

Systems Modeling (Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 1 / 23

3

イロト イポト イヨト イヨト

Introduction

😚 First two steps in correctness verification:

- 1. Specify the desired *properties*
- 2. Construct a *formal model* (with the desired properties in mind)
 - 🐱 Capture the necessary properties and leave out the irrelevant
 - Example: gates and boolean values vs. voltage levels
 - Example: exchange of messages vs. contents of messages

😚 Description of a formal model

- 🌻 Graphs
- 🔅 Logic formulae

- 4 同 6 4 日 6 4 日 6

Concurrent Reactive Systems

- Interact frequently with the environment and may not terminate
- *Temporal* (not just input-output) behaviors are most important
- 😚 Modeling elements:
 - State: a snapshot of the system at a particular instance Transition:
 - 😺 how the system changes its state as a result of some action
 - described by a pair of the state before and the state after the action
 - Computation: an infinite sequence of states resulted from transitions

- 4 同 6 4 日 6 4 日 6

Kripke Structures

- Kripke structures are one of the most popular types of formal models for concurrent systems.
- Let AP be a set of atomic propositions (representing things you want to observe).
- A Kripke structure M over AP is a tuple (S, S_0, R, L) :
 - 🌻 S is a finite set of states,
 - $ightarrow \ S_0 \subseteq S$ is the set of initial states,
 - \circledast $R \subseteq S \times S$ is a *total* transition relation, and
 - ★ L: S → 2^{AP} is a function labeling each state with a subset of propositions (which are true in that state).
- A computation or path of M from a state s is an infinite sequence of states $\sigma = s_0, s_1, s_2, \cdots$ such that $s_0 \in S_0$ and (s_i, s_{i+1}) ∈ R, for all i ≥ 0.

Yih-Kuen Tsay (IM.NTU)

First-Order Representations

- First-order formulae serve as a unifying formalism for describing concurrent systems.
- Elements of first-order logic:
 - Elogical connectives (\land , \lor , \neg , \rightarrow , etc.) and quantifiers (\forall and \exists)
 - Predicate and function symbols (with predefined meanings)
- 📀 Variables range over a finite domain D.
- A valuation for a set V of variables is a map from the variables in V to the values in the domain D.
- If a state of a system is a valuation for the system variables.
- A set of states can be described by a first-order formula.

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

First-Order Representations (cont.)

- The set of initial states of a system will typically be described by S₀(V).
- To describe transitions by logic formulae, we create a second copy of variables V'.
- Each variables v in V has a corresponding primed version v' in V'.
- The variables in V are present state variables, while the variables in V' are next state variables.
- A valuation for V and V' can be seen as designating a pair of states or a transition.
- A set of transitions or transition relation R can then be described by a first-order formula $\mathcal{R}(V, V')$.

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

From Formulae to Kripke Structures

- Given $S_0(V)$ and $\mathcal{R}(V, V')$ that represent a concurrent system, a Kripke structure $M = \langle S, S_0, R, L \rangle$ may be derived:
 - $\overset{\scriptstyle ar{}}{}$ s is the set of all valuations for V.
 - The set of initial states S₀ is the set of all valuations for V satisfying S₀.
 - * R(s, s') holds if \mathcal{R} evaluates to *true* when each $v \in V$ is assigned the value s(v) and each $v' \in V'$ is assigned the value s'(v).
 - * *L* is defined such that L(s) is the set of atomic propositions true in *s*.
- To make *R* total, for every state *s* that does not have a successor, (*s*, *s*) is added into *R*.

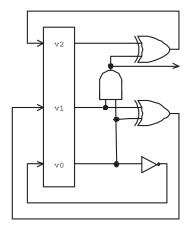
Yih-Kuen Tsay (IM.NTU)

Varieties of Concurrent Systems

A concurrent system consists of a set of components that execute together.

- Modes of execution:
 - 鯵 Asynchronous
 - 鯵 Synchronous
- Modes of communication:
 - 🌻 Shared variables
 - 🌻 Message-passing
 - 鯵 Handshaking (or joint events)

A Synchronous Modulo 8 Counter



Source: redrawn from [Clarke et al. 1999, Fig 2.1]

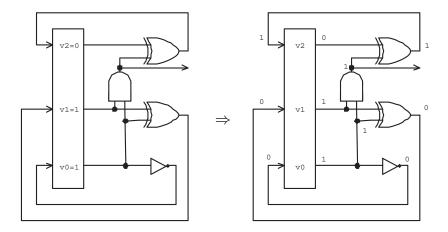
Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 9 / 23

(日) (同) (三) (三)

A Synchronous Modulo 8 Counter (cont.)



Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 10 / 23

3

(日) (同) (三) (三)

First-Order Representations (Circuit)

$$\mathcal{R}(V,V') \stackrel{\Delta}{=} \mathcal{R}_0(V,V') \wedge \mathcal{R}_1(V,V') \wedge \mathcal{R}_2(V,V')$$

Yih-Kuen Tsay (IM.NTU)

Automatic Verification 2010 11 / 23

3

(日) (周) (日) (日)

Programs

- Concurrent programs are composed of sequential programs/statements.
- A sequential program consists of statements sequentially composed with each other.
- We assume that all statements of a program have a unique entry point and a unique exit point (they are structured).
- To obtain a first-order representation of a program, it is convenient to *label* each statement of the program.

Labeling a Sequential Statement

- Given a sequential statement P, the labeled statement P^L is defined as follows, assuming all labels are unique:
 - If P is not composite, then $P^L = P$.
 - If $P = P_1$; P_2 , then $P^L = P_1^L$; $I : P_2^L$.
 - # If $P = \mathbf{if} \ b \ \mathbf{then} \ P_1 \ \mathbf{else} \ P_2 \ \mathbf{fi}$, then
 - $P^{L} = \mathbf{if} \ b \ \mathbf{then} \ l_{1} : P_{1}^{L} \ \mathbf{else} \ l_{2} : P_{2}^{L} \ \mathbf{fi}.$ ***** If $P = \mathbf{while} \ b \ \mathbf{do} \ P_{1} \ \mathbf{od}$, then $P^{L} = \mathbf{while} \ b \ \mathbf{do} \ l_{1} : P_{1}^{L} \ \mathbf{od}$.
- The above labeling procedure may be extended to treat other statement types.

- 小田 ト イヨト

First-Order Representations (Sequential)

- Consider a labeled program P, with the entry labeled m and exit labeled m'.
- \clubsuit Let V denote the set of program variables.
- We postulate a special variable pc called the program counter that ranges over the set of program labels plus the undefined value \product (bottom).

Solution Let same(Y) abbreviate
$$\bigwedge_{y \in Y} (y' = y)$$
.

Given some condition pre(V) on the initial values, the set of initial states is

$$\mathcal{S}_0(V, pc) \stackrel{\Delta}{=} pre(V) \wedge pc = m.$$

Yih-Kuen Tsay (IM.NTU)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First-Order Representations (cont.)

The transition relation C(I, P, I') for a statement P with entry I and exit I' is defined recursively as follows:

Assignment:

$$C(I, v := e, I') \stackrel{\Delta}{=} pc = I \land pc' = I' \land v' = e \land same(V \setminus \{v\}).$$

📀 Skip:

$$C(I, skip, I') \stackrel{\Delta}{=} pc = I \land pc' = I' \land same(V).$$

Sequential Composition: $C(I, P_1; I'': P_2, I') \stackrel{\Delta}{=} C(I, P_1, I'') \lor C(I'', P_2, I').$

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 15 / 23

First-Order Representations (cont.)

😚 Conditional:

 $C(I, if b then l_1 : P_1 else l_2 : P_2 fi, I')$ is the disjunction of the following:

pc =
$$l \land pc' = l_1 \land b \land same(V)$$
 pc = $l \land pc' = l_2 \land \neg b \land same(V)$
 C(l_1, P_1, l')
 C(l_2, P_2, l')

😚 While:

C(I,while *b* do $I_1 : P_1$ od, I') is the disjunction of the following:

*
$$pc = l \land pc' = l_1 \land b \land same(V)$$
* $pc = l \land pc' = l' \land \neg b \land same(V)$
* $C(l_1, P_1, l)$

Yih-Kuen Tsay (IM.NTU)

Concurrent Programs

- Concurrent programs are composed of sequential processes (programs/statements).
- We consider only asynchronous concurrent programs, where exactly one process can make a transition at any time.
- A concurrent program *P* has the following form:

cobegin $P_1 \parallel P_2 \parallel \cdots \parallel P_n$ coend

where P_i 's are processes.

- Let V be the set of all program variables and V_i the set of variables that can be changed by P_i.
- Let pc be the program counter of P and pc_i that of P_i; let PC be the set of all program counters.

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Given P = cobegin P₁ || P₂ || ··· || P_n coend, then P^L = cobegin I₁ : P^L₁ I'₁ || I₂ : P^L₂ I'₂ || ··· || I_n : P^L_n I'_n coend. Note that each process P_i has a unique exit label I'_i.

First-Order Representations (Concurrent)

- Second the entry is labeled *m* and exit labeled *m'*.
- Given some condition pre(V) on the initial values, the set of initial states is

$$\mathcal{S}_0(V, PC) \stackrel{\Delta}{=} pre(V) \wedge pc = m \wedge \bigwedge_{i=1}^n (pc_i = \bot)$$

where $pc_i = \bot$ indicates that P_i is *not active*.

