

Temporal Logic Model Checking (Based on [Clarke et al. 1999])

Yih-Kuen Tsay (original created by Yu-Fang Chen)

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2010 1 / 49

(日) (同) (三) (三) (三)

About Temporal Logic

- Temporal logic is a formalism for describing temporal ordering (or dependency) between occurrences of "events" (represented by propositions).
- It provides such expressive features by introducing temporal/modal operators into classic logic.
- These temporal operators usually do not explicitly mention time points.
- There are two principal views of the structure of time:
 inear-time: occurrences of events form a sequence
 - branching-time: occurrences of events form a tree

イロト 不得 トイヨト イヨト 二日

Outline

😚 Temporal Logics

- CTL* (generalized Computation Tree Logic)
- CTL (Computation Tree Logic; subset of CTL*)
- LTL (Linear Temporal Logic; subset of CTL*)
- 😚 Fairness
- 📀 Algorithmic Temporal Logic Verification
 - 👏 CTL Model Checking
 - 🔅 LTL Model Checking
 - 🌻 CTL* Model Checking

イロト 不得下 イヨト イヨト

CTL*

- CTL* formulae describe properties of a computation tree (generated from a Kripke structure).
- They are composed of path quantifiers and temporal operators.
- 😚 Path quantifiers:
 - 👏 E (for some path)
 - 🏓 🗛 (for all paths)
- Temporal operators:
 - 🏓 🗙 (next)
 - F (eventually or sometime in the future)
 - 🖲 G (always or globally)
 - 🖲 **U** (until)
 - 🏓 R (release)

イロト イポト イヨト イヨト

Syntax of CTL*

- Let AP be a set of atomic propositions.
- 😚 The syntax of state formulae:
 - if $p \in AP$, then p is a state formula.
 - If f₁ and f₂ are state formulae, then so are $\neg f_1$, f₁ \lor f₂ and f₁ \land f₂.
 - otin If g is a path formula, then $\mathbf{E}g$ and $\mathbf{A}g$ are state formulae.
- The syntax of path formulae:
 - If f is a state formula, then f is also a path formula.
 - if g_1 and g_2 are path formulae, then so are $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Fg_1 , Gg_1 , $g_1 \cup g_2$, and $g_1 \cap R g_2$.

CTL* is the set of state formulae generated by the above rules.

Formula: AG (Req → AF Ack). Intended meaning: every request will eventually be granted.

Formula: AG (EF Restart). Intended meaning: it is always possible at any time to get to the Restart state.

イロト 不得下 イヨト イヨト 二日

Kripke Structures

- Let AP be a set of atomic propositions.
- A *Kripke structure* M over AP is a tuple (S, S_0, R, L) :
 - 🌻 S is a finite set of states,
 - ${\ensuremath{\stackrel{@}{=}}} S_0 \subseteq S$ is the set of initial states,
 - \circledast $R \subseteq S imes S$ is a total transition relation, and
- A computation or path π of M from a state s is an infinite sequence s_0, s_1, s_2, \cdots of states such that $s_0 = s$ and $(s_i, s_{i+1}) \in R$, for all $i \ge 0$.
- In the sequel, π^i denotes the *suffix* of π starting at s_i .

イロト 不得 トイヨト イヨト 二日

Semantics of CTL*

- When f is a state formula, $M, s \models f$ means that f holds at state s in the Kripke structure M.
- When f is a path formula, $M, \pi \models f$ means that f holds along the path π in the Kripke structure M.
- Assuming that f_1 and f_2 are state formulae and g_1 and g_2 are path formulae, the semantics of CTL* is as follows:

$$\begin{array}{l} \bullet & M, s \models p \Longleftrightarrow p \in L(s) \\ \bullet & M, s \models \neg f_1 \Longleftrightarrow M, s \nvDash f_1 \\ \bullet & M, s \models f_1 \lor f_2 \Longleftrightarrow M, s \models f_1 \text{ or } M, s \models f_2 \\ \bullet & M, s \models f_1 \land f_2 \Longleftrightarrow M, s \models f_1 \text{ and } M, s \models f_2 \\ \bullet & M, s \models \mathbf{E}g_1 \iff \text{for some path } \pi \text{ from } s, M, \pi \models g_1 \\ \bullet & M, s \models \mathbf{A}g_1 \iff \text{for every path } \pi \text{ from } s, M, \pi \models g_1 \\ \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Semantics of CTL* (cont.)

