Let f denote $(\neg Heat)$ U Close.

$\begin{array}{l} & \bullet \\ & CL(\neg f) = \\ & \{\neg f, f, \mathbf{X}f, \neg \mathbf{X}f, \mathbf{X}\neg f, Heat, \neg Heat, Close, \neg Close\}. \end{array}$

¬Close and ¬Heat in states 1 and 2, so the possible "K"
includes

 $\{\neg Close, \neg Heat, f, \mathbf{X}f\}, \{\neg Close, \neg Heat, \neg f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$

Close and ¬Heat in states 3, 5 and 6, so the possible "K" includes {Close, ¬Heat, f, Xf}, {Close, ¬Heat, f, X¬f, ¬Xf}.

• Close and Heat in states 4 and 7, so the possible "K" includes $\{Close, Heat, f, Xf\}, \{Close, Heat, f, X\neg f, \neg Xf\}.$

We can construct atoms using the states and the corresponding "K" and then build a graph based on those Automatic Verification 2009: Temporal Logic Model Checking – 41/49

Overview of CTL* Model Checking

- We will study an algorithm developed by Clarke, Emerson, and Sistla.
- The basic idea is to integrate the state labeling technique from CTL model checking into LTL model checking.
- The algorithm for LTL handles formula of the form Ef where f is a restricted path formula.
- The algorithm can be extended to handle formulae in which f contains arbitrary state sub-formulae.

Handling CTL* Operators

Again, the operators \neg , \lor , **X**, **U**, and **E** are sufficient to express any other CTL* formula.

$$f \land g \equiv \neg (\neg f \lor \neg g)$$

- \bullet **F** $f \equiv true$ **U** f
- \bigcirc **G** $f \equiv \neg$ **F** $\neg f$
- $\bullet f \mathbf{R} g \equiv \neg(\neg f \mathbf{U} \neg g)$
- $\bullet \mathbf{A} f \equiv \neg \mathbf{E} \neg f$

One Stage in CTL* Model Checking

Solution Let $\mathbf{E}f'$ be an "inner most" formula with \mathbf{E} .

Assuming that the state sub-formulae of f' have already been processed and that state labels have been updated accordingly, proceed as follows:

If $\mathbf{E} f'$ is in CTL, then apply the CTL algorithm.

- Otherwise, f' is a LTL path formula, then apply the LTL model checking algorithm.
- In both cases, the formula is added to the labels of all states that satisfy it.
- If Ef' is a sub-formula of a more complex CTL* formula, then the procedure is repeated with Ef' replaced by a fresh AP.

Note: each state sub-formula will be replaced by a fresh AP in both the labeling of the model and the formula.

Automatic Verification 2009: Temporal Logic Model Checking – 44/49

Levels of State Sub-formulae

- The state sub-formulae of level i are defined inductively as follows:
 - Level 0 contains all atomic propositions.
 - * Level i + 1 contains all state sub-formulae g s.t. all state sub-formulae of g are of level i or less and g is not contained in any lower level.
- Let g be a CTL* formula, then a sub-formula E h₁ of g is maximal iff E h₁ is not a strict sub-formula of any strict sub-formula E h of g.

State Sub-formulae (Examples)

- Solution Consider the formula $\neg \mathbf{EF}(\neg Close \land Start \land \mathbf{E}(\mathbf{F}Heat \land \mathbf{G}Error)).$
- The levels of the state sub-formulae are:
 Level 0: Close, Start, Heat, and Error
 Level 1: E(FHeat \lapha GError) and \(\neg Close\)
 Level 2: \(\neg Close \lapha Start\)
 Level 3: \(\neg Close \lapha Start \lapha E(FHeat \lapha GError)\)
 Level 4: EF(\(\neg Close \lapha Start \lapha E(FHeat \lapha GError)\))
 - $\texttt{ Level 5: } \neg \mathsf{EF}(\neg Close \land Start \land \mathsf{E}(\mathsf{F}Heat \land \mathsf{G}Error))$
- Solution Note: this is slightly different from [Clarke et al.].

CTL* Model Checking

- Let M = (S, R, L) be a Kripke structure, f a CTL* formula, and g a state sub-formula of f of level i.
- The states of M have already been labelled correctly with all state sub-formulae of level smaller than i.
- In stage i, each such g is added to the labels of all states that make it true.
- Solution For g a CTL* state formula, we proceed as follows:
 - **If** $g \in AP$, then g is in label(s) iff it is in L(s).
 - \circledast If $g = \neg g_1$, then g is in label(s) iff g_1 is not in label(s).
 - If $g = g_1 \lor g_2$, then g is added to *label(s)* iff either g_1 or g_2 are in *label(s)*. (To reduce the number of levels, do analogously for $g_1 \land g_2$.)
 - **If** $g = \mathbf{E} g_1$ call the CheckE(g) procedure.

CheckE(g) **Procedure**

procedure CheckE(g)

if g is a CTL formula then apply CTL model checking for g;

return; // next formula or next stage

end if;

 $g' := g[a_1/\mathbf{E}h_1, \dots, a_k/\mathbf{E}h_k]$; // $\mathbf{E}h_i$'s are maximal sub-formulae for all $s \in S$

for $i = 1, \ldots, k$ do

if $Eh_i \in label(s)$ then $label(s) := label(s) \cup \{a_i\}$; end for all;

apply LTL model checking for g';

for all $s \in S$ do

if $g' \in label(s)$ then $label(s) := label(s) \cup \{g\}$; end for all;

end procedure;

Complexity of the Algorithm for CTL*

- The complexity depends on the complexity of the algorithm for CTL and that for LTL.
- So, if the previous algorithms are used, the complexity is $O((|S| + |R|) \cdot 2^{O(|f|)})$.
- In real implementation, state sub-formulae need not be replaced by, but just need to be treated as, atomic propositions.

