

# Ordered Sets and Fixpoints (Based on [Davey and Priestley 2002])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 1 / 31

(日) (同) (日) (日) (日)

### **Partial Orders**



- 📀 Let P be a set.
- A partial order, or simply order, on P is a binary relation ≤ on P such that:
  - 1.  $\forall x \in P, x \leq x$ , (reflexivity)
  - 2.  $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$ , (transitivity)
  - 3.  $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$ . (antisymmetry)
- A set P equipped with a partial order ≤, often written as ⟨P, ≤⟩, is called a *partially ordered set*, or simply *ordered set*, sometimes abbreviated as *poset*.
- A binary relation that is reflexive and transitive is called a pre-order or quasi-order.
- We write x < y to mean  $x \le y$  and  $x \ne y$ .

#### **Examples of Ordered Sets**



 $\bigcirc$   $\langle \mathcal{N}, < \rangle$  $\mathcal{N} = \{1, 2, 3, \dots\}$ , the set of natural numbers. is the usual "less than or equal to" relation. Variant:  $(\mathcal{N}_0, <)$  with  $\mathcal{N}_0 = \mathcal{N} \cup \{0\} = \{0, 1, 2, 3, \dots\}$ .  $\bigcirc$   $\langle \mathcal{P}(X), \subset \rangle$  $\stackrel{\ \ensuremath{{\otimes}}}{\to} \mathcal{P}(X)$  is the powerset of X, consisting of all subsets of X.  $ightarrow \subset$  is the set inclusion relation.  $\bigcirc$   $\langle \Sigma^*, < \rangle$ Σ\* is the set of all finite strings over the alphabet Σ. 🌻 < is the "is a prefix of" relation.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

<□ → < □ → < □ → < ■ → < ■ → < ■ → ■ の Q @ Automatic Verification 2010 3 / 31

#### **Order-Isomorphisms**



- We want to be able to tell when two ordered sets are essentially the same.
- Let  $\langle P, \leq_P \rangle$  and  $\langle Q, \leq_Q \rangle$  be two ordered sets.
- P and Q are said to be (order-)isomorphic, denoted  $P \cong Q$ , if there is a map  $\varphi$  from P onto Q such that  $x \leq_P y$  if and only if  $\varphi(x) \leq_Q \varphi(y)$ .
- The map  $\varphi$  above is called an *order-isomorphism*.
- If For example, N<sub>0</sub> and N are order-isomorphic with the successor function n → n + 1 as the order-isomorphism.
- Solution of the second state of the secon

Yih-Kuen Tsay (IM.NTU)

## **Chains and Antichains**



- 📀 Let P be an ordered set.
- P is called a *chain* if  $\forall x, y \in P, x \leq y \lor y \leq x$ , i.e., any two elements in *P* are comparable.
- For example,  $\langle \mathcal{N}, \leq \rangle$  is a chain.
- Alternative names for a chain are totally ordered set and linearly ordered set.
- P is called an *antichain* if  $\forall x, y \in P, x \leq y → x = y$ , i.e., no two distinct elements in P are ordered.
- Clearly, any subset of a chain (an antichain) is a chain (an antichain).
- We write **n** to denote a chain of *n* elements and  $\bar{\mathbf{n}}$  an antichain of *n* elements.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

#### **Sums of Ordered Sets**



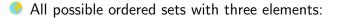
- Solution P and Q be two *disjoint* ordered sets.
- The disjoint union  $P \uplus Q$  is defined by  $x \le y$  in  $P \uplus Q$  if and only if
  - 1.  $x, y \in P$  and  $x \leq y$  in P, or
  - 2.  $x, y \in Q$  and  $x \leq y$  in Q.
- The linear sum  $P \oplus Q$  is defined by  $x \leq y$  in  $P \oplus Q$  if and only if

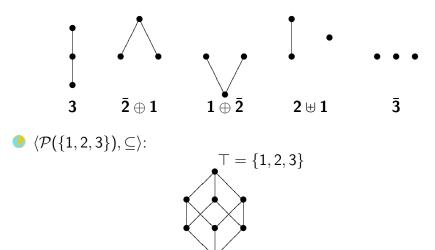
1. 
$$x, y \in P$$
 and  $x \leq y$  in  $P$ , or  
2.  $x, y \in Q$  and  $x \leq y$  in  $Q$ , or  
2.  $x, y \in Q$  and  $x \leq y$  in  $Q$ , or

