
The SPIN Model Checker
[Based on: The SPIN Model Checker: Primer and Reference Manual,

Gerard J. Holzmann]

Sheng-Feng Yu

Dept. of Information Management
National Taiwan University

May 15, 2009

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 1 / 77

Agenda

An Introduction to SPIN

An Overview of PROMELA

Verification in SPIN

DEMO with XSPIN

References

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 2 / 77

Agenda

An Introduction to SPIN
History of SPIN
What is SPIN

3 Types of Objects

(X)SPIN Architecture
DEMO in Command Line

Hello World.pml
Generic.pml

An Overview of PROMELA

Verification in SPIN

DEMO with XSPIN

References

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 3 / 77

History of SPIN

The tool was developed at Bell Labs in the original Unix group of the
Computing Sciences Research Center, starting in 1980 by
Gerard Holzmann and others.

The software has been available freely since 1991, and continues to
evolve to keep pace with new developments in the field.

In April 2002 the tool was awarded the prestigious System Software
Award for 2001 by the ACM.

Since 1995, (approximately) annual SPIN workshops have been held
for SPIN users, researchers, and those generally interested in model
checking.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 4 / 77

What is SPIN

SPIN (Simple PROMELA INterpreter)

Is a tool for analyzing the logical consistency of concurrent systems,
specifically of data communication protocols.
Can check that the behavior specification (the system design) is
logically consistent with the requirements specification (the desired
properties of the design).
The system is described in a modeling language called PROMELA
(PROcess MEta LAnguage).

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 5 / 77

3 Types of Objects

Processes

Global and local data objects

Message channels

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 6 / 77

(X)SPIN Architecture

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 7 / 77

DEMO in Command Line

Hello World.pml

Generic.pml

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 8 / 77

Hello World.pml

Simulation run

spin Hello World.pml

Verification run

spin -a Hello World.pml
gcc -o pan pan.c
./pan
-a produces a model checker pan.*

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 9 / 77

Generic.pml

Simulation run

spin -v -u20 Generic.pml

Verification run

spin -a Generic.pml
gcc -DBFS -o pan pan.c
./pan
-DBFS use a breadth-first-search algorithm to find a short error path.

Inspection of the error trail

spin -t -v Generic.pml
-t performs a guided simulation.
-v is verbose mode, adds some more detail, and generates more hints
and warnings about the model.
Invalid end state is euphemism for a deadlock.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 10 / 77

Deadlock Diagram

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 11 / 77

Agenda

An Introduction to SPIN
An Overview of PROMELA

What is PROMELA
PROMELA Model

Variable
Data type
Process
Message channel
Statement

PROMELA Semantic

Verification in SPIN

DEMO with XSPIN

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 12 / 77

What is PROMELA

PROMELA (PROcess MEta LAnguage)

resembles the programming language C.
is a specification language to describe finite-state distributed systems.

Enforcing that restriction helps to guarantee that any correctness
property that can be stated in PROMELA is decidable.

PROMELA models are always finite-state:

There can be only finitely many running processes.
There can only be finitely many statements in a proctype.
All data types have a finite range.
All message channels have an a bounded capacity.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 13 / 77

PROMELA Model

A PROMELA model consist of:
Global variable declarations

Can be access by all processes

Type declarations

mtype, typedef, constants

Process declarations

Behavior of the processes: local variables + statements

Channel declarations
chan ch = [dim] of {type, ...}
Asynchronous: 0 < dim
Rendezvous: dim == 0

[init process]

Initializes variables and starts processes

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 14 / 77

Variables

There are only 2 levels of scope:

global variable (visible in the entire system)
local variable (visible only to the process that contains the declaration)

Predefined variables in PROMELA.
pid

current process’s instantiation number

nr pr

the number of active processes

timeout

true if no statement in the system is executable

else

true if no condition statement in the current process is executable

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 15 / 77

Data Type(1/2)

The default initial value of all data objects (global and local) is zero.

