
Systems Modeling
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 1 / 23



Introduction

First two steps in correctness verification:

1. Specify the desired properties
2. Construct a formal model (with the desired properties in mind)

Capture the necessary properties and leave out the irrelevant
Example: gates and boolean values vs. voltage levels
Example: exchange of messages vs. contents of messages

Description of a formal model

Graphs
Logic formulae

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 2 / 23



Concurrent Reactive Systems

Interact frequently with the environment and may not terminate

Temporal (not just input-output) behaviors are most important

Modeling elements:

State: a snapshot of the system at a particular instance
Transition:

how the system changes its state as a result of some action
described by a pair of the state before and the state after the
action

Computation: an infinite sequence of states resulted from
transitions

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 3 / 23



Kripke Structures

Kripke structures are one of the most popular types of formal
models for concurrent systems.

Let AP be a set of atomic propositions (representing things you
want to observe).

A Kripke structure M over AP is a tuple 〈S , S0,R , L〉:
S is a finite set of states,
S0 ⊆ S is the set of initial states,
R ⊆ S × S is a total transition relation, and
L : S → 2AP is a function labeling each state with a subset of
propositions (which are true in that state).

A computation or path of M from a state s is an infinite
sequence of states σ = s0, s1, s2, · · · such that s0 ∈ S0 and
(si , si+1) ∈ R , for all i ≥ 0.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 4 / 23



First-Order Representations

First-order formulae serve as a unifying formalism for describing
concurrent systems.

Elements of first-order logic:

Logical connectives (∧, ∨, ¬, →, etc.) and quantifiers (∀ and ∃)
Predicate and function symbols (with predefined meanings)

Variables range over a finite domain D.

A valuation for a set V of variables is a map from the variables
in V to the values in the domain D.

A state of a system is a valuation for the system variables.

A set of states can be described by a first-order formula.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 5 / 23



First-Order Representations (cont.)

The set of initial states of a system will typically be described by
S0(V ).

To describe transitions by logic formulae, we create a second
copy of variables V ′.

Each variables v in V has a corresponding primed version v ′ in
V ′.

The variables in V are present state variables, while the variables
in V ′ are next state variables.

A valuation for V and V ′ can be seen as designating a pair of
states or a transition.

A set of transitions or transition relation R can then be
described by a first-order formula R(V ,V ′).

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 6 / 23



From Formulae to Kripke Structures

Given S0(V ) and R(V ,V ′) that represent a concurrent system,
a Kripke structure M = 〈S , S0,R , L〉 may be derived:

S is the set of all valuations for V .
The set of initial states S0 is the set of all valuations for V
satisfying S0.
R(s, s ′) holds if R evaluates to true when each v ∈ V is
assigned the value s(v) and each v ′ ∈ V ′ is assigned the value
s ′(v).
L is defined such that L(s) is the set of atomic propositions true
in s.

To make R total, for every state s that does not have a
successor, (s, s) is added into R .

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 7 / 23



Varieties of Concurrent Systems

A concurrent system consists of a set of components that
execute together.

Modes of execution:

Asynchronous
Synchronous

Modes of communication:

Shared variables
Message-passing
Handshaking (or joint events)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 8 / 23



A Synchronous Modulo 8 Counter

v2

v1

v0

Source: redrawn from [Clarke et al. 1999, Fig 2.1]

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 9 / 23



A Synchronous Modulo 8 Counter (cont.)

v2=0

v1=1

v0=1

⇒

v2

v1

v0

0

1

1

1

1
1

0

0 0

0

1

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 10 / 23



First-Order Representations (Circuit)

Let V be {v0, v1, v2}.
The transitions of the modulo 8 counter are

v ′0 = ¬v0

v ′1 = v0 ⊕ v1

v ′2 = (v0 ∧ v1)⊕ v2

In terms of formulae, they are

R0(V , V ′)
∆
= v ′0⇔¬v0

R1(V , V ′)
∆
= v ′1⇔v0 ⊕ v1

R2(V , V ′)
∆
= v ′2⇔(v0 ∧ v1)⊕ v2

Conjoining the formulae, we obtain

R(V ,V ′)
∆
= R0(V ,V ′) ∧R1(V ,V ′) ∧R2(V ,V ′)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 11 / 23



Programs

Concurrent programs are composed of sequential
programs/statements.