3.  $x \in P$  and  $y \in Q$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

### **Diagrams for Ordered Sets**





Ordered Sets and Fixpoints

 $= \emptyset$ 

A B F A B F

Image: A matrix



### **Partial Maps**



- A (total) map or function f from X to Y is a binary relation on X and Y satisfying the following conditions:
  - (single-valued) For every x ∈ X, there is at most one y ∈ Y such that (x, y) is related by f. In other words, if both (x, y<sub>1</sub>) and (x, y<sub>2</sub>) are related by f, then y<sub>1</sub> and y<sub>2</sub> must be equal.
  - 2. (total) For every  $x \in X$ , there is at least one  $y \in Y$  such that (x, y) is related by f.
- A partial map f from X to Y is a single-valued, not necessarily total, binary relation on X and Y.
- Representation of a total or partial map f from X to Y as a subset of X × Y, or as an element of P(X × Y), is called the graph of f, denoted graph(f).

#### Partial Maps as an Ordered Set



- We write  $(X \rightarrow Y)$  to denote the set of all partial maps from X to Y.
- For σ, τ ∈ (X → Y), we define σ ≤ τ if and only if graph(σ) ⊆ graph(τ). In other words, σ ≤ τ if and only if whenever σ(x) is defined, τ(x) is also defined and equals σ(x).
  ⟨(X → Y), ≤⟩ is an ordered set.

#### **Programs as Partial Maps**



- Two programs P and Q with common sets X and Y respectively of *initial* states and *final* states may be seen as defining two partial maps  $\sigma_P, \sigma_Q : X \longrightarrow Y$ .
- The two programs might be related by  $\sigma_P \leq \sigma_Q$ , meaning that
  - for any input state from which P terminates, Q also terminates, and
  - for every case where P terminates, Q produces the same output as P does.
- When σ<sub>P</sub> ≤ σ<sub>Q</sub> does hold, we say P is refined by Q or Q refines P. (Some prefer the opposite.)
- The refinement relation between two programs as defined is clearly a partial order.

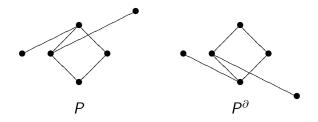
Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

#### **Dual of an Ordered Set**



- Given an ordered set P, we can form a new ordered set P<sup>∂</sup> (the "dual of P") by defining x ≤ y to hold in P<sup>∂</sup> if and only if y ≤ x holds in P.
- For a finite P, a diagram for P<sup>∂</sup> can be obtained by turning upside down a diagram for P:



Ordered Sets and Fixpoints

Automatic Verification 2010 11 / 31

・ロン ・四 ・ ・ ヨン ・ ヨン



- For a statement Φ about ordered sets, its dual statement Φ<sup>∂</sup> is obtained by replacing each occurrence of ≤ with ≥ and vice versa.
- The Duality Principle: Given a statement Φ about ordered sets that is true for all ordered sets, the dual statement Φ<sup>∂</sup> is also true for all ordered sets.

イロト イポト イヨト イヨト

#### Bottom and Top



- 📀 Let P be an ordered set.
- P has a bottom element if there exists ⊥ ∈ P ("bottom") such that ⊥ ≤ x for all x ∈ P.
- Oually, P has a top element if there exists  $\top \in P$  ("top") such that x ≤  $\top$  for all x ∈ P.
- $\odot$   $\perp$  is unique when it exists; dually, op is unique when it exists.
- In  $\langle \mathcal{P}(X), \subseteq \rangle$ , we have  $\bot = \emptyset$  and  $\top = X$ .
- A finite chain always has a bottom and a top elements; this may not hold for an infinite chain.
- Given a bottomless P, we may form  $P_{\perp}$  (P lifted or the lifting of P) by  $P_{\perp} \stackrel{\Delta}{=} \mathbf{1} \oplus P$ .

