
/ 34

SVVRL @ IM.NTU

Compositional Reasoning

Yih-Kuen Tsay
(original created by Yu-Fang Chen)

Dept. of Information Management
National Taiwan University

1

SVVRL @ IM.NTU

/ 34

Component M1

Out x : Boolean;
In y : Boolean;
Init x = true;
Repeat forever
x:=y;

Component M2

Out y : Boolean;
Init y = true;
Repeat forever
y := true;

always
x=true & y=true

Verification Task: verify if the system composed of
components M1 and M2 satisfies a property P, i.e., M1||M2 P.
M1 and M2 may rely on each other to satisfy P.
So, it is usually not possible to verify M1 and M2 separately.

M1 alone does not guarantee “always x = true”!

Compositional Verification

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 2

SVVRL @ IM.NTU

/ 34

Assume-Guarantee reasoning:

Here, we assume M1, M2, A, and P are finite automata.
If a small A (an abstraction of M2) exists, then the overall
verification task may become easier.

M2 AA||M1 P

M1 || M2 P

But, how to find automatically?A

Compositional Verification (cont.)

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 3

SVVRL @ IM.NTU

/ 34

A Language-Theoretic Framework

M2 AA||M1 P

M1 || M2 P

The behaviors of components and properties are described as regular languages.

Parallel composition is presented by the intersection of the languages.

A system satisfies a property if the language of the system is a subset of the

language of the property.

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 4

SVVRL @ IM.NTU

/ 34

Outline

Learning-Based Compositional Model Checking:
Automation by Learning
The L* Algorithm
The Problem of L*-Based Approaches

Learning Minimal Separating DFA’s:
The LSEP Algorithm
Comparison with Another Algorithm
Adapt LSEP for Compositional Model Checking

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 5

SVVRL @ IM.NTU

/ 34

Teacher

a

b

L*
Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Answering queries for a
regular language U

a

b

Membership Query

Equivalence Query

DFA (deterministic finite automaton)

Overview of the L* Algorithm

If such a teacher is provided, L* guarantees to produce a DFA that
recognizes U using a polynomial number of queries.

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 6

SVVRL @ IM.NTU

/ 34

Automation by Learning

First developed by Cobleigh, Giannakopoulou, and
Pasareanu [TACAS 2003]

Apply the L* learning algorithm for regular languages
to find an for the assume-guarantee rule:A

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 7

SVVRL @ IM.NTU

/ 34

Automatically find an for the following
assume-guarantee rule:

Apply L* to find it iteratively.
The target language is P∪M1, the weakest
assumption for the premise M1ÅA⊆P.

The Algorithm of Cobleigh et al.

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

A

M1Å A⊆P

M1Å AÅP=∅

AÅ(P∪M1)=∅

A⊆ P∪M1

When A=P∪M1 ,

M2⊆A

M2⊆P∪M1

M2Å(P∪M1)=∅

M2ÅPÅM1=∅

M1ÅM2⊆P

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 8

SVVRL @ IM.NTU

/ 34

The Algorithm of Cobleigh et al. (cont.)

[Cobleigh, Giannakopoulou, and Pasareanu 2003]

M1ÅAi⊆P

M2⊆Ai

Real
Error?

NO + ce

NO + ce

NO + ce YES

YES
YES

P holds

P violated

Ai

Equivalence queries

L* Algorithm
Target: P∪M1

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 9
Note: ce is a real error if ce is in M2, but not in P∪M1.

SVVRL @ IM.NTU

/ 34

Proposed by D. Angluin [Info.&Comp. 1987] and
improved by Rivest and Schapire [Info.&Comp. 1993]

Teacher

a

b

L*
Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Answering queries for a
regular language U

a

b

Membership Query

Equivalence Query

DFA (deterministic finite automaton)

The L* Learning Algorithm

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 10

SVVRL @ IM.NTU

/ 34

L*: Initial Setting

Target: (ab+aab)*

Teacher
L*

Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Membership Query

Equivalence Query

A reminder:

SStates

E: Distinguishing Experiments

SΣNext
States

λ

b

a

?

?

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 11

SVVRL @ IM.NTU

/ 34

L*: Fill Up the Table by Membership Queries

Fill up the table using membership queries

a represents a new equivalence class, because
its row is different from all of those in the current
S set.

