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History of SPIN

The tool was developed at Bell Labs in the original Unix group of the
Computing Sciences Research Center, starting in 1980 by
Gerard Holzmann and others.

The software has been available freely since 1991, and continues to
evolve to keep pace with new developments in the field.

In April 2002 the tool was awarded the prestigious System Software
Award for 2001 by the ACM.

Since 1995, (approximately) annual SPIN workshops have been held
for SPIN users, researchers, and those generally interested in model
checking.
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What is SPIN

SPIN (Simple PROMELA INterpreter)

Is a tool for analyzing the logical consistency of concurrent systems,
specifically of data communication protocols.
Can check that the behavior specification (the system design) is
logically consistent with the requirements specification (the desired
properties of the design).
The system is described in a modeling language called PROMELA
(PROcess MEta LAnguage).
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3 Types of Objects

Processes

Global and local data objects

Message channels
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(X)SPIN Architecture
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DEMO in Command Line

Hello World.pml

Generic.pml
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Hello World.pml

Simulation run

spin Hello World.pml

Verification run

spin -a Hello World.pml
gcc -o pan pan.c
./pan
-a produces a model checker pan.*
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Generic.pml

Simulation run

spin -v -u20 Generic.pml

Verification run

spin -a Generic.pml
gcc -DBFS -o pan pan.c
./pan
-DBFS use a breadth-first-search algorithm to find a short error path.

Inspection of the error trail

spin -t -v Generic.pml
-t performs a guided simulation.
-v is verbose mode, adds some more detail, and generates more hints
and warnings about the model.
Invalid end state is euphemism for a deadlock.
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Deadlock Diagram
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What is PROMELA

PROMELA (PROcess MEta LAnguage)

resembles the programming language C.
is a specification language to describe finite-state distributed systems.

Enforcing that restriction helps to guarantee that any correctness
property that can be stated in PROMELA is decidable.

PROMELA models are always finite-state:

There can be only finitely many running processes.
There can only be finitely many statements in a proctype.
All data types have a finite range.
All message channels have an a bounded capacity.
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PROMELA Model

A PROMELA model consist of:
Global variable declarations

Can be access by all processes

Type declarations

mtype, typedef, constants

Process declarations

Behavior of the processes: local variables + statements

Channel declarations
chan ch = [dim] of {type, ...}
Asynchronous: 0 < dim
Rendezvous: dim == 0

[init process]

Initializes variables and starts processes
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Variables

There are only 2 levels of scope:

global variable (visible in the entire system)
local variable (visible only to the process that contains the declaration)

Predefined variables in PROMELA.
pid

current process’s instantiation number

nr pr

the number of active processes

timeout

true if no statement in the system is executable

else

true if no condition statement in the current process is executable
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Data Type(1/2)

The default initial value of all data objects (global and local) is zero.

Type Typical Range Sample Declaration

bit 0, 1 bit turn = 1
bool false, true bool flag = true
byte 0..255 byte cnt
chan 1..255 chan q
mtype 1..255 mtype msg
pid 0..255 pid p

short -215..215 − 1 short s = 100
int -231..231 − 1 int x = 1

unsigned 0..2n − 1, 0 ≤ n ≤ 32 unsigned w : 3 = 5

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 16 / 77



Data Type(2/2)

Enumerated Types is a set of symbolic constants:

mtype = {apple, banana, cherry}
Note: A process can only contain one mtype declaration which must be
global.

User defined data type

typedef record{

short f1;

byte f2 = 4;

}

record rr;

rr.f1 = 5
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Process

Executes concurrently with all other processes

Is defined by proctype declaration

Has its program counter and local variables

Communicates with other processes using channels or global variables

Can be instantiated in two ways:

Adding the prefix active to a proctype declaration
Using a run operator

Example:proctype eager

active [2] proctype eager(){

run eager();

run eager()

}

Note: The maximum number of processes is 255.
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Process Synchronization with Provided Clauses

A process can only execute statements if its provided clause evaluates
to true.

toggle.pml

bool toggle = true; /* global variable */

int cnt; /* default initial value 0 */

active proctype A() provided (toggle == true){

L: cnt++; /* increment cnt by 1 */

printf("A: cnt=%d\n", cnt);

toggle = false; /* yield control to B */

goto L

}

active proctype B() provided (toggle == false){

L: cnt--; /* decrement cnt by 1 */

printf("B: cnt=%d\n", cnt);

toggle = true; /* yield control to A */

goto L

}
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Message Channels

Is an FIFO buffer for exchanging messages between processes.

