

Equivalence, Simulation, and Abstraction

(Based on [Clarke et al. 1999])

Yih-Kuen Tsay (original created by Yu-Fang Chen)

> Dept. of Information Management National Taiwan University

Introduction: The Need to Abstract

- Abstraction is probably the most important technique for alleviating the state-explosion problem.
- Traditionally, finite-state verification (in particular, model checking) methods are geared towards control-oriented systems.
- When nontrivial data manipulations are involved, the complexity of verification is often very high.
- Fortunately, many verification tasks do not require complete information about the system (e.g., one may concern only about whether the value of a variable is odd or even).
- The main idea is to map the set of actual data values to a small set of abstract values.
- An abstract version of the actual system thus obtained is smaller and easier to verify.

Outline

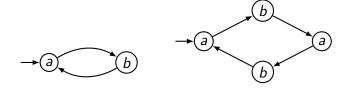
- Bisimulation Equivalence
- 📀 Simulation Relation (Preorder)
- 😚 Cone of Influence Reduction
- 😚 Data Abstraction
 - Approximation
 - 🌻 Exact Approximation

Bisimulation Equivalence

- Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP, S', S'_0, R', L' \rangle$ be two Kripke structures with the same set AP of atomic propositions.
- \odot A relation $B \subseteq S \times S'$ is a bisimulation relation between M and M' iff, for all s and s', B(s,s') implies the following:
 - * L(s) = L'(s').
 - * For every state s_1 satisfying $R(s, s_1)$, there is s_1' such that $R'(s', s_1')$ and $B(s_1, s_1')$.
 - * For every state s'_1 satisfying $R'(s', s'_1)$, there is s_1 such that $R(s, s_1)$ and $B(s_1, s'_1)$.
- Two structures M and M' are bisimulation equivalent, denoted $M \equiv M'$, if there exists a bisimulation relation B between M and M' such that:
 - \red for every $s_0 \in S_0$ there is an $s_0' \in S_0'$ such that $B(S_0, S_0')$, and
 - $ilde{*}$ for every $s_0' \in S_0'$ there is an $s_0 \in S_0$ such that $B(S_0, S_0')$.

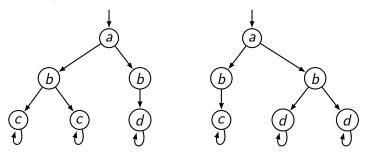
Bisimulation Equivalence (cont.)

Unwinding preserves bisimulation.



Bisimulation Equivalence (cont.)

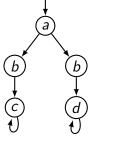
Duplication preserves bisimulation.

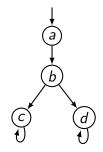


Two states related by a bisimulation relation is said to be bisimular.

Bisimulation Equivalence (cont.)

• These two structures are not bisimulation equivalent:





Relating CTL* and Bisimulation

Theorem

If $M \equiv M'$ then, for every CTL^* formula f, $M \models f \Leftrightarrow M' \models f$.

- This can be proven with the following two lemmas.
- We say that two paths $\pi = s_0 s_1 \dots$ in M and $\pi' = s'_0 s'_1 \dots$ in M' correspond iff, for every $i \geq 0$, $B(s_i, s'_i)$.

Lemma

Let s and s' be two states such that B(s, s'). Then for every path starting from s there is a corresponding path starting from s' and vice versa.

Relating CTL* and Bisimulation (cont.)

Lemma

Let f be either a state or a path formula. Assume that s and s' are bisimilar states and that π and π' are corresponding paths. Then,

- \bigcirc if f is a state formula, then $s \models f \Leftrightarrow s' \models f$, and
- if f is a path formula, then $\pi \vDash f \Leftrightarrow \pi' \vDash f$.
- Base: $f = p \in AP$. Since B(s, s'), L(s) = L'(s'). Thus, $s \models p \Leftrightarrow s' \models p$.
- ightharpoonup Induction (partial): $f = \mathbf{E} f_1$, a state formula.
 - \red If $s \models \mathbf{E} f_1$ then there is a path π from s s.t. $\pi \models f_1$.
 - ** From the previous lemma, there is a corresponding path π' starting from s'.
 - $ilde{*}$ From the induction hypothesis, $\pi \vDash f_1 \Leftrightarrow \pi' \vDash f_1$.
 - $\stackrel{\text{\ensuremath{\not{\circ}}}}{=}$ Therefore, $s' \models \mathbf{E} f_1$.

