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. . . . . .

Symbolic Model Veri�er (SMV)

SMV is a tool for checking �nite state system satisfy
speci�cations in CTL.

SMV uses the BDD-based symbolic model checking algorithm.

The �rst model checker based on BDDs.

The language component of SMV is used to describe complex
�nite-state system.

The primary purpose of the SMV input language is to describe
the transition relation of a �nite Kripke structure.
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. . . . . .

NuSMV

NuSMV is a new symbolic model checker, reimplementation
and extension of CMU SMV.

NuSMV 2 is Open Source and the latest version is NuSMV
2.4.3

NuSMV allows for the representation of synchronous and
asynchronous �nite state systems.

The analysis of speci�cations expressed in Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL), using
BDD-based and SAT-based(Mini-Sat) model checking
techniques.
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. . . . . .

NuSMV(cont'd)

A SMV �le includes the input language for description of �nite
state machine and SPEC formulas that be used to verify our
desired properties.

NuSMV Work �ow diagram:
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. . . . . .

Important feature of the language

Modules
User can decompose the description of �nite-state system
into modules.
Individual modules can be instantiated multiple times, and
modules can reference variables declared in other modules.
Modules can have parameters, while may be state
components, expressions, or other modules.
Modules can also contain fairness constraints.
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. . . . . .

Important feature of the language(cont'd)

Synchronous and interleaved composition
SMV modules can be composed either synchronously or
using interleaving.
In a synchronous component, a single step in the
composition corresponds to a single step in each of the
component.
With interleaving, a single step in the composition
represents a step by exactly one component. (use keyword
process)
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. . . . . .

Important feature of the language(cont'd)

Nondeterministic transitions
Nondeterminism can re�ect actual choice in the actions of
the system being modeled, or it can be used to describe a
more abstract model.

Transition relations
It can be speci�ed explicitly in terms of boolean relations
on the current and next state values of state variables.
or implicitly as a set of parallel assignment statements.
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. . . . . .

A Simple Example

The following is a simple example that illustrate the basic
concepts.

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request : busy;
1 : {ready,busy};
esac;

SPEC
AG(request -> AF state = busy)
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. . . . . .

Lexical and Expressions

An atom may be any sequence of characters in the set

{A-Z,a-z,0-9,_,-}.

The syntax of expressions is as follows.

expr :: atom
|number
|id
|"!" expr
|expr1 "&" expr2
|expr1 "|" expr2
|expr1 "->" expr2
|"next" "(" id ")"
|set_expr
|case_expr

...
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. . . . . .

Lexical and Expressions(cont'd)

A case expression has the syntax

case_expr ::
"case"
expr_a1 ":" expr_b1 ";"
expr_a2 ":" expr_b2 ";"
...
expr_an ":" expr_bn ";"
"esac"

A set expression has the syntax

set_expr :: "{" val1 "," . . . "," valn "}"
| expr1 "in" expr2
| expr1"union" expr2
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. . . . . .

Statement declaration(1/15)

VAR declaration

decl :: "VAR"
atom1 ":" type1 ";"
atom2 ":" type2 ";"
. . .

A type speci�er has the syntax

type :: boolean
| "{" val1 "," val2 "," . . . "," valn "}"
| "array" expr1 ".." expr2 "of" type
| atom [ "(" expr1 "," expr2 "," . . . "," exprn ")" ]
| "process" atom ["(" expr1 "," expr2 "," . . . ","exprn")"]

val :: atom | number
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. . . . . .

Statement declaration(2/15)

Example of VAR

VAR
s0: {noncritical, trying, critical};
s1: {noncritical, trying, critical};
turn: boolean;
pr0: process prc(s0, s1, turn, 0);
pr1: process prc(s1, s0, turn, 1);

Chen-Ming Yao (SVVRL@IM.NTU) Symbolic Model Checkers May 5, 2010 14 / 83



. . . . . .

Statement declaration(3/15)

ASSIGN declaration

decl :: "ASSIGN"
dest1 ":=" expr1 ";"
dest2 ":=" expr2 ";"
. . .

dest :: atom
| "init" "(" atom ")"
| "next" "(" atom ")"
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. . . . . .

Statement declaration(4/15)

Example of ASSIGN

ASSIGN
init(turn) := 0;
next(turn) :=
case

turn = turn0 & state0 = critical:!turn;
1: turn;

esac;
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. . . . . .

