

Compositional Reasoning

Yih-Kuen Tsay (original created by Yu-Fang Chen)

Dept. of Information Management National Taiwan University

Compositional Verification

- Verification Task: verify if the system composed of components M_1 and M_2 satisfies a property P, i.e., $M_1 || M_2 \models P$.
- M_1 and M_2 may rely on each other to satisfy P.
- So, it is usually not possible to verify M_1 and M_2 separately.

 M_1 alone does not guarantee "always x = true"!

SVVRL @ IM.NTU Compositional Verification (cont.)

• Assume-Guarantee reasoning:

- Here, we assume M_1 , M_2 , A, and P are finite automata.
- If a small A (an abstraction of M₂) exists, then the overall verification task may become easier.

A Language-Theoretic Framework

The behaviors of components and properties are described as regular languages.
Parallel composition is presented by the intersection of the languages.
A system satisfies a property if the language of the system is a subset of the language of the property.

Outline

- Learning-Based Compositional Model Checking:
 - Automation by Learning
 - □ The L* Algorithm
 - □ The Problem of L*-Based Approaches
- Learning Minimal Separating DFA's:
 - □ The L^{SEP} Algorithm
 - Comparison with Another Algorithm
 - Adapt L^{SEP} for Compositional Model Checking

Overview of the L* Algorithm

If such a teacher is provided, L^* guarantees to produce a DFA that recognizes U using a polynomial number of queries.

Automation by Learning

- **First developed** by Cobleigh, Giannakopoulou, and Pasareanu [TACAS 2003]
- Apply the L* learning algorithm for regular languages to find an A for the assume-guarantee rule:

The Algorithm of Cobleigh et al.

Automatically find an for the following assume-guarantee rule:

- \Box Apply L* to find it iteratively.
- □ The target language is $P \cup \overline{M1}$, the *weakest* assumption for the premise $M1 \cap A \subseteq P$.

The Algorithm of Cobleigh et al. (cont.)

[Cobleigh, Giannakopoulou, and Pasareanu 2003]

Note: ce is a real error if ce is in M2, but not in $P \cup M1$.

Yih-Kuen Tsay

Automatic Verification 2010: Compositional Reasoning

SVVRL 🛞 IM.NTU

The L* Learning Algorithm

 Proposed by D. Angluin [Info.&Comp. 1987] and improved by Rivest and Schapire [Info.&Comp. 1993]

L*: Initial Setting

Target: (*ab*+*aab*)*

L*: Fill Up the Table by Membership Queries

Target: $(ab+aab)^*$

SVVRL 🛞 IM.NTU

L*: Table Expansion

Move *a* to the S set and expand the table with elements *aa* and *ab*

Target: $(ab+aab)^*$

L*: A Closed Table

We say that the table is **closed** because every row in the S Σ set appears somewhere in the S set

Target: $(ab+aab)^*$

L*: Making a Conjecture

a valid distinguishing experiment

Target: (*ab*+*aab*)*

Theorem:

At least one suffix of the counterexample is a valid distinguishing experiment

L*: 2nd Iteration

Add b to the E set, fill up and expand the table following the same procedure

L*: 3rd Iteration (Completed)

Add *ab* to the E set, fill up and expand the table following the same procedure

Theorem:

The DFA produced by L* is the minimal DFA that recognizes that target language

Yih-Kuen Tsay

Automatic Verification 2010: Compositional Reasoning

SVVRL 🛞 IM.NTU

L*: Complexity

Complexity:

- □ Equivalence query: at most *n*-1
- Membership query: $O(|\Sigma|n^2 + n \log m)$

	λ	b	ab
λ	Т	F	Т
a	F	Т	Т
b	F	\mathbf{F}	\mathbf{F}
aa	F	Т	\mathbf{F}
ab	Т	\mathbf{F}	Т
ba	F	\mathbf{F}	\mathbf{F}
bb	\mathbf{F}	\mathbf{F}	\mathbf{F}
aaa	F	\mathbf{F}	\mathbf{F}
aab	Т	\mathbf{F}	Т

Note: n is the size of the minimal DFA that recognizes U, m is the length of the longest counterexample returned from the teacher.