The semantics of CTL* (cont.):

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2010 9 / 49

- 3

イロト イポト イヨト イヨト

Minimalistic CTL*

- The operators ∨, ¬, X, U, and E are sufficient to express any other CTL* formula (in an equivalent way).
- 😚 In particular,
 - $\mathbf{F}f = true \ \mathbf{U} \ f$ • $\mathbf{G}f = \neg \mathbf{F}(\neg f)$ • $f \ \mathbf{R} \ g = \neg(\neg f \ \mathbf{U} \ \neg g)$ • $\mathbf{A}f = \neg \mathbf{E}(\neg f)$

$$\bigcirc \neg(\neg f \ \mathbf{U} \ \neg g)$$
 says that

it should not be the case that from some state g becomes false and until then f has never been true.

This is the same as saying that only an occurrence of f may allow g to become false (or f "releases" g), namely $f \mathbf{R} g$.

Yih-Kuen Tsay (IM.NTU)

イロト イポト イヨト イヨト 二日

CTL and LTL

- OTL and LTL are restricted subsets of CTL*.
- 😚 CTL is a branching-time logic, while LTL is linear-time.
- In CTL, each temporal operator X, F, G, U, or R must be immediately preceded by a path quantifier E or A.
- The syntax of path formulae in CTL is more restricted:
 - if f_1 and f_2 are state formulae, then $X f_1$, $F f_1$, $G f_1$, $f_1 U f_2$, and $f_1 R f_2$ are path formulae.
- The syntax of state formulae remains the same:
 - if $p \in AP$, then p is a state formula.
 - If f_1 and f_2 are state formulae, then so are $\neg f_1$, $f_1 \lor f_2$ and $f_1 \land f_2$.
 - If g is a path formula, then Eg and Ag are state formulae.

Yih-Kuen Tsay (IM.NTU)

- LTL consists of formulae that have the form Af, where f is a path formula in which atomic propositions are the only permitted state formulae.
- The syntax of path formulae in LTL is as follows:
 - \circledast If $p \in AP$, then p is a path formula.
 - If g_1 and g_2 are path formulae, then so are $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Fg_1 , Gg_1 , g_1 U g_2 , and g_1 R g_2 .

イロト イポト イヨト イヨト 二日

- CTL, LTL, and CTL* have distinct expressive powers.
- Some discriminating examples:
 - **•** $\mathbf{A}(\mathbf{FG} \ p)$ in LTL, not expressible in CTL.
 - **AG**(**EF** p) in CTL, not expressible in LTL.
 - **A**(**FG** p) \lor **AG**(**EF** p) in CTL*, not expressible in CTL or LTL.
- So, CTL* is strictly more expressive than CTL and LTL, the two of which are incomparable.

イロト 不得下 イヨト イヨト

Fair Kripke Structures

A fair Kripke structure is a 4-tuple M = (S, R, L, F), where S, L, and R are defined as before and F ⊆ 2^S is a set of fairness constraints. (Generalized Büchi acceptance conditions)

📀 Let
$$\pi= extsf{s}_0, extsf{s}_1, \dots$$
 be a path in M .

- Define $\inf(\pi) = \{s \mid s = s_i \text{ for infinitely many } i\}.$
- 😚 We say that π is *fair* iff, for every $P \in F$, $\inf(\pi) \cap P \neq \emptyset$.

・ロト ・ 一日 ト ・ 日 ト

Fair Semantics

- We write $M, s \models_F f$ to indicate that the state formula f is true in state s of the fair Kripke structure M.
- $M, \pi \models_F g$ indicates that the path formula g is true along the path π in M.
- Only the following semantic rules are different from the original ones:
 - * $M, s \models_F p \iff$ there exists a fair path starting from s and $p \in L(s)$.
 - * $M, s \models_F \mathbf{E}(g_1) \iff$ there exists a fair path π starting from s s.t. $M, \pi \models_F g_1$.
 - * $M, s \models_F \mathbf{A}(g_1) \iff$ for every fair path π starting from s, $M, \pi \models_F g_1$.

Yih-Kuen Tsay (IM.NTU)

CTL Model Checking

- Let M = (S, R, L) be a Kripke structure.
- We want to determine which states in S satisfy the CTL formula f.
- The algorithm will operate by labelling each state s with the set label(s) of sub-formulae of f which are true in s.
 - initially, label(s) is just L(s).
 - During the *i*-th stage, sub-formulae with *i* 1 nested CTL operators are processed.
 - When a sub-formula is processed, it is added to the labelling of each state in which it is true.
 - Solution Once the algorithm terminates, we will have that $M, s \models f$ iff $f \in label(s)$.