Simulation Relation (Preorder)

- Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP', S', S'_0, R', L' \rangle$ be two structures with $AP \supset AP'$.
- A relation $H \subseteq S \times S'$ is a simulation relation between M and M' iff, for all s and s', if H(s,s') then the following conditions hold:
 - $\# L(s) \cap AP' = L'(s').$
 - * For every state s_1 satisfying $R(s, s_1)$ there is s'_1 such that $R'(s', s'_1)$ and $H(s_1, s'_1)$.
- We say that M' simulates M or M is simulated by M', denoted $M \leq M'$, if there exists a simulation relation H such that for every $s_0 \in S$ there is an $s_0' \in S_0'$ for which $H(s_0, s_0')$ holds.
- The simulation relation can be shown to be a preorder (i.e., reflexive and transitive).

Relating ACTL* and Simulation

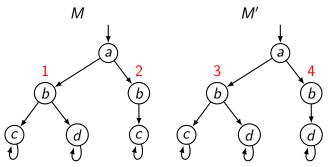
Theorem

Suppose $M \leq M'$. Then for every ACTL* formula f (with atomic propositions in AP'), $M' \models f \Rightarrow M \models f$.

- Formulae in ACTL* describe properties that are quantified over all possible behaviors of a structure.
- lacktriangledown Because every behavior of M is a behavior of M', every formula of ACTL* that is true in M' must also be true in M.
- The theorem does not hold for CTL* formulae.
- In the example on the next slide, M simulates M'; however, $\mathbf{AG}(b \to \mathbf{EX} \ c)$ is true in M but false in M'.

Compare Bisimulation and Simulation

Consider these two structures:



- \bigcirc M and M' are not bisimulation equivalent, but each simulates the other.
- **ORTHIFF** $\mathbf{AG}(b \to \mathbf{EX} \ c)$ is true in M, but false in M'.

Cone of Influence Reduction

- The cone of influence reduction attempts to decrease the size of a state transition graph by focusing on the variables of the system that are referred to in the desired property specification.
- The reduction is obtained by eliminating variables that do not influence the variables in the specification.
- In this way, the checked properties are preserved, but the size of the model that needs to be verified is smaller.

Cone of Influence Reduction (cont.)

- Let $V = \{v_1, \dots, v_n\}$ be the set of Boolean variables of a given structure $M = (S, R, S_0, L)$.
- ♦ The transition relation R is specified by $\bigwedge_{i=1}^{n} [v'_i = f_i(V)]$.
- Suppose we are given a set of variables $V' \subseteq V$ that are of interest w.r.t. the property specification.
- lacktriangle The cone of influence C of V' is the minimal set of variables such that
 - $WV'\subseteq C$
 - $ilde{*}$ if for some $v_l \in C$ its f_l depends on v_j , then $v_j \in C$.
- We construct a new (reduced) structure by removing all the clauses in R whose left hand side variables do not appear in C and using C to construct states.

An Example

- Let $V = \{v_0, v_1, v_2\}$ and $M = (S, R, S_0, L)$ a structure over V, where $R = (v'_0 = \neg v_0) \land (v'_1 = v_0 \oplus v_1) \land (v'_2 = v_1 \oplus v_2)$.
 - * If $V' = \{v_0\}$ then $C = \{v_0\}$, since $f_0 = \neg v_0$ does not depend on any variable other than v_0 .
 - ***** If $V' = \{v_1\}$ then $C = \{v_0, v_1\}$, since $f_1 = v_0 \oplus v_1$ depends on both variables.
 - * If $V' = \{v_2\}$ then $C = \{v_0, v_1, v_2\}$, since $f_2 = v_1 \oplus v_2$ depends on v_1, v_2 and $f_1 = v_0 \oplus v_1$ depends on v_0, v_1 (because v_1 is in C).