A sequential program consists of statements sequentially
composed with each other.

We assume that all statements of a program have a unique entry
point and a unique exit point (they are structured).

To obtain a first-order representation of a program, it is
convenient to label each statement of the program.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 12 / 23



Labeling a Sequential Statement

Given a sequential statement P , the labeled statement PL is
defined as follows, assuming all labels are unique:

If P is not composite, then PL = P.
If P = P1; P2, then PL = PL

1 ; l : PL
2 .

If P = if b then P1 else P2 fi, then
PL = if b then l1 : PL

1 else l2 : PL
2 fi.

If P = while b do P1 od, then PL = while b do l1 : PL
1 od.

The above labeling procedure may be extended to treat other
statement types.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 13 / 23



First-Order Representations (Sequential)

Consider a labeled program P , with the entry labeled m and exit
labeled m′.

Let V denote the set of program variables.

We postulate a special variable pc called the program counter
that ranges over the set of program labels plus the undefined
value ⊥ (bottom).

Let same(Y ) abbreviate
∧
y∈Y

(y ′ = y).

Given some condition pre(V ) on the initial values, the set of
initial states is

S0(V , pc)
∆
= pre(V ) ∧ pc = m.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 14 / 23



First-Order Representations (cont.)

The transition relation C (l ,P , l ′) for a statement P with entry l and
exit l ′ is defined recursively as follows:

Assignment:

C (l , v := e, l ′)
∆
= pc = l ∧ pc ′ = l ′ ∧ v ′ = e ∧ same(V \ {v}).

Skip:

C (l , skip, l ′)
∆
= pc = l ∧ pc ′ = l ′ ∧ same(V ).

Sequential Composition:

C (l ,P1; l ′′ : P2, l
′)

∆
= C (l ,P1, l

′′) ∨ C (l ′′,P2, l
′).

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 15 / 23



First-Order Representations (cont.)

Conditional:
C (l , if b then l1 : P1 else l2 : P2 fi, l ′) is the disjunction of the
following:

pc = l ∧ pc ′ = l1 ∧ b ∧ same(V )
pc = l ∧ pc ′ = l2 ∧ ¬b ∧ same(V )
C (l1, P1, l

′)
C (l2, P2, l

′)

While:
C (l ,while b do l1 : P1 od, l ′) is the disjunction of the following:

pc = l ∧ pc ′ = l1 ∧ b ∧ same(V )
pc = l ∧ pc ′ = l ′ ∧ ¬b ∧ same(V )
C (l1, P1, l)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 16 / 23



Concurrent Programs

Concurrent programs are composed of sequential processes
(programs/statements).

We consider only asynchronous concurrent programs, where
exactly one process can make a transition at any time.

A concurrent program P has the following form:

cobegin P1 ‖P2 ‖ · · · ‖Pn coend

where Pi ’s are processes.

Let V be the set of all program variables and Vi the set of
variables that can be changed by Pi .

Let pc be the program counter of P and pci that of Pi ; let PC
be the set of all program counters.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 17 / 23



Labeling Concurrent Programs

Given P = cobegin P1 ‖P2 ‖ · · · ‖Pn coend, then

PL = cobegin l1 : PL
1 l ′1 ‖ l2 : PL

2 l ′2 ‖ · · · ‖ ln : PL
n l ′n coend.

Note that each process Pi has a unique exit label l ′i .

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 18 / 23



First-Order Representations (Concurrent)

Assume the entry is labeled m and exit labeled m′.

Given some condition pre(V ) on the initial values, the set of
initial states is

S0(V ,PC )
∆
= pre(V ) ∧ pc = m ∧

n∧
i=1

(pci = ⊥)

where pci = ⊥ indicates that Pi is not active.