Type Typical Range Sample Declaration

bit 0, 1 bit turn = 1
bool false, true bool flag = true
byte 0..255 byte cnt
chan 1..255 chan q
mtype 1..255 mtype msg
pid 0..255 pid p

short -215..215 − 1 short s = 100
int -231..231 − 1 int x = 1

unsigned 0..2n − 1, 0 ≤ n ≤ 32 unsigned w : 3 = 5

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 16 / 77

Data Type(2/2)

Enumerated Types is a set of symbolic constants:

mtype = {apple, banana, cherry}
Note: A process can only contain one mtype declaration which must be
global.

User defined data type

typedef record{

short f1;

byte f2 = 4;

}

record rr;

rr.f1 = 5

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 17 / 77

Process

Executes concurrently with all other processes

Is defined by proctype declaration

Has its program counter and local variables

Communicates with other processes using channels or global variables

Can be instantiated in two ways:

Adding the prefix active to a proctype declaration
Using a run operator

Example:proctype eager

active [2] proctype eager(){

run eager();

run eager()

}

Note: The maximum number of processes is 255.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 18 / 77

Process Synchronization with Provided Clauses

A process can only execute statements if its provided clause evaluates
to true.

toggle.pml

bool toggle = true; /* global variable */

int cnt; /* default initial value 0 */

active proctype A() provided (toggle == true){

L: cnt++; /* increment cnt by 1 */

printf("A: cnt=%d\n", cnt);

toggle = false; /* yield control to B */

goto L

}

active proctype B() provided (toggle == false){

L: cnt--; /* decrement cnt by 1 */

printf("B: cnt=%d\n", cnt);

toggle = true; /* yield control to A */

goto L

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 19 / 77

Message Channels

Is an FIFO buffer for exchanging messages between processes.

The name of a channel can be local or global, but the channel itself is
always a global object.

If the name of a channel is local, then its lifetime is depended on the
local process lifetime.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 20 / 77

Statements

A PROMELA statement is either

executable the statement can be executed, or
blocked the statement cannot be executed (yet).

Statement executions from different processes can be interleaved
arbitrarily in time.

Rules for Executability

Basic statements define primitive state transformers in PROMELA.
They end up labeling the edges (transitions) in the finite state
automata.
6 types of basic PROMELA statements: assign, print, assert,
expression, communication(send/receive)

Control Flow

goto, if, do, break, atomic, d step, unless, ...

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 21 / 77

Assignment and Print Statement

Assign statement

is always unconditionally executable, changes value of precisely one
variable, specified on the left-hand side of the ‘=’ operator.

Print statement

is always unconditionally executable, no effect on state.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 22 / 77

Assertion Statement

assert(expression)

An assertion statement is always executable and has no effect on the
state of the system when executed.
If the expression does not necessarily hold, the assertion statement will
produce an error during verifications with SPIN.
The assertion statement can be used to check safety properties.
An assertion statement can be as a system invariant.

Because it is in an asynchronous process, this statement can be
executed at any time.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 23 / 77

Expression Statement

Executable only if expression evaluates to non-zero (true)

Example: run P(), else, timeout
run

returns 0 if the max number of processes would be exceeded by the
creation of a new process (the number of processes is bounded).
Otherwise, returns the pid of the new process.

else

is true iff none of the other guards in the same process is executable.

timeout

is true iff no other statement in any process is executable.
can be as a mechanism to avoid deadlock.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 24 / 77

timeout vs. else

timeout and else are related

Both are predefined variables.
They evaluate to true or false, depending on context.

timeout is like a system level else, but

else cannot be combined with other conditionals.
timeout can be combined, e.g. as in (timeout && a < b).

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 25 / 77

Message Passing

! Sending a data over channel

Executable when target channel is non-full
Q!X : send the value of the variable x through the channel q

? Receiving a data from channel

Executable when target channel is non-empty
Q?X : receive the value of the variable x through the channel q

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 26 / 77

Rendezvous Communication

The size of the channel is set to zero.

A send operation is enabled iff there is a matching receive operation
that can be executed simultaneously, with all constant fields
matching.

On a match, both send and receive are executed atomically.