Statement declaration(5/15)

TRANS declaration
decl :: "TRANS" expr

The expression must be evaluated 0 or 1.
The transition relation is the conjunction of all of TRANS.

INIT declaration
decl :: "INIT" expr

The expression doesn't contain the next() operator.
The expression must be evaluated 0 or 1.
The initial set is the conjunction of all of INIT.

INVAR declaration
decl :: "INVAR" expr

The expression doesn't contain the next() operator.
The expression must be evaluated 0 or 1.
The invariant is the conjunction of all of INVAR.
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. . . . . .

Statement declaration(6/15)

Example of TRANS and INIT

INIT
output = 0

TRANS
next(output)=!input
| next(output)=output

Example of INVAR

INVAR x = y + 1
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. . . . . .

Statement declaration(7/15)

Semantically assignments can be expressed using other kinds of
constraints

ASSIGN a := exp;
is equivalent to INVAR a = exp;
ASSIGN init(a) := exp;
is equivalent to INIT a = exp;
ASSIGN next(a) := exp;
is equivalent to TRANS next(a) = exp;
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. . . . . .

Statement declaration(8/15)

SPEC declaration
decl :: "SPEC" ctlform

A CTL formula doesn't contain next() operator.
A CTL formula return a value 0 or 1.
The speci�cation is the conjunction of all of SPEC.

FAIRNESS constraint declaration
decl :: "FAIRNESS" ctlform
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. . . . . .

Statement declaration(9/15)

A CTL formula has the syntex

ctlform :: expr
| "!" ctlform
| ctlform1 "&" ctlform2
| ctlform1 "|" ctlform2
| ctlform1 "->" ctlform2
| ctlform1 "<->" ctlform2
| "E" pathform
| "A" pathform

The syntax of a path formula is

pathform :: "X" ctlform
| "F" ctlform
| "G" ctlform
| ctlform1 "U" ctlform2
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. . . . . .

Statement declaration(10/15)

Example of SPEC and FAIRNESS

SPEC
AG((s0 = trying) -> AF (s0 = critical))

FAIRNESS !(s0 = critical)
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. . . . . .

Statement declaration(11/15)

PRINT declaration evaluates a speci�cation and prints a formula
describing the set of reachable states that satisfy this formula.

decl :: "PRINT" ctlform
"PRINT" header ":" ctlform

header :: "hide" id1 "," id2 "," ... "," idn
"expose" id1 "," id2 "," ... "," idn

Example of PRINT

PRINT 1

(Prints a formula describing the set of all reachable states.)

PRINT expose x, y: x = y | y = z
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. . . . . .

Statement declaration(12/15)

DEFINE declaration

decl :: "DEFINE""
atom1 ":=" expr1 ";"
atom2 ":=" expr2 ";"
...
atomn ":=" exprn ";"

MODULE declaration

module :: "MODULE"" atom ["("atom1", ... ","atomn")"]
decl1
decl2
...
decln

Chen-Ming Yao (SVVRL@IM.NTU) Symbolic Model Checkers May 5, 2010 24 / 83



. . . . . .

Statement declaration(13/15)

Example of MODULE and DEFINE

MODULE counter_cell(carry_in)
VAR
value:boolean;

ASSIGN
init(value):=0;
next(value):=value+carry_in mod 2;

DEFINE
carry_out:=value&carry_in;
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. . . . . .

Statement declaration(14/15)

An id, or identi�er, is an expression which references an object.

id :: atom
| id "." atom
| id "[" expr "]"

There must be one module with the name main and no formal
parameters.

program :: module1
module2
...
modulen
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. . . . . .

Statement declaration(15/15)

Example of main and id.

MODULE main
VAR
bit0:counter_cell(1);
bit1:counter_cell(bit0.carry_out);
bit2:counter_cell(bit1.carry_out);

SPEC
AG AF bit2.carry_out
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. . . . . .

Mutual Exclusion Problem(1/7)

The goal of this program is to exclude the possibility that both
processes are in their critical regions at the same time.

A process which wants to enter its critical region will
eventually be able to enter.

Each process in one of three region: noncritical, trying, critical.

noncriticalWVUTPQRS trying
p1.state=noncritical
WVUTPQRS criticalWVUTPQRS// // //

cc

�� ��
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. . . . . .