C (l , cobegin l1 : P1 l ′1 ‖ l1 : P2 l ′2 ‖ · · · ‖ ln : Pn l ′n coend, l ′) is
the disjunction of the following:

pc = l ∧ pc ′1 = l1 ∧ · · · ∧ pc ′n = ln ∧ pc ′ = ⊥ (initialization)
pc = ⊥ ∧ pc1 = l ′1 ∧ · · · ∧ pcn = l ′n ∧ pc ′ = l ′

∧n
i=1(pc ′i = ⊥)

(termination)∨n
i=1(C (li , Pi , l

′
i ) ∧ same(V \ Vi ) ∧ same(PC \ {pci})

(interleaving)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 19 / 23



Synchronization Statements

Assume the statement belongs to Pi .

Wait (or await):
C (l ,wait(b), l ′) is the disjunction of the following:

pci = l ∧ pc ′i = l ∧ ¬b ∧ same(Vi )
pci = l ∧ pc ′i = l ′ ∧ b ∧ same(Vi )

Lock (or test-and-set):
C (l , lock(v), l ′) is the disjunction of the following:

pci = l ∧ pc ′i = l ∧ v = 1 ∧ same(Vi )
pci = l ∧ pc ′i = l ′ ∧ v = 0 ∧ v ′ = 1 ∧ same(Vi \ {v})

Unlock:
C (l ,unlock(v), l ′)

∆
= pci = l∧pc ′i = l ′∧v ′ = 0∧same(Vi \{v}).

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 20 / 23



A Mutual Exclusion Program

PMX = m : cobegin P0 ‖P1 coend m′

P0 =
l0 : while true do

NC0 : wait T = 0;
CR0 : T := 1;

od;
l ′0

P1 =
l1 : while true do

NC1 : wait T = 1;
CR1 : T := 0;

od;
l ′1

V = V0 = V1 = {T}; PC = {pc , pc0, pc1}.
The pc of PMX may take m, ⊥, or m′.

The pc0 of P0: ⊥, l0, NC0, CR0, or l ′0.

The pc1 of P1: ⊥, l1, NC1, CR1, or l ′1.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 21 / 23



First-Order Representation of PMX

Initial states S0(V ,PC ): pc = m ∧ pc0 = ⊥ ∧ pc1 = ⊥.

Transition relation R(V ,PC ,V ′,PC ′) is the disjunction of

pc = m ∧ pc ′0 = l0 ∧ pc ′1 = l1 ∧ pc ′ = ⊥
pc0 = l ′0 ∧ pc1 = l ′1 ∧ pc ′ = m′ ∧ pc ′0 = ⊥ ∧ pc ′1 = ⊥
C (l0, P0, l

′
0) ∧ same(V \ V0) ∧ same(PC \ {pc0})

C (l1, P1, l
′
1) ∧ same(V \ V1) ∧ same(PC \ {pc1})

For each Pi , C (li ,Pi , l
′
i ) is the disjunction of

pci = li ∧ pc ′i = NCi ∧ true ∧ same(T )
pci = NCi ∧ pc ′i = CRi ∧ T = i ∧ same(T )
pci = CRi ∧ pc ′i = li ∧ T = (1− i)
pci = NCi ∧ pc ′i = NCi ∧ T 6= i ∧ same(T )
pci = li ∧ pc ′i = l ′i ∧ false ∧ same(T )

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 22 / 23



A Kripke Structure for PMX

T=0
bot, bot

T=1
bot, bot

T=0
l
0
, l

1

T=1
l
0
, l

1

T=0
NC0, l1

T=1
l0, NC1

T=0
CR0, l1

T=1
l0, CR1

T=0
l0, NC1

T=1
NC 0, NC 1

T=1
NC0, l1

T=0
NC 0, NC 1

T=1
NC 0, CR 1

T=0
CR 0, NC 1

Source: redrawn from [Clarke et al. 1999, Fig 2.2]

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2010 23 / 23


	Introduction
	Modeling Concurrent Systems
	Concurrent Systems
	Synchronous Circuits
	Asynchronous Concurrent Programs

	An Example of Program Translation