### **Maximal and Minimal Elements**



- Let P be an ordered set and  $S \subseteq P$ .
- An element  $a \in S$  is a maximal element of S if  $a \le x$  and  $x \in S$  imply x = a.
- If Q has a top element  $\top_Q$ , it is called the *greatest element* (or *maximum*) of Q.
- A minimal element of S and the least element (or minimum) of S (if it exists) are defined dually.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 14 / 31

イロト 不得下 イヨト イヨト 二日

#### **Down-sets and Up-sets**



- $\bigcirc$  Let *P* be an ordered set and  $S \subseteq P$ .
- S is a *down-set* (order ideal) if, whenever  $x \in S$ ,  $y \in P$ , and  $y \leq x$ , we have  $y \in S$ .
- Dually, S is a *up-set* (order filter) if, whenever  $x \in S$ ,  $y \in P$ , and  $y \ge x$ , we have  $y \in S$ .
- Given an arbitrary  $Q \subseteq P$  and  $x \in P$ , we define

•  $\downarrow Q$  is the smallest down-set containing Q and Q is a down-set if and only if  $Q = \downarrow Q$ ; dually for  $\uparrow Q$ .

### **Order-Preserving Maps**



- $\bigcirc$  Let P and Q be ordered sets.
- A map  $\varphi: P \to Q$  is said to be order-preserving (or monotone) if  $x \leq y$  in P implies  $\varphi(x) \leq \varphi(y)$  in Q.
- The composition of two order-preserving maps is also order-preserving.
- A map  $\varphi : P \to Q$  is said to be an order-embedding (denoted P → Q) if x ≤ y in P if and only if  $\varphi(x) ≤ \varphi(y)$  in Q.

#### **Upper and Lower Bounds**



- Let P be an ordered set and  $S \subseteq P$ .
- $\bigcirc$  An element  $x \in P$  is an *upper bound* of S if, for all  $s \in S$ ,  $s \leq x$ .
- Oually, an element x ∈ P is an *lower bound* of S if, for all s ∈ S, s ≥ x (or x ≤ s).
- In the set of all upper bounds of S is denoted by S<sup>u</sup> ("S upper");  $S<sup>u</sup> = \{x ∈ P \mid \forall s ∈ S, s ≤ x\}.$
- In the set of all lower bounds of S is denoted by S' ("S lower");  $S' = \{x \in P \mid \forall s \in S, s ≥ x\}.$
- By convention,  $\emptyset^u = P$  and  $\emptyset^l = P$ .
- Since  $\leq$  is transitive,  $S^u$  is an up-set and S' a down-set.

# Least Upper and Greatest Lower Bounds



- Let P be an ordered set and  $S \subseteq P$ .
- If  $S^u$  has a least element, it is called the *least upper bound* (supremum) of S, denoted  $\sup(S)$ .
- $\bigcirc$  Equivalently, x is the least upper bound of S if
  - $\overset{\bullet}{>} x$  is an upper bound of S, and
  - ifor every upper bound y of S,  $x \leq y$ .
- To Dually, if S' has a greatest element, it is called the *greatest* lower bound (infimum) of S, denoted  $\inf(S)$ .
- When P has a top element,  $P^u = \{T\}$  and sup(P) = ⊤. Dually, if P has a bottom element,  $P^l = \{\bot\}$  and inf(P) = ⊥.
- Since  $\emptyset^u = \emptyset^l = P$ ,  $\sup(\emptyset)$  exists if P has a bottom element; dually,  $\inf(\emptyset)$  exists if P has a top element.

### Join and Meet



- We write x ∨ y ("x join y") in place of sup({x, y}) when it exists and x ∧ y ("x meet y") in place of inf({x, y}) when it exists.
- Let P be an ordered set. If  $x, y \in P$  and  $x \leq y, x \lor y = y$  and  $x \land y = x$ .
- $\clubsuit$  In the following two cases,  $a \lor b$  does not exist.



Solution Analogously, we write ∨ S (the "join of S") and ∧ S (the "meet of S").