Example:

chan ch = [0] of {bit, byte}
Sender offers: ch!1, 3+7
Receiver accepts: ch?1, x
After the rendezvous handshake completes, x is 10.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 27 / 77

Asynchronous and Synchronous Message Passing

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 28 / 77

Control Flow

Defining control flow:

Semi-colons, goto, break and labels
Non-deterministic selection and iteration

if...fi
do...od

Escape sequences:

{...} unless {...}

Atomic sequences, making things indivisible:

atomic{...}
d step{...}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 29 / 77

Case Selection

if
:: guard1 -> stmt1.1;stmt1.2;stmt1.3;...
:: guard2 -> stmt2.1;stmt2.2;stmt2.3;...
:: ...
:: guardn -> stmtn.1;stmtn.2;stmtn.3;...
fi

If at least one guard is executable, the if statement is executable.

If none of the guard statements is executable, the if statement blocks
until at least one of them can be selected.

If more than one guard is executable, one is selected
non-deterministically.

Any type of basic or compound statement can be used as a guard.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 30 / 77

Repetition

do
:: guard1 -> stmt1.1;stmt1.2;stmt1.3;...
:: guard2 -> stmt2.1;stmt2.2;stmt2.3;...
:: ...
:: guardn -> stmtn.1;stmtn.2;stmtn.3;...
od

If there is none executable statement in a do-loop, the entire loop
blocks.

Any type of basic or compound statement can be used as a guard.

Only a break or a goto can exit from a do-loop.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 31 / 77

Atomic Sequences

atomic { guard -> stmt1; stmt2; ...; stmtn; }

Executable if the guard statement is executable.
Any statement can serve as the guard statement.
Executes all statements in the sequence without interleaving with
statements in other processes.
If any statement other than the guard blocks, atomicity is lost
atomicity can be regained when the statement becomes executable.

atomic{

/* swap the values of a and b */

tmp = b;

b = a;

a = tmp

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 32 / 77

D step Sequences

d step { guard -> stmt1; stmt2; ...; stmtn; }

Like an atomic, but must be deterministic and may not block anywhere
inside the sequence.
Useful to perform intermediate computations with a deterministic
result, in a single indivisible step .
goto into and out of d step sequences are forbidden.
Atomic and d step sequences are often used as a model reduction
method, to lower complexity of large models.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 33 / 77

Atomic and D step Sequences Example(1/3)

active proctype A() { s1; s2 }

active proctype B() { t1; t2 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 34 / 77

Atomic and D step Sequences Example(2/3)

active proctype A() { atomic{ s1; s2 } }

active proctype B() { t1; t2 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 35 / 77

Atomic and D step Sequences Example(3/3)

active proctype A() { d_step{ s1; s2 } }

active proctype B() { t1; t2 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 36 / 77

Unless Statement

S unless E

Is a method to distinguish between higher and lower priority of
transitions within a single process.
If E ever becomes enabled during the execution of S, then S is aborted
and the execution continues with E.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 37 / 77

PROMELA Semantics

By simulating the execution of a SPIN model we can generate a large
directed graph of all reachable system states.

The PROMELA semantics rules define how the global reachability
graph for any given PROMELA model is to be generated.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 38 / 77

Transition Relation

Every PROMELA proctype defines a finite state automaton,
(S, s0, L, T, F)

Symbol Finite State Automaton PROMELA Model

S Set of states Possible points of control within the proctype
L Transition label set Specific basic statement
T Transition relation Flow of control
F Set of final states End-state

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 39 / 77

Proctype and Automata(1/2)

active proctype not_euclid(int x, y)

{

if

:: (x > y) -> L: x = x - y

:: (x < y) -> y = y -x

:: (x == y) -> assert (x != y); goto L

fi;

printf(‘‘%d\n’’, x)

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 40 / 77

Proctype and Automata(2/2)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 41 / 77

Operational Model(1/8)

To define the semantics of the modeling language, we can define an
operational model in terms of states and state transitions.

We have to define what a “state” is.
We have to define what a “transition” is.

i.e., how the ‘next-state relation is defined.

Global system states are defined in terms of a small number of
primitive objects:

We have to define: variables, messages, message channels, and
processes.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 42 / 77

Operational Model(2/8)

State transitions require the definition of 3 things:

transition executability rules
transition selection rules
the effect of transition

We only have to define single-step semantics to define the full
language.