The name of a channel can be local or global, but the channel itself is
always a global object.

If the name of a channel is local, then its lifetime is depended on the
local process lifetime.
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Statements

A PROMELA statement is either

executable the statement can be executed, or
blocked the statement cannot be executed (yet).

Statement executions from different processes can be interleaved
arbitrarily in time.

Rules for Executability

Basic statements define primitive state transformers in PROMELA.
They end up labeling the edges (transitions) in the finite state
automata.
6 types of basic PROMELA statements: assign, print, assert,
expression, communication(send/receive)

Control Flow

goto, if, do, break, atomic, d step, unless, ...
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Assignment and Print Statement

Assign statement

is always unconditionally executable, changes value of precisely one
variable, specified on the left-hand side of the ‘=’ operator.

Print statement

is always unconditionally executable, no effect on state.
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Assertion Statement

assert(expression)

An assertion statement is always executable and has no effect on the
state of the system when executed.
If the expression does not necessarily hold, the assertion statement will
produce an error during verifications with SPIN.
The assertion statement can be used to check safety properties.
An assertion statement can be as a system invariant.

Because it is in an asynchronous process, this statement can be
executed at any time.
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Expression Statement

Executable only if expression evaluates to non-zero (true)

Example: run P(), else, timeout
run

returns 0 if the max number of processes would be exceeded by the
creation of a new process (the number of processes is bounded).
Otherwise, returns the pid of the new process.

else

is true iff none of the other guards in the same process is executable.

timeout

is true iff no other statement in any process is executable.
can be as a mechanism to avoid deadlock.
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timeout vs. else

timeout and else are related

Both are predefined variables.
They evaluate to true or false, depending on context.

timeout is like a system level else, but

else cannot be combined with other conditionals.
timeout can be combined, e.g. as in (timeout && a < b).
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Message Passing

! Sending a data over channel

Executable when target channel is non-full
Q!X : send the value of the variable x through the channel q

? Receiving a data from channel

Executable when target channel is non-empty
Q?X : receive the value of the variable x through the channel q
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Rendezvous Communication

The size of the channel is set to zero.

A send operation is enabled iff there is a matching receive operation
that can be executed simultaneously, with all constant fields
matching.

On a match, both send and receive are executed atomically.

Example:

chan ch = [0] of {bit, byte}
Sender offers: ch!1, 3+7
Receiver accepts: ch?1, x
After the rendezvous handshake completes, x is 10.
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Asynchronous and Synchronous Message Passing
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Control Flow

Defining control flow:

Semi-colons, goto, break and labels
Non-deterministic selection and iteration

if...fi
do...od

Escape sequences:

{...} unless {...}

Atomic sequences, making things indivisible:

atomic{...}
d step{...}
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Case Selection

if
:: guard1 -> stmt1.1;stmt1.2;stmt1.3;...
:: guard2 -> stmt2.1;stmt2.2;stmt2.3;...
:: ...
:: guardn -> stmtn.1;stmtn.2;stmtn.3;...
fi

If at least one guard is executable, the if statement is executable.

If none of the guard statements is executable, the if statement blocks
until at least one of them can be selected.

If more than one guard is executable, one is selected
non-deterministically.

Any type of basic or compound statement can be used as a guard.
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Repetition

do
:: guard1 -> stmt1.1;stmt1.2;stmt1.3;...
:: guard2 -> stmt2.1;stmt2.2;stmt2.3;...
:: ...
:: guardn -> stmtn.1;stmtn.2;stmtn.3;...
od

If there is none executable statement in a do-loop, the entire loop
blocks.

Any type of basic or compound statement can be used as a guard.