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

### Lattices and Complete Lattices



- Let P be a non-empty ordered set.
- P is called a *lattice* if  $x \lor y$  and  $x \land y$  exist for all  $x, y \in P$ .
- P is called a *complete lattice* if ∨ S and ∧ S exist for all S ⊆ P. Note: as S may be empty, the definition implies that every complete lattice is *bounded*, i.e., it has *top* and *bottom* elements.
- Every finite lattice is complete.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 20 / 31

・ロン ・四 ・ ・ ヨン ・ ヨン

#### **Fixpoints**



- Solution Given an ordered set P and a map  $F : P \to P$ , an element  $x \in P$  is called a *fixpoint* of F if F(x) = x.
- The set of fixpoints of F is denoted fix(F).
- The least element of fix(F), when it exists, is denoted  $\mu(F)$ , and the greatest by  $\nu(F)$  if it exists.

イロト 不得 トイヨト イヨト 二日

# A Fixpoint Theorem for Complete Lattices



#### Theorem (Knaster-Tarski Fixpoint Theorem)

Let L be a complete lattice and  $F : L \rightarrow L$  an order-preserving map. Then,

$$\mu(F) = \bigwedge \{ x \in L \mid F(x) \le x \}.$$

Dually,  $\nu(F) = \bigvee \{x \in L \mid x \leq F(x)\}.$ 

- Let  $M = \{x \in L \mid F(x) \le x\}$  and  $\alpha = \bigwedge M$ . We need to show (1)  $F(\alpha) = \alpha$  and (2) for every  $\beta \in fix(F)$ ,  $\alpha \le \beta$ .
- For all x ∈ M,  $\alpha \le x$  and so  $F(\alpha) \le F(x) \le x$ . Thus,  $F(\alpha) \in M'$  and hence  $F(\alpha) \le \alpha$  (= \begin{bmatrix} M \end{bmatrix}.
- $F(F(\alpha)) \leq F(\alpha)$ , implying  $F(\alpha) \in M$  and so  $\alpha \leq F(\alpha)$ .
- For every  $\beta \in \operatorname{fix}(F)$ ,  $\beta \in M$  and hence  $\alpha \leq \beta$ .

### **Galois Connections**



• Let P and Q be ordered sets.

A pair (▷, ⊲) of maps ▷ : P → Q ("right") and ⊲ : Q → P
 ("left") is a Galois connection between P and Q if, for all p ∈ P
 and q ∈ Q,

$$p^{arphi} \leq q \leftrightarrow p \leq q^{\lhd}$$

- If the map ▷ is called the lower adjoint of ⊲ and the map ⊲ the upper adjoint of ▷.
- Of Alternatively, (▷, ▷) is a Galois connection between P and Q if, for all p, p<sub>1</sub>, p<sub>2</sub> ∈ P, q, q<sub>1</sub>, q<sub>2</sub> ∈ Q,
  - 1.  $p \leq p^{\triangleright \triangleleft}$  and  $q^{\triangleleft \triangleright} \leq q$  and 2.  $p_1 \leq p_2 \rightarrow p_1^{\triangleright} \leq p_2^{\triangleright}$  and  $q_1 \leq q_2 \rightarrow q_1^{\triangleleft} \leq q_2^{\triangleleft}$ .

# **Chain Conditions**



- 📀 Let P be an ordered set.
- P satisfies the ascending chain condition (ACC), if given any sequence  $x_1 ≤ x_2 ≤ \cdots ≤ x_n ≤ \cdots$  of elements in *P*, there exists *k* ∈ *N* such that  $x_k = x_{k+1} = \cdots$ .
- Dually, P satisfies the descending chain condition (DCC), if given any sequence x<sub>1</sub> ≥ x<sub>2</sub> ≥ ··· ≥ x<sub>n</sub> ≥ ··· of elements in P, there exists k ∈ N such that x<sub>k</sub> = x<sub>k+1</sub> = ···.

#### **Directed Sets**



- Let S be a *non-empty* subset of an ordered set.
- S is said to be *directed* if, for every pair of elements x, y ∈ S there exists z ∈ S such that z ∈ {x, y}<sup>u</sup>.
- S is directed if and only if, for every finite subset F of S, there exists  $z \in S$  such that  $z \in F^u$ .
- In an ordered set with the ACC, a set is directed if and only if it has a greatest element.
- When D is directed for which ∨ D exists, we write ⊔D in place of ∨ D.