The Reduced Model

- Let $V = \{v_1, \dots, v_n\}$.
- $M = (S, R, S_0, L)$ is a structure over V:
 - $ilde{*}$ $S = \{0,1\}^n$ is the set of all valuations of V.
 - $R = \bigwedge_{i=1}^n [v_i' = f_i(V)].$
 - $\# L(s) = \{v_i \mid s(v_i) = 1 \text{ for } 1 \le i \le n\}.$
 - $\circledast S_0 \subseteq S.$
- The reduced model $\widehat{M} = (\widehat{S}, \widehat{R}, \widehat{S_0}, \widehat{L})$ w.r.t. $C = \{v_1, \dots, v_k\}$ for some $k \leq n$:

 - $\widehat{R} = \bigwedge_{i=1}^k [v_i' = f_i(V)].$

 - $\widehat{S}_0 = \{(\widehat{d}_1, \dots, \widehat{d}_k) \mid \text{ there is a state } (d_1, \dots, d_n) \in S_0 \text{ s.t. }$ $\widehat{d}_1 = d_1 \wedge \dots \wedge \widehat{d}_k = d_k\}.$

Bisimulation Equivalence between Models

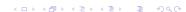
- Let $B \subseteq S \times \widehat{S}$ be the relation defined as follows: $((d_1, \ldots, d_n), (\widehat{d_1}, \ldots, \widehat{d_k})) \in B \Leftrightarrow d_i = \widehat{d_i}$ for all $1 \le i \le k$.
- lacktriangledown We show that B is a bisimulation relation between M and \widehat{M} $(M\equiv \widehat{M}).$
 - $ilde{ ilde{*}}$ For every $s_0\in S$ there is a corresponding $\widehat{s_0}\in \widehat{S}$ and *vice versa*.
 - $ilde{*}$ Let $s=(d_1,\ldots,d_n)$ and $\widehat{s}=(\widehat{d_1},\ldots,\widehat{d_k})$ s.t. $(s,\widehat{s})\in B$.
 - $\stackrel{\$}{\sim} L(s) \cap C = \widehat{L}(\widehat{s}).$
 - $rac{*}{N}$ If s o t is a transition in M, then there is a transition $\widehat{s} o \widehat{t}$ in \widehat{M} s.t. $(t,\widehat{t}) \in B$.
 - ***** If $\widehat{s} \to \widehat{t}$ is a transition in \widehat{M} , then there is a transition $s \to t$ in M s.t. $(t, \widehat{t}) \in B$.

Bisimulation Equiv. between Models (cont.)

- Let $s \to t$ be a transition in M.
- \P There is a transition $\widehat{s} \to \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$.
 - 1. For $1 \le i \le n, v'_i = f_i(V)$. (Transition relation)
 - 2. For $1 \le i \le k$, v_i depends only on variables in C, hence $v_i' = f_i(C)$. (Definition of C)
 - 3. $(s, \hat{s}) \in B$ implies $\bigwedge_{i=1}^k (d_i = \hat{d}_i)$. (Bisimilar states)
 - 4. Let $t = (e_1, \ldots, e_k)$. For every $1 \le i \le k$, $e_i = f_i(d_1, \ldots, d_k) = f_i(\widehat{d_1}, \ldots, \widehat{d_k})$. (From 2,3)
 - 5. If we choose $\hat{t} = (e_1, \dots, e_k)$, then $\hat{s} \to \hat{t}$ and $(t, \hat{t}) \in B$ as required.

Theorem

Let f be a CTL* formula with atomic propositions in C. Then $M \models f \Leftrightarrow \widehat{M} \models f$.



Data Abstraction

- Data abstraction involves finding a mapping between the actual data values in the system and a small set of abstract data values.
- By extending this mapping to states and transitions, it is possible to obtain an abstract system that simulates the original system and is usually much smaller.
- **Example:** Assume we are interested in expressing a property involving the sign of x. We create a domain A_x of abstract values for x, with $\{a_0, a_+, a_-\}$, and define a mapping h_x from D_x to A_x as follows:

$$h_x(d) = \begin{cases} a_0 & \text{if } d = 0 \\ a_+ & \text{if } d > 0 \\ a_- & \text{if } d < 0 \end{cases}$$

Data Abstraction (cont.)