Mutual Exclusion Problem(2/7)

Initially, both processes are in their noncritical regions.

A process is in trying region and the other is in noncritical
region, the �rst process can immediately enter its critical
region.
If both processes are in their trying regions, the boolean
variable turn is used to determine which process enters its
critical region.

if turn = 0 then process 0 can enter and turn := !turn.
if turn = 1 then process 1 can enter and turn := !turn.

We assume that a process must eventually leave its critical
region.

It may remain in its noncritical region forever.
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. . . . . .

Mutual Exclusion Problem(3/7)

turn=0

p0=noncritival,

p1=noncritical

turn=0

p0=trying,

p1=noncritical

turn=0

p0=noncritical,

p1=trying

turn=0

p0=critical,

p1=noncritical

turn=0

p0=critical,

p1=trying

turn=1

p0=noncritical,

p1=critical

turn=1

p0=trying,

p1=noncritical

turn=1

p0=noncritical,

p1=noncritical

turn=1

p0=noncritical,

p1=trying

turn=1

p0=trying,

p1=critical

turn=0

p0=trying,

p1=trying

turn=1

p0=trying,

p1=trying
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Code of Mutual Exclusion

1 MODULE main --two process mutual exclusion

2 VAR

3 s0: {noncritical, trying, critical};

4 s1: {noncritical, trying, critical};

5 turn: boolean;

6 pr0: process prc(s0, s1, turn, 0);

7 pr1: process prc(s1, s0, turn, 1);

8 ASSIGN

9 init(turn) := 0;
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. . . . . .

Mutual Exclusion Problem(4/7)

Module de�nitions begin with the keyword MODULE.
The module main is top-level module. (line 1)
The module prc has formal parameter state0, state1,
turn, turn0. (line 19)

Variables are declared using VAR.
i.e., turn is a boolean variable, while s0 and s1 are
variables which can have one of three region. (line 3-5)
It's also used to instantiate other modules. (line 6-7)
The keyword process is used in both cases, the global
model is constructed by interleaving steps from pr0 and
pr1.
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. . . . . .

Code of Mutual Exclusion(cont'd)

19 MODULE prc(state0, state1, turn, turn0)

20 ASSIGN

21 init(state0) := noncritical;

22 next(state0) :=

23 case

24 (state0= noncritical):{trying,noncritical};

25 (state0= trying)&(state1= noncritical): critical;

26 (state0= trying)&(state1= trying)&(turn = turn0):

critical;

27 (state0= critical) : {critical,noncritical};

28 1:state0;

29 esac;
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. . . . . .

Code of Mutual Exclusion(cont'd)

30 next(turn) :=

31 case

32 turn = turn0 & state0 = critical: !turn;

33 1: turn;

34 esac;
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. . . . . .

Mutual Exclusion Problem(5/7)

The ASSIGN statement is used to de�ne the initial states and
transitions of the model.

i.e.,the initial value of variable turn is 0. (line 9)
The value of the variable state0 and turn in the next
state is given by the case statement. (line 23-29) (line
31-34)
The value of a case statement is determined by evaluating
the clauses within the statement in sequence.
When a set expression is assigned to a variable, the value
of variable is chosen nondeterministically from the set.
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. . . . . .

Code of Mutual Exclusion(cont'd)

10 FAIRNESS !(s0 = critical)

11 FAIRNESS !(s1 = critical)

12 SPEC EF((s0 = critical) & (s1 = critical))

13 SPEC AG((s0 = trying) -> AF (s0 = critical))

14 SPEC AG((s1 = trying) -> AF (s1 = critical))

15 SPEC AG((s0 = critical) -> A[(s0 = critical) U

16 (!(s0 = critical) & !E[!(s1 = critical) U

(s0 = critical)])])

17 SPEC AG((s1 = critical) -> A[(s1 = critical) U

18 (!(s1 = critical) & !E[!(s0 = critical) U

(s1 = critical)])])

...

35 FAIRNESS running
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. . . . . .

Mutual Exclusion Problem(6/7)

The FAIRNESS statements are fairness constrains.
Fairness constrains (line10-11) are used to prevent a
process remain in its critical region forever.

The CTL properties to be veri�ed are given as SPEC
statements.

The �rst speci�cation checks for a violation of the mutual
exclusion requirement.(line 12)
The second and third check that a process which wants to
enter its critical region will eventually be able to enter.(line
13-14)
The last two speci�cations check whether processes must
strictly alternate entry into their critical regions.(line
15-17)
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. . . . . .