Target: (ab+aab)*

λ

b ?

a a

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 12

SVVRL @ IM.NTU

/ 34

L*: Table Expansion

Move a to the S set and expand the table with elements aa and ab

Target: (ab+aab)*

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 13

SVVRL @ IM.NTU

/ 34

L*: A Closed Table

Again, fill up the table using membership queries

We say that the table is closed because every row
in the SΣ set appears somewhere in the S set

Target: (ab+aab)*

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 14

SVVRL @ IM.NTU

/ 34

L*: Making a Conjecture

aλ

a,b

b
a

Construct a DFA from the learned equivalence classes

Counterexample: bb

Target: (ab+aab)*A suffix b is extracted from bb as
a valid distinguishing experiment

Theorem:
At least one suffix of the counterexample is a valid distinguishing experiment

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 15

SVVRL @ IM.NTU

/ 34

L*: 2nd Iteration
Add b to the E set, fill up and expand the table following the same procedure

a

Target: (ab+aab)*

Counterexample: aaab

aλ
b

a

b a,b

b

A suffix ab is extracted from aaab
as a valid distinguishing experiment

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 16

SVVRL @ IM.NTU

/ 34

L*: 3rd Iteration (Completed)

Target: (ab+aab)*

Add ab to the E set, fill up and expand the table following the same procedure

aλ

a

b

a

ba,b

b

aaa

b

Theorem:
The DFA produced by L* is the minimal DFA that recognizes that target language

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 17

SVVRL @ IM.NTU

/ 34

L*: Complexity
Complexity:

Equivalence query: at most n-1
Membership query: O(|Σ|n2 +n log m)

Note: n is the size of the minimal DFA that recognizes U, m is the length
of the longest counterexample returned from the teacher.

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 18

SVVRL @ IM.NTU

/ 34

The Problem
The L*-based approaches cannot guarantee finding the
minimal assumption (in size), even if there exists one.

The smaller the size of is, the easier it is to check the
correctness of the two premises.

L* targets a single language, however, there exists a range of
languages that satisfy the premises of an A-G rule.

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

A

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 19

SVVRL @ IM.NTU

/ 34

Finding a Minimal Assumption

A reminder: we use the following Assume-Guarantee rule for
decomposition.

The two premises can be rewritten as follows:

M2 A ∪ M1P⊆⊆

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

M1Å A⊆P

M1Å AÅP=∅

AÅ(P∪M1)=∅

A⊆ P∪M1

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 20

SVVRL @ IM.NTU

/ 34

Finding a Minimal Assumption (cont.)

The two premises can be rewritten as follows:

The verification problem reduces to finding a minimal
separating DFA that

accepts every string in M2 and
rejects every string not in P ∪ M1.

M2 A ∪ M1P⊆⊆

First observed by Gupta, McMillan, and Fu

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 21

SVVRL @ IM.NTU

/ 34

Our contribution: a polynomial-query learning algorithm,
LSep, for minimal separating DFA’s.

Problem: given two disjoint regular languages L1 and L2,
we want to find a minimal DFA A that satisfies

Assumption: a teacher for L1 and L2:
Membership query: if a string s is in L1 (resp. L2)
Containment query: ?⊆L1 , ?⊇L1, ?⊆L2, and ?⊇L2

Learning a Minimal Separating DFA

L1 ⊆ L(A) ⊆ L2
L1 L2L(A)

We say that A is a separating
DFA for L1 and L2

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 22

SVVRL @ IM.NTU

/ 34

3-Value DFA (3DFA)

A 3DFA is a tuple .

A DFA A is encoded in a 3DFA C iff A
accepts all strings that C accepts and
rejects all strings that C rejects.
A don’t care string in C can be either accepted or
rejected by A.

b b

a

a

a

b

An example of
a 3DFA

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 23

SVVRL @ IM.NTU

/ 34

The LSep Algorithm: Overview

Ai
L1 L2

T D F

L1ÅL2
Extend the the L*
algorithm to allow
don’t care values

Target:

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Extended
L*

Completeness
Checking

Finding a
Minimal DFA
Encoded in Ci

Ci
Ci

CE

DFA’s encoded in Ci ⊇ all separating DFA’s for L1 and L2

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 24

SVVRL @ IM.NTU

/ 34

The Target 3DFA

The target 3DFA C
accepts every string in L1, and
rejects every string in L2.
Strings in L1∩L2 are don’t care strings.

A minimal DFA encoded in C is a minimal separating DFA of L1
and L2.

Ai
L1 L2

Accept

Don’t care

Reject

L1ÅL2
Definition:

A DFA A is encoded in a 3DFA C iff A
accepts all strings that C accepts and
rejects all strings that C rejects.

A DFA A separates L1 and L2 iff A
accepts all strings in L1 and
rejects all strings in L2.

DFA’s encoded in C =
all separating DFA’s for L1 and L2

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 25

SVVRL @ IM.NTU

/ 34

The LSep Algorithm

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Extended
L*

Completeness
Checking

Ci
Ci

CE

L2L1

Accepted Rejected

Check if all of the separating DFA’s of L1 and L2 are encoded in Ci,
which can be done by checking the following conditions:

Finding a
Minimal DFA
Encoded in Ci

Definition:
A DFA A is encoded in a 3DFA C iff A

accepts all strings that C accepts and
rejects all strings that C rejects.