The 3 parts of the semantics definition are defined over 4 types of
objects:

variables, messages, channels, processes

Well define these first.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 43 / 77

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 44 / 77

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 44 / 77

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 44 / 77

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 44 / 77

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 44 / 77

Operational Model(4/8)

variables, messages, channels, processes, transitions, global states

A message is a finite, ordered set of variables
(Messages are stored in channels - defined next.)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 45 / 77

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.
A ch id is an integer 1..MAXQ that can be stored in a variable.
An ordered set of messages with maximally nslots elements:
{ {slot1.field1 ,slot1.field2 }, {slot2.field1 ,slot2.field2 } }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 46 / 77

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.
A ch id is an integer 1..MAXQ that can be stored in a variable.
An ordered set of messages with maximally nslots elements:
{ {slot1.field1 ,slot1.field2 }, {slot2.field1 ,slot2.field2 } }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 46 / 77

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.
A ch id is an integer 1..MAXQ that can be stored in a variable.
An ordered set of messages with maximally nslots elements:
{ {slot1.field1 ,slot1.field2 }, {slot2.field1 ,slot2.field2 } }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 46 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 47 / 77

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 48 / 77

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 48 / 77

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 48 / 77

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 48 / 77

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 48 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 49 / 77

State Vector

A state vector is the information to uniquely identify a global state.

It is important to minimize the size of the state vector.

state vector = m bytes
state space = n states
Storing the state space may require n*m bytes.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 50 / 77

Storing State in SPIN

Hash function computes address(index) in the hash table.

Hash table addresses to linked list states.

All states are explicitly stored.

Lookup is fast due to hash function.

Memory needed: n*m bytes + hash table.

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 51 / 77

One-Step Semantics(1/2)

Given an arbitrary global state of the system, determine the set of
possible immediate successor states.

We’ve defined the only 4 types of objects that hold state:

variables, messages, channels, processes

To define a one-step semantics, we have to define 3 more things:

transition executability rules, transition selection rules, the effect of
transition

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 52 / 77

One-Step Semantics(2/2)

We do so by defining an algorithm: an implementation-independent
“semantics engine” for Spin.

The semantics engine executes the system in a stepwise manner:
selection and executing one basic statement at a time
At the highest level of abstraction, the behavior of this engine is
defined as follows:

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 53 / 77

The Next-State Relation

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

10 s = s’

11 p.curstate = t.target

12

13

14

15

16

17

18

19

20

21

22

23

24 }

25 }

26

27 while (stutter){

28 s = s /* ‘stutter’ extension*/

29 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 54 / 77

Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10

11

12 AllProcs:

...

38

39

40

41

42

43

44

45

46

47

48

49

50 return E /* executable transitions */

51 }

next: extenstion for timeout, else, rendezvous, atomic, unless

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 55 / 77

Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transitions */

51 }

next: extenstion for else

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 55 / 77

Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28

29 add all elements of e to E

30

31

32

33

34

35

36

37 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 56 / 77

Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

next: extension for extension for rendezvous

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 56 / 77

Adding Semantics for Rendezvous

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

10 s = s’

11 p.curstate = t.target

12

13

14

15

16

17

18

19

20

21

22

23

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 57 / 77

Adding Semantics for Rendezvous

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13

14

15

16

17

18

19

20

21

22

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 57 / 77

Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 58 / 77

Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

next: extenstion for atomic

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 58 / 77

Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36 }

37 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 58 / 77

Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 59 / 77

Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 59 / 77

Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

next: extenstion for unless (priorities)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 59 / 77

Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36 }

37 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 60 / 77

Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15 /* priority */

16 for u from high to low{

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and t.prty == u and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 } /* or else lower the priority */

35 }

36 }

37 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 60 / 77

PROMELA Semantics Engine

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13 /* try to complete rv handshake */

14 E’ = executable(s’)

15 /* if E’ is {}, s is unchanged */

16

17 for some (p’, t’) from E’{

18 s = apply(t’.effect, s’)

19 p.curstate = t.target

20 p’.curstate = t’.target

21 }

22 handshake = 0

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 61 / 77

Interpreting PROMELA Models

The semantic engine
does not have to know anything about control-flow constructs.

e.g., if, do, break, and goto

merely deals with local states and transitions.