Mutual Exclusion Problem(7/7)

Result:
EF((s0 = critical) & (s1 = critical)) is false
AG((s0 = trying) -> AF (s0 = critical)) is true
AG((s1 = trying) -> AF (s1 = critical)) is true
AG((s0 = critical) -> A[(s0 = critical).. is false
AG((s1 = critical) -> A[(s1 = critical).. is false

The output note following:
mutual exclusion is not violate,
absence of starvation is true,
strict alternation of critical region is false.

SMV produced counterexample computation paths in the false
cases.
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. . . . . .

Counterexample

Counterexample for strict alternation of critical regions.

-- specification AG (s0 = critical -> A(... is false

-- as demonstrated by the following execution sequence

state 2.1: s0 = noncritical

s1 = noncritical

turn=0

state 2.2: [executing process pr0]

state 2.3: [executing process pr0]

s0 = trying

state 2.4: s0 = critical

state 2.5: [executing process pr0]

state 2.6: s0 = noncritical

turn = 1

state 2.7: [executing process pr0]

state 2.8: [executing process pr0]

s0 = trying

state 2.9: s0 = critical
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. . . . . .

A Realistic Example: Futurebus+

The formalization and veri�cation of the cache coherence
protocol

draft IEEE Futurebus+ standard (IEEE Standard
896.1-1991).

A precise model of the protocol was constructed in SMV
language and model checking was used to show that it satis�ed
a formal speci�cation of cache coherence.

A number of errors and ambiguities were discovered.

This experience demonstrates that hardware description and
model checking techniques can be used to help design real
industrial standards.

Chen-Ming Yao (SVVRL@IM.NTU) Symbolic Model Checkers May 5, 2010 41 / 83



. . . . . .

Futurebus+

Futurebus+ is a bus architecture for high-performance
computers.

The cache coherence protocol used in Futurebus+ is required
to insure consistency of data in hierarchical systems composed
of many processors and caches interconnected by multiple bus
segments.

The model is highly nondeterministic, both to reduce the
complexity of veri�cation and to cover allowed design choices.

The model for the cache coherence protocol consists of 2300
lines of SMV code.

Chen-Ming Yao (SVVRL@IM.NTU) Symbolic Model Checkers May 5, 2010 42 / 83



. . . . . .

Design of Futurebus+

Futurebus+ maintains coherence by having the individual
caches snoop, or observe, all bus transaction and update their
status.

Coherence across buses is maintained using bus bridges.

Special agents at the end of the bridges represent remote
caches and memories.

The protocol uses split transaction to increase performance.

This facility makes it possible to service local requests while
remote requests are being processed.
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. . . . . .

Design of Futurebus+(cont'd)

We are interested in cache modules that represents a
cache/processor pair and shared memory modules.

Each cache module in the system is required to keep an
attribute for the cache line; the attribute represents the read
and write access the cache has to the line.
The attributes speci�ed by the Futurebus+ protocol are:

invalid
shared unmodi�ed
exclusive unmodi�ed
exclusive modi�ed
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. . . . . .

Design of Futurebus+(cont'd)

The standard de�nes a number of transactions that relate to
the movement of the data lines.

Read Shared: This transaction is initiated by a cache which
wishes to obtain read access to the data line

Read Modi�ed: is initiated by a cache who wishes to obtain
read/write access to the data line

Invalidate: is initiated by a cache who has read access to the
data line and wishes to obtain write access to the line
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. . . . . .

Design of Futurebus+(cont'd)

Copyback: is initiated by a cache has modi�ed the data line
and wishes to evict the line from its memory.

Shared Response: is initiated by a cache who has forced
another module to go into a requester state. This response is
sharable, others may snarf it.

Modi�ed Response: is initiated by a cache has forced another
module to go into a requester state. This response is not
sharable.
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. . . . . .

Design of Futurebus+(cont'd)

Transition diagram between line attribute in response to
transactions.

Source: Esser."Veri�cation of the Futurebus+ Cache Coherence protocol: A

case study in model checking",2003
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. . . . . .

Design of Futurebus+(cont'd)

1. The module completed a read shared transaction that was
snarfed by another module, or it has snarfed the completed
read shared transaction of another module.