• $C(I, \text{cobegin } I_1 : P_1 I'_1 \parallel I_1 : P_2 I'_2 \parallel \cdots \parallel I_n : P_n I'_n \text{ coend}, I')$ is the disjunction of the following:

 $\bigvee_{i=1}^{n} (C(I_i, P_i, I'_i) \land same(V \setminus V_i) \land same(PC \setminus \{pc_i\})$ (interleaving)

Yih-Kuen Tsay (IM.NTU)

Synchronization Statements

• Assume the statement belongs to P_i .

Wait (or await):
$$C(I, wait(b), I') \text{ is the disjunction of the following:}$$

$$pc_i = I \land pc'_i = I \land \neg b \land same(V_i)$$

$$pc_i = I \land pc'_i = I' \land b \land same(V_i)$$
Lock (or test-and-set):
$$C(I, \text{lock}(v), I') \text{ is the disjunction of the following:}$$

$$pc_i = I \land pc'_i = I \land v = 1 \land same(V_i)$$

$$pc_i = I \land pc'_i = I' \land v = 0 \land v' = 1 \land same(V_i \setminus \{v\})$$
Unlock:

$$C(I, \mathsf{unlock}(v), I') \stackrel{\Delta}{=} pc_i = I \wedge pc'_i = I' \wedge v' = 0 \wedge same(V_i \setminus \{v\}).$$

Yih-Kuen Tsay (IM.NTU)

< □ > < ---->

A Mutual Exclusion Program

$$P_{MX} = m : \text{cobegin } P_0 \parallel P_1 \text{ coend } m'$$

$$P_0 = P_1 = I_0 : \text{ while true do } I_1 : I_1 : \text{ while true do } I_1 : I_1 : \text{ while true do } I_1 : I_1$$

•
$$V = V_0 = V_1 = \{T\}; PC = \{pc, pc_0, pc_1\}.$$

• The *pc* of P_{MX} may take *m*, \bot , or *m'*.
• The *pc*₀ of P_0 : \bot , l_0 , NC_0 , CR_0 , or l'_0 .
• The *pc*₁ of P_1 : \bot , l_1 , NC_1 , CR_1 , or l'_1 .

Yih-Kuen Tsay (IM.NTU)

↓ ロ ト ◆ □ ト ◆ 三 ト ◆ 三 ト ◆ 三 か へ ○
Automatic Verification 2010 21 / 23

First-Order Representation of P_{MX}

Initial states $\mathcal{S}_0(V, PC)$: $pc = m \wedge pc_0 = \bot \wedge pc_1 = \bot$. Transition relation $\mathcal{R}(V, PC, V', PC')$ is the disjunction of ${\state{\circ}}$ pc = m \wedge pc $_0'$ = l_0 \wedge pc $_1'$ = l_1 \wedge pc' = \perp $\overset{\text{\tiny{\bullet}}}{=} pc_0 = l'_0 \land pc_1 = l'_1 \land pc' = m' \land pc'_0 = \bot \land pc'_1 = \bot$ $\overset{\text{\tiny{\bullet}}}{=} C(I_0, P_0, I_0') \land same(V \setminus V_0) \land same(PC \setminus \{pc_0\})$ $(I_1, P_1, I'_1) \land same(V \setminus V_1) \land same(PC \setminus \{pc_1\})$ For each P_i, C(I_i, P_i, I'_i) is the disjunction of $\stackrel{\text{\tiny{\bullet}}}{=} pc_i = l_i \land pc'_i = NC_i \land true \land same(T)$ $\overset{\bullet}{=} pc_i = NC_i \land pc'_i = CR_i \land T = i \land same(T)$ $\overset{\mbox{\tiny{\bullet}}}{=} pc_i = CR_i \wedge pc'_i = l_i \wedge T = (1-i)$ $i = NC_i \land pc'_i = NC_i \land T \neq i \land same(T)$ $\overset{\mbox{\tiny{\bullet}}}{=} pc_i = l_i \wedge pc'_i = l'_i \wedge false \wedge same(T)$

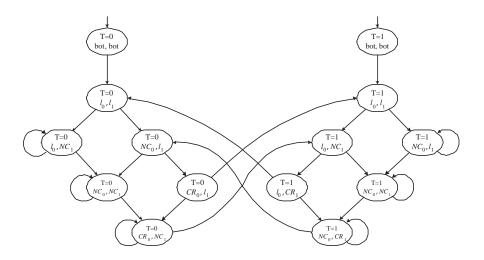
Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 22 / 23

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A Kripke Structure for P_{MX}



Source: redrawn from [Clarke et al. 1999, Fig 2.2]

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2010 23 / 23

3

イロト イヨト イヨト イヨト