Three examples

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 62 / 77

PROMELA Models(1/2)

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 63 / 77

PROMELA Models(2/2)

The unless keyword has a lower execution priority than the statement
that follows it

Rendezvous handshakes occur in two parts:

Sender offers
Receiver accepts

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 64 / 77

Example 1:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 65 / 77

Example 2:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 66 / 77

Example 3:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 67 / 77

Agenda

An Introduction to SPIN

An Overview of PROMELA
Verification in SPIN

Correctness Property
SPIN’s LTL Syntax
LTL Semantic
Specifying LTL properties

DEMO with XSPIN

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 68 / 77

Correctness Property

With SPIN one may check the following type of properties:

Assertions
LTL formulae
Safety properties: nothing bad happens

Deadlocks (default)
Unreachable code(default)

Liveness properties: eventually something good happens

Non-progress cycles (livelocks)
Acceptance cycles

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 69 / 77

SPIN’s LTL Syntax

f ::= p
| true
| false
| (f)
| f binop f
| unop f

uniop ::= [] (always)
| <> (eventually)
| ! (logical negation)

binop ::= U (until)
| && (logical and)
| || (logical or)
| -> (implication)
| <-> (equivalence)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 70 / 77

LTL semantics

Given an infinite trace τ = t0,t1,t2, ... and a LTL formula ϕ we can
decide if τ |= ϕ depending on the structure of ϕ

τ |= []ϕ, iff τi |= ϕ, ∀i ≥ 0

τ |=<> ϕ, iff ∃i ≥ 0 s.t. τi |= ϕ

τ |=!ϕ, iff ¬(τ |= ϕ)

τ |= ϕ1 U ϕ2, iff ∃j ≥ 0 s.t. τi |= ϕ1, for 0 ≤ i < j and τj |= ϕ2

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 71 / 77

Specifying LTL properties

LTL Formulae examples:

[] p always p invariance
<> p eventually p guarantee

p -> (<> q) p implies eventually q response
p -> (q U r) p implies q until r precedence

[] <> p always, eventually p recurrence (progress)
<> [] p eventually, always p stability (non-progress)

(<> p) -> (<> q) eventually p implies eventually q correlation

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 72 / 77

Agenda

An Introduction to SPIN

An Overview of PROMELA

Verification in SPIN

DEMO with XSPIN

References

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 73 / 77

DEMO with XSPIN

Introduction to XSPIN

DEMO

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 74 / 77

DEMO

Mutual Exclusion 1.pml

This example is a software solution to the mutual exclusion problem
proposed by Hyman.
Find a counterexample to demonstrate that this solution is incorrect.
It is interesting to note that even the Communication of the ACM was
fooled on this one.

Mutual Exclusion 2.pml (using assertion)

Mutual Exclusion 3.pml (using a monitor as invariant)

Mutual Exclusion 4.pml (using LTL property)

Peterson Mutual Exclusion.pml (using LTL property)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 75 / 77

Agenda

An Introduction to SPIN

An Overview of PROMELA

Verification in SPIN

DEMO with XSPIN

References

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 76 / 77

References

G.J. Holzmann, The SPIN Model Checker: Primer and Reference

Manual, Addison-Wesley, 2003

G.J. Holzmann, The Model Checker SPIN, IEEE Trans. Software Eng.,
vol. 23, no. 5, May 1997.

SPIN Official website

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 77 / 77

http://spinroot.com/spin/whatispin.html

	Agenda
	An Introduction to SPIN
	Agenda
	History of SPIN
	What is SPIN
	3 Types of Objects
	(X)SPIN Architecture
	DEMO in Command Line

	An Overview of PROMELA
	Agenda
	What is PROMELA
	PROMELA Model
	Variables
	Data Type
	Process
	Message Channels
	Statements
	Control Flow
	PROMELA Semantics
	Operational Model
	State Storage in SPIN
	One-Step Semantics
	PROMELA Semantics Engine
	PROMELA Models Example

	Verification in SPIN
	Agenda
	Correctness Property
	SPIN's LTL Syntax
	LTL semantics
	Specifying LTL properties

	DEMO with XSPIN
	Agenda
	DEMO with XSPIN

	References
	Agenda
	References