- The abstract value of x can be expressed by three APs: " $\hat{x} = a_0$ ", " $\hat{x} = a_+$ ", and " $\hat{x} = a_-$ ".
- All states labelled with " $\hat{x} = a_+$ " will be collapsed into one state; that is, all states where x > 0 are merged into one.
- If there is a transition between, e.g., states corresponding to x=0 and x=5, there must be a transition between states labelled $\hat{x}=a_0$ and $\hat{x}=a_+$.

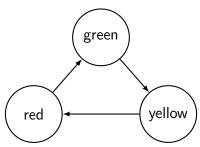
The Reduced Model by Abstraction

- \bullet Let h be a mapping form D to an abstract domain A.
- The mapping determines a set of abstract atomic propositions *AP*.
- We now obtain a new structure $M = (S, R, S_0, L)$ that is identical to the original one expect that L labels each state with a subset of AP.
- The structure M can be collapsed into a reduced structure M_r over AP defined as follows:
 - $S_r = \{L(s) \mid s \in S\}.$
 - * $R_r(s_r, t_r)$ iff there exist s and t s.t. $s_r = L(s)$, $t_r = L(t)$, and R(s, t).
 - $ilde{*} \; s_r \in S_0^r$ iff there exists an s s.t. $s_r = L(s)$ and $s \in S_0$.
 - $ilde{*} L_r(s_r) = s_r$ (each s_r is a set of atomic propositions).

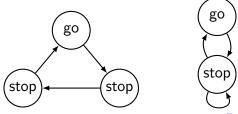
The Reduced Model by Abstraction (cont.)

- \bigcirc M_r simulates the structure M.
- Solution Every path that can be generated by M can also be generated by M_r .
- Whatever ACTL* properties we can prove about M_r will be also hold in M.
- Note that using this technique it is only possible to determine whether formulae over *AP* are true in *M*.

The Reduced Model by Abstraction (cont.)



h(red) = stop; h(yellow) = stop; h(green) = go.



Approximation

- \bullet The construction of M_r , as described, requires the construction of M.
- When M is too large, we use an implicit representation in terms of S_0 and \mathcal{R} .
- \odot In many cases, M_r may still be too large to construct exactly.
- To further reduce the state space, an approximation M_a that simulates M_r is constructed.
- The goal here is to have M_a sufficiently close to M_r so that it is still possible to verify interesting properties.

The Model in FOL

- We use the first order formulae S_0 and R to define the Kripke structure $M = (S, R, S_0, L)$ with state set $S = D \times \cdots \times D$.
- igotimes S_0 is the set of valuations satisfying \mathcal{S}_0 .
- $\red{\ }$ Similarly, R is derived from $\mathcal{R}.$
- L is defined over abstract atomic propositions, e.g., $\{ \hat{x}_1 = a_1^n, \hat{x}_2 = a_2^n, \dots, \hat{x}_n = a_n^n \}.$

The Reduced Model in FOL

- To produce M_r over the abstract state set $A \times \cdots \times A$, we construct formulae over $\widehat{x_1}, \ldots, \widehat{x_n}$ and $\widehat{x_1}', \ldots, \widehat{x_n}'$ that will represent the initial states and transition relation of M_r .
- $\widehat{S_0} = \exists x_1 \cdots \exists x_n (h(x_1) = \widehat{x_1} \wedge \cdots \wedge h(x_n) = \widehat{x_n} \wedge S_0(x_1, \ldots, x_n)).$
- $\widehat{\mathcal{R}} = \exists x_1 \cdots \exists x_n \exists x_1' \cdots \exists x_n' (h(x_1) = \widehat{x_1} \wedge \cdots \wedge h(x_n) = \widehat{x_n} \wedge h(x_1') = \widehat{x_1}' \wedge \cdots \wedge h(x_n') = \widehat{x_n}' \wedge \mathcal{R}(x_1, \dots, x_n, x_1', \dots, x_n')).$
- For conciseness, this existential abstraction operation is denoted by [·].
- If ϕ depends on the free variables x_1, \ldots, x_m , then define $[\phi](\widehat{x_1}, \ldots, \widehat{x_m}) = \exists x_1 \cdots \exists x_m (h(x_1) = \widehat{x_1} \wedge \cdots \wedge h(x_m) = \widehat{x_m} \wedge \phi(x_1, \ldots, x_m))$
- So, $\widehat{\mathcal{S}_0} = [\mathcal{S}_0]$ and $\widehat{\mathcal{R}} = [\mathcal{R}]$.