2. Completed a read shared transaction that was not snarfed
by another module.

3. Completed a read modi�ed transaction.

4. The module may voluntarily clear the cache of a line, or the
module did not snarf read shared transaction belonging to
another module, or another module initiated read modi�ed or
invalidate transaction.

5. Completed an invalidate transaction
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. . . . . .

Design of Futurebus+(cont'd)

6. The module may change an exclusive unmodi�ed line to
exclusive modi�ed at any time without a bus transaction.

7. The module may change the line state to shared-unmodi�ed
without a bus transaction, or the module snarfed the read
shared transaction of another module.

8. Removed the line from the cache (after performing a
copyback transaction).

9. The module performed a copyback transaction and kept a
copy of the line.

10. Removed the line from the cache, or the module did not
snarf the read share transaction of another module, or another
module initiated a read modi�ed transaction.
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. . . . . .

Example of Futurebus+: Single bus

We consider some example transactions for a single cache line
in the two-processor system.

Initially, neither processor has a copy of the line in its cache.

All processor are in the invalid state.

P1 P2

M
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. . . . . .

Example of Futurebus+: Single bus(cont'd)

P1 issues a read-shared transaction to obtain a readable copy
of the data from M(memory).

P2 snoops this transaction, and it also can obtain a readable
copy, this is called snar�ng.

If P2 snarfs, both caches contain a shared-unmodi�ed copy.

Next, P1 decides to write, and issues an invalidate transaction
on the bus.

P2 snoops this transaction, and delete the copy.

Final, P1 has an exclusive-modi�ed copy of the data.
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. . . . . .

Two-bus Example

Initially, both processor caches are in the invalid state.

Each processor doesn't have a copy in its cache.

P1 CA

M

MA

P2

Bus2

Bus1
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. . . . . .

Two-Bus Example(cont'd)

P2 issues a read-modi�ed to obtain a writable copy, then
MA(memory agent) splits the transaction, for it must get the
data from M.

The command is passed to CA(cache agent), and CA issues
the read-modi�ed on bus 1.

M supplies the data to CA, which in turn passes it to MA.

MA issues a modi�ed-response on bus 2 to complete the split
transaction.
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. . . . . .

Two-Bus Example(cont'd)

Suppose now that P1 issues a read-shared command.

CA, knowing that a remote cache has an exclusive-modi�ed
copy, intervenes in the transaction to indicate that it will
supply the data, and splits the transaction.

CA passes the read-shared to MA, which issues it.

P2 intervenes and supplies the data to MA, which passes it to
CA.

CA performs a shared-response transaction which complete the
read-shared issued by P1.
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. . . . . .

Simpli�cations

First, a number of the low-level details dealing with how
modules communicate were eliminated.

The most signi�cant simpli�cation was to use a model in
which one step corresponds to one transaction.

Second, it was used to reduce the size of some parts of the
system.

E.g., only transactions involving a single cache line were
considered.
The data were reduced to single bit.
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. . . . . .

Simpli�cations(cont'd)

Third, it involved eliminating the read-invalid and write-invalid
commands.

These commands are used in DMA transfers to and from
memory.

Last, it involved using nondeterminism to simplify the models
of some of the components.

Processor are assumed to issue read and write requests for
a given cache line nondeterministically.
Responses to split transactions are assumed to be issued
after arbitrary delays.
Finally, the model of a bus bridge is highly
nondeterministic.
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. . . . . .

Cache Model

1 next(state) :=

2 case

3 CMD=none:

4 case

5 state=share-unmodified:

6 case

7 requester=exclusive: share-unmodified;

8 1: invalid, shared-unmodified;

9 esac;

10 state=exclusive-unmodified: invalid, shared-unmodified,

11 exclusive-unmodified, exclusive-modified;

12 1: state;

13 esac;

14
...
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. . . . . .

Cache Model(cont'd)

State components with (CMD, SR, TF) denote bus signals
visible to the cache, and components with (state, tf) are
under the control of the cache.

This part speci�es what happen when an idle cycle occurs.

If the cache has a shared-unmodi�ed copy, then the line may be
nondeterministically kicked out of the cache unless there is an
outstanding request to change the line to exclusive-modi�ed.

If a cache has an exclusive-unmodi�ed copy of the line, it may
kick the line out of the cache or change it to
exclusive-modi�ed.
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. . . . . .