Only a break or a goto can exit from a do-loop.
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Atomic Sequences

atomic { guard -> stmt1; stmt2; ...; stmtn; }

Executable if the guard statement is executable.
Any statement can serve as the guard statement.
Executes all statements in the sequence without interleaving with
statements in other processes.
If any statement other than the guard blocks, atomicity is lost
atomicity can be regained when the statement becomes executable.

atomic{

/* swap the values of a and b */

tmp = b;

b = a;

a = tmp

}
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D step Sequences

d step { guard -> stmt1; stmt2; ...; stmtn; }

Like an atomic, but must be deterministic and may not block anywhere
inside the sequence.
Useful to perform intermediate computations with a deterministic
result, in a single indivisible step .
goto into and out of d step sequences are forbidden.
Atomic and d step sequences are often used as a model reduction
method, to lower complexity of large models.
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Atomic and D step Sequences Example(1/3)

active proctype A() { s1; s2 }

active proctype B() { t1; t2 }
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Atomic and D step Sequences Example(2/3)

active proctype A() { atomic{ s1; s2 } }

active proctype B() { t1; t2 }
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Atomic and D step Sequences Example(3/3)

active proctype A() { d_step{ s1; s2 } }

active proctype B() { t1; t2 }
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Unless Statement

S unless E

Is a method to distinguish between higher and lower priority of
transitions within a single process.
If E ever becomes enabled during the execution of S, then S is aborted
and the execution continues with E.
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PROMELA Semantics

By simulating the execution of a SPIN model we can generate a large
directed graph of all reachable system states.

The PROMELA semantics rules define how the global reachability
graph for any given PROMELA model is to be generated.
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Transition Relation

Every PROMELA proctype defines a finite state automaton,
(S, s0, L, T, F)

Symbol Finite State Automaton PROMELA Model

S Set of states Possible points of control within the proctype
L Transition label set Specific basic statement
T Transition relation Flow of control
F Set of final states End-state
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Proctype and Automata(1/2)

active proctype not_euclid(int x, y)

{

if

:: (x > y) -> L: x = x - y

:: (x < y) -> y = y -x

:: (x == y) -> assert (x != y); goto L

fi;

printf(‘‘%d\n’’, x)

}
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Proctype and Automata(2/2)
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Operational Model(1/8)

To define the semantics of the modeling language, we can define an
operational model in terms of states and state transitions.

We have to define what a “state” is.
We have to define what a “transition” is.

i.e., how the ‘next-state relation is defined.

Global system states are defined in terms of a small number of
primitive objects:

We have to define: variables, messages, message channels, and
processes.
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Operational Model(2/8)

State transitions require the definition of 3 things:

transition executability rules
transition selection rules
the effect of transition

We only have to define single-step semantics to define the full
language.

The 3 parts of the semantics definition are defined over 4 types of
objects:

variables, messages, channels, processes

Well define these first.
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Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}
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Operational Model(4/8)

variables, messages, channels, processes, transitions, global states

A message is a finite, ordered set of variables
(Messages are stored in channels - defined next.)

Sheng-Feng Yu (SVVRL @ IM.NTU) The SPIN Model Checker May 15, 2009 45 / 77



Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.
A ch id is an integer 1..MAXQ that can be stored in a variable.
An ordered set of messages with maximally nslots elements:
{ {slot1.field1 ,slot1.field2 }, {slot2.field1 ,slot2.field2 } }
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Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates
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Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition is defined by a seven-tuple
{ tri id, source-state, target-state, cond, effect, priority, rv }

Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.
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Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

a global state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule
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State Vector

A state vector is the information to uniquely identify a global state.

It is important to minimize the size of the state vector.

state vector = m bytes
state space = n states
Storing the state space may require n*m bytes.
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Storing State in SPIN

Hash function computes address(index) in the hash table.

Hash table addresses to linked list states.

All states are explicitly stored.

Lookup is fast due to hash function.

Memory needed: n*m bytes + hash table.
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One-Step Semantics(1/2)

Given an arbitrary global state of the system, determine the set of
possible immediate successor states.

We’ve defined the only 4 types of objects that hold state:

variables, messages, channels, processes

To define a one-step semantics, we have to define 3 more things:

transition executability rules, transition selection rules, the effect of
transition
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One-Step Semantics(2/2)

We do so by defining an algorithm: an implementation-independent
“semantics engine” for Spin.