SVVRL 🎡 IM.NTU

The Problem

□ The L*-based approaches cannot guarantee finding the **minimal assumption** (in size), even if there exists one.

$$\bigcap_{i=1}^{n_{i}} \bigcap_{i=1}^{n_{i}} \bigcap_{i=1}^{n}$$

- The smaller the size of A is, the easier it is to check the correctness of the two premises.
- □ L* targets a single language, however, there exists a range of languages that satisfy the premises of an A-G rule.

Finding a Minimal Assumption

• A reminder: we use the following Assume-Guarantee rule for decomposition.

• The two premises can be rewritten as follows:

Finding a Minimal Assumption (cont.)

The two premises can be rewritten as follows:

- The verification problem reduces to finding a minimal separating DFA that
 - accepts every string in M2 and
 - rejects every string not in $\mathbf{P} \cup \overline{\mathbf{M1}}$.

First observed by Gupta, McMillan, and Fu

SVVRL 🕅 IM.NTU

Learning a Minimal Separating DFA

Our contribution: a polynomial-query learning algorithm, L^{Sep}, for minimal separating DFA's.

Problem: given two disjoint regular languages L1 and L2, we want to find a minimal DFA A that satisfies

$$L1 \subseteq \mathcal{L}(A) \subseteq \overline{L2}$$

Assumption: a teacher for L1 and L2:

- Membership query: if a string **s** is in L1 (resp. L2)
- Containment query: $?\subseteq L1$, $?\supseteq L1$, $?\subseteq L2$, and $?\supseteq L2$

We say that A is a separating DFA for L1 and L2

3-Value DFA (3DFA)

- A 3DFA is a tuple $C = (\Sigma, S, s_0, \delta, Acc, Rej, Dont).$
- A **DFA** *A* is **encoded in** a **3DFA** *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that C rejects.

• A don't care string in C can be either accepted or rejected by A.

The L^{Sep} Algorithm: Overview

Extend the the L* algorithm to allow don't care values

The Target 3DFA

The target 3DFA C

- accepts every string in L1, and
- **rejects** every string in **L2**.

DFA's encoded in C = all separating DFA's for L1 and L2

Strings in $\overline{\mathbf{L1}} \cap \overline{\mathbf{L2}}$ are **don't care** strings.

Definition:

- A **DFA** *A* is **encoded in** a **3DFA** *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that *C* rejects.
- A DFA A separates L1 and L2 iff A
 - accepts all strings in L1 and
 - rejects all strings in L2.

A minimal DFA encoded in *C* is a minimal separating DFA of L1 and L2.

Check if all of the separating DFA's of L1 and L2 are encoded in C_i , which can be done by checking the following conditions:

Definition:

- A DFA *A* is encoded in a 3DFA *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that C rejects.
- A **DFA** *A* **separates L1** and **L2** iff *A*
 - accepts all strings in **L1** and
 - rejects all strings in L2.

LEMMA: The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**_i.

If $L1 \subseteq \mathcal{L}(A_i) \subseteq \overline{L2}$: A_i is a minimal separating DFA

If $L1 \nsubseteq \mathcal{L}(A_i)$ or $\mathcal{L}(A_i) \nsubseteq \overline{L2}$:

The counterexample CE is a witness for C_i is not the target 3DFA

LEMMA:

The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**i.

The Algorithm of Gupta et al.

Comparing the Two Algorithms

Adapt L^{Sep} for Compositional Verification

- Let L1 = M2 and $\overline{L2} = P \cup \overline{M1}$, use L^{Sep} to find a separating DFA for L1 and L2.
- When $M2 \nsubseteq P \cup \overline{M1}$ ($M1 \cap M2 \nsubseteq P$), L^{Sep} can be modified to guarantee finding a string in $M1 \cap M2 \setminus P$.

Adapt L^{Sep} for Compositional Verification

Use heuristics to find a small consistent DFA:

Minimality is no longer guaranteed!

Yih-Kuen Tsay

SVVRL 🕅 IM.NTU

Adapt L^{Sep} for Compositional Verification

Skip completeness checking:

Minimality is no longer guaranteed!

Yih-Kuen Tsay

SVVRL 🕅 IM.NTU