Cache Model(cont'd)

15 master:

16 case

17 CMD=read-shared:

18 case

19 state=invalid:

20 case

21 !SR & !TF: exclusive-unmodified;

22 !SR: shared-unmodified;

23 1: invalid;

24 esac;

25
...

28 esac;

29
...
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. . . . . .

Cache Model(cont'd)

This part indicate how the cache line state is updated when
the cache issues a read-shared transition.

This should only happen when the cache doesn't have a copy.

If the transaction is not split (!SR), then the data will be
supplied to the cache.

Either no other caches will snarf the data (!TF), in which case
the cache obtain an exclusive-unmodi�ed copies.

If the transition is split, the cache line remains in the invalid
state.
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. . . . . .

Cache Model(cont'd)

30 CMD=read-shared:

31 case

32 state in invalid, shared-unmodified:

33 case

34 !tf: invalid;

35 !SR: shared-unmodified;

36 1: state;

37 esac;

38
...

41 esac;
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. . . . . .

Cache Model(cont'd)

This part tells how caches respond when they observe another
one issuing a read-shared transaction.

If the observing cache is either invalid or shared-unmodi�ed,
then it may indicate that it doesn't want a copy and the line
becomes invalid.

Alternatively, it may assert tf and try to snarf the data. The
transaction is not split (!SR) , the cache obtaines a
shared-unmodi�ed copy.

Otherwise, the case stays in it current state.
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. . . . . .

Speci�cations

AG(p1.writable → ¬p2.readable)
If p1 is in the exclusive-modi�ed state, p2 is in invalid.

AG(p1.readable ∧ p2.readable → p1.data = p2.data)
If two caches have copies ,then they have the same data.

AG(p.readable ∧ ¬m.memory -line-modi�ed
→ p.data = m.data)

If memory has an up-to-date data, then any cache that has a copy

must agree with memory on the data.

AG EF p.readable ∧ AG EF p.writable
This is used to check that it is always possible for a cache to get

read or write access to the line.
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. . . . . .

Two of the errors

The �rst error occurs in the single bus protocol.

Initially, both caches are invalid.

P1 obtain an exclusive-unmodi�ed copy.

Next, P2 issues a read-modi�ed, which P1 splits for
invalidation.

M supplies a copy to P2,which transitions to
shared-unmodi�ed.

At this point, P1,still having an exclusive-unmodi�ed copy,
transitions to exclusive-modi�ed and writes the cache line.

P1 and P2 are inconsistent.

The bug can be �xed by requiring that P1 transition to the
shared-unmodi�ed state when it splits the read-modi�ed for
invalidation.
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. . . . . .

Two of the errors(cont'd)

The second error occurs in the hierarchical con�guration.

P1, P2, and P3 all obtain share-unmodi�ed copies.

P3 CA

M

MA

P2P1

Bus2

Bus1
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. . . . . .

Two of the errors(cont'd)

P1 issues an invalidate transaction that P2 and MA split.

P3 issues an invalidate that CA splits.

The bridge detects that an invalidate-invalidate collision has
occurred.

The collision should be resolved by having MA invalidate P1.

When MA tries to do this, P2 asserts a busy signal on the bus.

MA observes this and acquires the requester-waiting attribute.
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. . . . . .

Two of the errors(cont'd)

P2 now �nishes invalidating and issues a modi�ed-response.
This is split by MA because P3 still not invalid.

However,MA still maintains the requester-waiting attribute.

MA will not issue commands since it is waiting for a completed
response,but no such response can occur.

There is a deadlock.

The deadlock can be avoided by having MA clear the
requester-waiting attribute when it observe that P2 has
�nished invalidating.
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. . . . . .

LTL, CTL, and BMC in NuSMV

The main purpose of a model checker is to verify that a model
satis�es a set of desired properties speci�ed by the user.

In NuSMV, the speci�cations to be checked can be expressed
in two di�erent temporal logics: the Computation Tree Logic
(CTL), and the Linear Temporal Logic (LTL).

CTL and LTL speci�cations are evaluated by NuSMV in order
to determine their truth or falsity in the FSM

When a speci�cation is discovered to be false, NuSMV
constructs and prints a counterexample.
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. . . . . .