The semantics engine executes the system in a stepwise manner:
selection and executing one basic statement at a time
At the highest level of abstraction, the behavior of this engine is
defined as follows:
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The Next-State Relation

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

10 s = s’

11 p.curstate = t.target

12

13

14

15

16

17

18

19

20

21

22

23

24 }

25 }

26

27 while (stutter){

28 s = s /* ‘stutter’ extension*/

29 }
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Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10

11

12 AllProcs:

...

38

39

40

41

42

43

44

45

46

47

48

49

50 return E /* executable transitions */

51 }

next: extenstion for timeout, else, rendezvous, atomic, unless
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Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transitions */

51 }

next: extenstion for else
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Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28

29 add all elements of e to E

30

31

32

33

34

35

36

37 }
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Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

next: extension for extension for rendezvous
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Adding Semantics for Rendezvous

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

10 s = s’

11 p.curstate = t.target

12

13

14

15

16

17

18

19

20

21

22

23

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }
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Adding Semantics for Rendezvous

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13

14

15

16

17

18

19

20

21

22

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

next: extenstion for atomic
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36 }

37 }
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Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }
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1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }
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Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

next: extenstion for unless (priorities)
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Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36 }

37 }
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Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15 /* priority */

16 for u from high to low{

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and t.prty == u and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 } /* or else lower the priority */

35 }

36 }

37 }
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PROMELA Semantics Engine

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13 /* try to complete rv handshake */

14 E’ = executable(s’)

15 /* if E’ is {}, s is unchanged */

16

17 for some (p’, t’) from E’{

18 s = apply(t’.effect, s’)

19 p.curstate = t.target

20 p’.curstate = t’.target

21 }

22 handshake = 0

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }
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Interpreting PROMELA Models

The semantic engine
does not have to know anything about control-flow constructs.

e.g., if, do, break, and goto

merely deals with local states and transitions.

Three examples
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PROMELA Models(1/2)

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}
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PROMELA Models(2/2)

The unless keyword has a lower execution priority than the statement
that follows it

Rendezvous handshakes occur in two parts:

Sender offers
Receiver accepts
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Example 1:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}
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Example 2:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}
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Example 3:3

chan x = [0] of {bit}

chan y = [0] of {bit}

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}
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Correctness Property

With SPIN one may check the following type of properties:

Assertions
LTL formulae
Safety properties: nothing bad happens

Deadlocks (default)
Unreachable code(default)

Liveness properties: eventually something good happens

Non-progress cycles (livelocks)
Acceptance cycles
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SPIN’s LTL Syntax

f ::= p
| true
| false
| ( f )
| f binop f
| unop f

uniop ::= [] (always)
| <> (eventually)
| ! (logical negation)

binop ::= U (until)
| && (logical and)
| || (logical or)
| -> (implication)
| <-> (equivalence)
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LTL semantics

Given an infinite trace τ = t0,t1,t2, ... and a LTL formula ϕ we can
decide if τ |= ϕ depending on the structure of ϕ

τ |= []ϕ, iff τi |= ϕ, ∀i ≥ 0

τ |=<> ϕ, iff ∃i ≥ 0 s.t. τi |= ϕ

τ |=!ϕ, iff ¬(τ |= ϕ)

τ |= ϕ1 U ϕ2, iff ∃j ≥ 0 s.t. τi |= ϕ1, for 0 ≤ i < j and τj |= ϕ2
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Specifying LTL properties

LTL Formulae examples:

[] p always p invariance
<> p eventually p guarantee

p -> (<> q) p implies eventually q response
p -> (q U r) p implies q until r precedence

[] <> p always, eventually p recurrence (progress)
<> [] p eventually, always p stability (non-progress)

(<> p) -> (<> q) eventually p implies eventually q correlation
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DEMO with XSPIN

Introduction to XSPIN

DEMO
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DEMO

Mutual Exclusion 1.pml

This example is a software solution to the mutual exclusion problem
proposed by Hyman.
Find a counterexample to demonstrate that this solution is incorrect.
It is interesting to note that even the Communication of the ACM was
fooled on this one.

Mutual Exclusion 2.pml (using assertion)

Mutual Exclusion 3.pml (using a monitor as invariant)

Mutual Exclusion 4.pml (using LTL property)

Peterson Mutual Exclusion.pml (using LTL property)
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