イロト 不得 トイヨト イヨト 二日

# **Complete Partial Orders (CPO)**



• An ordered set P is called a *Complete Partial Order* (*CPO*) if

- 1. *P* has a bottom element  $\perp$  and
- 2.  $\Box D$  exists for each directed subset D of P.
- Alternatively, P is a CPO if each chain of P has a least upper bound in P.
- Any complete lattice is a CPO.
- For an ordered P satisfying Condition 2 above (called a pre-CPO), its lifting P<sub>⊥</sub> is a CPO.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 26 / 31

イロト 不得下 イヨト イヨト 二日

### **Continuous Maps**



- 📀 Let P and Q be CPOs.
- A map  $\varphi: P \to Q$  is said to be continuous if, for every directed set D in P,
  - 1. the subset  $\varphi(D)$  of Q is directed and

2. 
$$\varphi(\bigsqcup D) = \bigsqcup \varphi(D)$$
.

- A continuous map need not preserve bottoms, since by definition the empty set is not directed.
- Solution A map  $\varphi: P \to Q$  such that  $\varphi(\bot) = \bot$  is called strict.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

<ロ → < 団 → < 亘 → < 亘 → < 亘 → 亘 の Q (?) Automatic Verification 2010 27 / 31

# A Fixpoint Theorem for CPOs



The *n*-fold composite  $F^n$  of  $F : P \to P$  is defined as follows.

2. 
$$F^n = F \circ F^{n-1}$$
 for  $n \ge 1$ .

😚 If F is order-preserving, so is F<sup>n</sup>.

#### Theorem (CPO Fixpoint Theorem I)

Let P be a CPO and F :  $P \rightarrow P$  an order-preserving map. Define  $\alpha \stackrel{\Delta}{=} \bigsqcup_{n \geq 0} F^n(\bot).$ 1. If  $\alpha \in \text{fix}(F)$ , then  $\alpha = \mu(F)$ . 2. If F is continuous, then  $\mu(F)$  exists and equals  $\alpha$ .

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

◆□ → < 団 → < Ξ → < Ξ → Ξ → ○ Q ○ Automatic Verification 2010 28 / 31

# **Proof of CPO Fixpoint Theorem I (1)**



$$\perp \leq F(\perp) \leq F^2(\perp) \leq \cdots \leq F^n(\perp) \leq F^{n+1}(\perp) \leq \cdots$$

Since P is a CPO, 
$$\alpha \stackrel{\Delta}{=} \bigsqcup_{n \ge 0} F^n(\bot)$$
 exists.

• Let  $\beta$  be any fixpoint of F; we need to show that  $\alpha \leq \beta$ .

📀 By induction, 
$$F^n(\beta) = \beta$$
, for all  $n$ .

- We have  $\perp \leq \beta$ , hence  $F^n(\perp) \leq F^n(\beta) = \beta$ .
- The definition of  $\alpha$  then ensures  $\alpha \leq \beta$ .

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

イロト 不得 トイヨト イヨト 二日

**Proof of CPO Fixpoint Theorem I (2)** 



It suffices to show that  $\alpha \in fix(F)$ .

😚 We have

$$\begin{array}{rcl} F(\bigsqcup_{n\geq 0}F^n(\bot)) &=& \bigsqcup_{n\geq 0}F(F^n(\bot)) & (F \text{ continuous}) \\ &=& \bigsqcup_{n\geq 1}F^n(\bot) \\ &=& \bigsqcup_{n\geq 0}F^n(\bot) & (\bot\leq F^n(\bot) \text{ for all } n) \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 30 / 31

3

(日) (同) (日) (日) (日)

#### **Another Fixpoint Theorem for CPOs**



### Theorem (CPO Fixpoint Theorem II)

Let P be a CPO and F :  $P \rightarrow P$  an order-preserving map. Then F has a least fixpoint.

Yih-Kuen Tsay (IM.NTU)

Ordered Sets and Fixpoints

Automatic Verification 2010 31 / 31

イロト 不得 トイヨト イヨト 二日