LTL Statement declaration

A LTL formula has the syntex

LTLexpr ::LTLexpr
| "!" LTLexpr
| LTLexpr1 "&" LTLexpr2
| LTLexpr1 "|" LTLexpr2
| LTLexpr1 "->" LTLexpr2
| LTLexpr1 "<->" LTLexpr2
Furture operators
| "X" LTLexpr
| "G" LTLexpr
| "F" LTLexpr
| LTLexpr"U" LTLexpr
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. . . . . .

LTL Statement declaration(cont'd)

A LTL formula has the syntex

LTLexpr :: Past operators
| "Y" LTLexpr previous state
| "Z" LTLexpr before
| "H" LTLexpr historically
| "O" LTLexpr once
| LTLexpr"S" LTLexpr since
| LTLexpr"T" LTLexpr triggered
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. . . . . .

Semaphore

Each process has four state: idle, entering, critical and
exiting.

The entering state indicate that the process wants to enter
its critical region.

If semaphore is 0, it goes to the critical, and sets
semaphore to 1.

In exiting state, the process sets semaphore to 0.
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. . . . . .

Semaphore(cont'd)

Semaphore=0

P1=Idle,P2=Idle

Semaphore=0

P1=Idle,

P2=Entering

Semaphore=0

P1=Entering,

P2=Idle

Semaphore=1

P1=Idle,

P2=Critical

Semaphore=1

P1=Entering,

P2=Critical

Semaphore=1

P1=Critical,

P2=Entering

Semaphore=1

P1=Critical,

P2=Idle

Semaphore=1

P1=Idle,

P2=Exiting

Semaphore=1

P1=Entering,

P2=Exiting

Semaphore=1

P1=Exiting,

P2=Idle

Semaphore=1

P1=Exiting,

P2=Entering
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. . . . . .

Code of Semaphore

1 MODULE main

2 VAR

3 semaphore : boolean;

4 proc1 : process user(semaphore);

5 proc2 : process user(semaphore);

6 ASSIGN

7 init(semaphore) := 0;
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. . . . . .

Code of Semaphore(cont'd)

8 MODULE user(semaphore)

9 VAR

10 state : {idle, entering, critical, exiting};

11 ASSIGN

12 init(state) := idle;

13 next(state) :=

14 case

15 state = idle: {idle, entering};

16 state = entering & !semaphore: critical;

17 state = critical: {critical, exiting};

18 state = exiting: idle;

19 1: state;

20 esac;
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. . . . . .

Code of Semaphore(cont'd)

21 next(semaphore) :=

22 case

23 state = entering: 1;

24 state = exiting: 0;

25 1: semaphore;

26 esac;

27 FAIRNESS

28 running
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. . . . . .

CTL Speci�cation of Semaphore

proc1 and prco2 are not at the same time in the critical state.

SPEC
AG!(proc1.state=critical & proc2.state=critical)

If porc1 wants to enter its critical state, it eventually does.

SPEC
AG(proc1.state=entering -> AF proc1.state=critical)
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. . . . . .

LTL Speci�cation of Semaphore

The two process cannot be in the critical region at the same
time.

LTLSPEC
G!(proc1.state=critical & proc2.state=critical)

A process wants to enter its critical session, it eventually does.

LTLSPEC
G(proc1.state=entering -> F proc1.state=critical)

A process enters its critical session, it once want to do it.

LTLSPEC
G(proc1.state=critical -> O proc1.state=entering)
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. . . . . .

Bounded Model Checking in NuSMV

Instruct NuSMV to run in BMC by using command-line option
-bmc

In BMC mode NuSMV tries to �nd a counterexample of
increasing length, and immediately stops when it succeeds,
declaring that the formula is false.

If the maximum number of iterations is reached and no
counterexample is found, then NuSMV exits, and the truth of
the formula is not decided.

The maximum number of iterations can be controlled by using
bmc_length.

The default value is 10.
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. . . . . .

Example of Bounded Model Checking

1 MODULE main

2 VAR

3 y : 0..15;

4 ASSIGN

5 init(y) := 0;

6 TRANS

7 case

8 y = 7 : next(y) = 0;

9 1 : next(y) = ((y + 1) mod 16);

10 esac
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. . . . . .

Checking LTL Speci�cations with BMC

Check the following LTL speci�cation with BMC

LTLSPEC G ( y=4 -> X y=6 )
False

LTLSPEC !G F (y = 2)
False

LTLSPEC F ( X y=8 | O y<3)
This formula can't be decided within 10 iterations
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