A DFA A separates L1 and L2 iff A
accepts all strings in L1 and
rejects all strings in L2.

L(A)

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 26

SVVRL @ IM.NTU

/ 34

The LSep Algorithm

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Extended
L*

Completeness
Checking

Ci
Ci

CE
Finding a

Minimal DFA
Encoded in Ci

The algorithm of
Rho et. al. (1994)

LEMMA:
The size of minimal separating DFA of L1 and L2 ≥
|Ai|, the size of the minimal DFA encoded in Ci.

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 27

SVVRL @ IM.NTU

/ 34

The LSep Algorithm

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Extended
L*

Completeness
Checking

Ci
Ci

CE
Finding a

Minimal DFA
Encoded in Ci

LEMMA:
The size of minimal separating DFA of L1 and L2 ≥
|Ai|, the size of the minimal DFA encoded in Ci.

If L1⊆L(Ai)⊆ L2:
Ai is a minimal separating DFA

If L1 * L(Ai) or L(Ai) * L2:
The counterexample CE is a witness for Ci is not the target 3DFA

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 28

SVVRL @ IM.NTU

/ 34

Requires an exponential
number of iterations in

the worst case

The Algorithm of Gupta et al.

Begin with an empty sample set

Make a minimal DFA
that consistent with the

current sample set

Check if
L1⊆L(Ai) ⊆ L2?

Ai

YES

NO + CE
Add CE to the sample set

An Example

+ SAMPLES:
λ,aa,abb

- SAMPLES:
a,aaa,abba

Make a
3DFA

a

a

a

b

b

a

Find a minimal
DFA encoded in
the 3DFA (NP-hard)

b
a

a,b

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 29

SVVRL @ IM.NTU

/ 34

Requires a polynomial
number of iterations in

the worst case

The LSep Algorithm

Extend the L*
algorithm to manage

the collected samples.

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

An Example

b
a

a,b

Make a
3DFA

b b

a

a

a

b

Find a minimal
DFA encoded in
the 3DFA (NP-hard)

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 30

SVVRL @ IM.NTU

/ 34

Comparing the Two Algorithms

b b

a

a

a

b

b
a

a,b

+ SAMPLES:
λ,aa,abb

- SAMPLES:
a,aaa,abba

a

a

a

b

b

a

b
a

a,b

LSep:

Gupta et al. :

Same sample set!

Make a
3DFA

Find a minimal
DFA encoded in
the 3DFA (NP-hard)

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 31

SVVRL @ IM.NTU

/ 34

Let L1 = M2 and L2 = P∪M1, use LSep to find a
separating DFA for L1 and L2.

When M2*P∪M1 (M1ÅM2*P), LSep can be
modified to guarantee finding a string in
M1ÅM2\P .

Adapt LSep for Compositional Verification

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 32

SVVRL @ IM.NTU

/ 34

Use heuristics to find a small consistent DFA:

Adapt LSep for Compositional Verification

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Candidate
Generator

Completeness
Checking

Finding a
Small DFA

Encoded in Ci

Ci
Ci

CE

Minimality is no longer guaranteed!

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 33

SVVRL @ IM.NTU

/ 34

Skip completeness checking:

Adapt LSep for Compositional Verification

Minimality is no longer guaranteed!

Check if
L1⊆L(Ai)⊆ L2?

Ai
YES

NO + CE

Candidate
Generator

Completeness
Checking

Finding a
Small DFA

Encoded in Ci

Ci
Ci

CE

Automatic Verification 2010: Compositional ReasoningYih-Kuen Tsay 34

	Compositional Reasoning
	Compositional Verification
	Compositional Verification (cont.)
	A Language-Theoretic Framework
	Outline
	Overview of the L* Algorithm
	Automation by Learning
	Slide Number 8
	Slide Number 9
	The L* Learning Algorithm
	L*: Initial Setting
	L*: Fill Up the Table by Membership Queries
	L*: Table Expansion
	L*: A Closed Table
	L*: Making a Conjecture
	L*: 2nd Iteration
	L*: 3rd Iteration (Completed)
	L*: Complexity
	The Problem
	Finding a Minimal Assumption
	Finding a Minimal Assumption (cont.)
	Slide Number 22
	Slide Number 23
	The LSep Algorithm: Overview
	Slide Number 25
	The LSep Algorithm
	The LSep Algorithm
	The LSep Algorithm
	The Algorithm of Gupta et al.
	The LSep Algorithm
	Slide Number 31
	Adapt LSep for Compositional Verification
	Adapt LSep for Compositional Verification
	Adapt LSep for Compositional Verification