Computing Approximation

- Ideally, we would like to extract S_0^r and R_r from $[S_0]$ and [R]. However, this is often computationally expensive.
- lacktriangle To circumvent this difficulty, we define a transformation ${\mathcal A}$ on formula ϕ .
- The idea is to simplify the formulae to which [·] is applied ("pushing the abstractions inward").
- This will make it easier to extract the Kripke structure from the formulae.

- Assume ϕ is given in the negation normal form.
- lacktriangle The approximation $\mathcal{A}(\phi)$ of $[\phi]$ is computed as follows.
 - $\mathscr{P}(P(x_1,\ldots,x_m))=[P](\widehat{x_1},\ldots,\widehat{x_m})$ if P is a primitive relation.
 - $ilde{*}$ Similarly, $\mathcal{A}(\neg P(x_1,\ldots,x_m))=[\neg P](\widehat{x_1},\ldots,\widehat{x_m}).$

 - $\mathcal{A}(\phi_1 \vee \phi_2) = \mathcal{A}(\phi_1) \vee \mathcal{A}(\phi_2).$

- The approximation Kripke structure $M_a = (S_a, s_0^a, R_a, L_a)$ can be derived from $\mathcal{A}(S_0)$ and $\mathcal{A}(\mathcal{R})$.
- $igoplus egin{aligned} igoplus \mathsf{Let} \; s_a &= (a_1, \dots, a_n) \in \mathcal{S}_a. \; \; \mathsf{Then} \ L_a(s_a) &= \{\; ``\widehat{x_1} = a_1" \; , \; ``\widehat{x_2} = a_2" \; , \dots, \; ``\widehat{x_n} = a_n" \; \}. \end{aligned}$
- Note that $s = (d_1, \dots, d_n) \in S$ and s_a will be labeled identically if for all i, $h(d_i) = a_i$.

- The price for the approximation is that it may be necessary to add extra initial states and transitions to the corresponding structure.
- This is because $[\phi]$ implies $\mathcal{A}(\phi)$, but the converse may not be true.
- igoplus In particular, $[\mathcal{S}_0] o \mathcal{A}(\mathcal{S}_0)$ and $[\mathcal{R}] o \mathcal{A}(\mathcal{R}).$

Theorem

 $[\phi]$ implies $\mathcal{A}(\phi)$.

- lacktriangle The proof is by induction on the structure of ϕ .
- lacksquare We show the case $\phi(\mathit{x}_1,\ldots,\mathit{x}_{\mathit{m}})=orall \mathit{x}\phi_1$ only.

Theorem

 $M \leq M_a$.

Proof.

- 1. Because the approximation M_a only adds extra initial states and transitions to the reduced model M_r , all paths in the M_r are reserved. So, $M_r \leq M_a$.
- 2. Since $M \leq M_r$ and \leq is transitive, $M \leq M_a$.

Corollary

Every ACTL* formula that holds in M_a also holds in M.

Exact Approximation

- We consider some additional conditions that allow us to show that M is bisimulation equivalent to M_a .
- **Solution** Each abstraction mapping h_x for variable x induces an equivalence relation \sim_x :

 - $d_1 \sim_{\times} d_2 \text{ iff } h_{\times}(d_1) = h_{\times}(d_2).$
- \bigcirc The equivalence relation \sim_{x_i} is a congruence with respect to a primitive relation P iff

$$\forall d_1 \cdots \forall d_m \forall e_1 \cdots \forall e_m \\ \left(\bigwedge_{i=1}^m d_i \sim_{\times_i} e_i \rightarrow (P(d_1, \ldots, d_m) \Leftrightarrow P(e_1, \ldots, e_m)) \right)$$

Exact Approximation (cont.)

Theorem

If the \sim_{x_i} are congruences with respect to the primitive relations and ϕ is a formula defined over these relations, then $[\phi] \Leftrightarrow \mathcal{A}(\phi)$, i.e., $M_\mathsf{a} \equiv M_r$.

Theorem

If \sim_{x_i} are congruences with respect to the primitive relations, then $M \equiv M_a$.