Yih-Kuen Tsay (IM.NTU)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Handling CTL Operators

- There are ten basic CTL temporal operators: AX and EX, AF and EF, AG and EG, AU and EU, and AR and ER.
- All these operators can be expressed in terms of EX, EU, and EG:

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2010 17 / 49

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So, for CTL model checking, it suffices to handle the following six cases: *atomic proposition*, \neg , \lor , **EX**, **EU** and **EG**.

- Atomic propositions are handled at the beginning of the algorithm (by the initial setting label(s) = L(s)).
- For $\neg f$, we label those states that are not labelled by f.
- For $f_1 \lor f_2$, we label any state that is labelled either by f_1 or by f_2 .
- For **EX** *f*, we label every state that has some successor labelled by *f*.

イロト 不得下 イヨト イヨト 二日

CTL Model Checking: EU

• To handle formulae of the form $\mathbf{E}[f_1\mathbf{U}f_2]$, we follow these steps:

- Find all states that are labelled with f_2 .
- Work backward using the converse of the transition relation R and find all states that can be reached by a path in which each state is labelled with f₁.
- ***** Label all such states by $\mathbf{E}[f_1\mathbf{U}f_2]$.
- This requires time O(|S| + |R|).

(日) (同) (日) (日) (日)

CTL Model Checking: EU (cont.)


```
procedure CheckEU(f_1, f_2)
    T := \{s \mid f_2 \in label(s)\};
    for all s \in T do label(s) := label(s) \cup \{ \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \};
    while T \neq \emptyset do
         choose s \in T:
         T := T \setminus \{s\};
        for all t s.t. R(t,s) do
             if \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \notin label(t) and f_1 \in label(t) then
                 label(t) := label(t) \cup \{ \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \};
                  T := T \cup \{t\};
             end if:
        end for all:
    end while:
end procedure;
```

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2010 20 / 49

イロト イポト イヨト イヨト 二日

CTL Model Checking: EG

To handle formulae of the form EG f, we need the following lemma:

Let
$$M' = (S', R', L')$$
, where $S' = \{s \in S \mid M, s \models f\}$.

- $M, s \models \mathbf{EG}f$ iff the following two conditions hold:
 - 1. $s \in S'$.
 - There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component (SCC) C of the graph (S', R').
- Note: an SCC is nontrivial if either it contains at least two nodes or it contains only one node with a self loop.

イロト 不得下 イヨト イヨト 二日

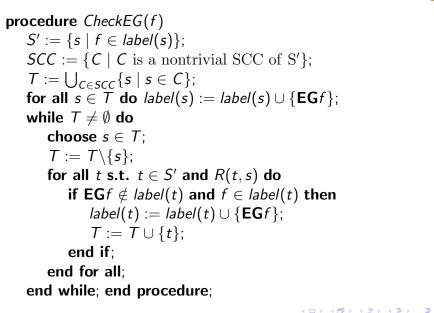
CTL Model Checking: EG (cont.)

• With the lemma, we can handle **EG** *f* by the following steps:

- 1. Construct the restricted Kripke structure M'.
- 2. Partition the (S', R') into SCCs. (Complexity: O(|S'| + |R'|)).
- 3. Find those states that belong to nontrivial components.
- 4. Work backward using the converse of R' and find all of those states that can be reached by a path in which each state is labelled with f. (Complexity: O(|S| + |R|))

イロト 不得下 イヨト イヨト 二日

CTL Model Checking: EG (cont.)



Yih-Kuen Tsay (IM.NTU)

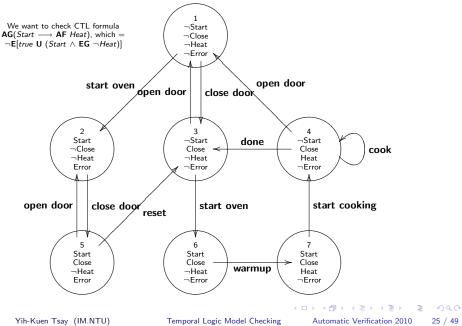
Temporal Logic Model Checking

CTL Model Checking (cont.)

- We successively apply the state-labelling algorithm to the sub-formulae of f, starting with the shortest, most deeply nested, and work outward to include the whole formula.
- By proceeding in this manner, we guarantee that whenever we process a sub-formula of f all its sub-formulae have already been processed.
- There are at most |f| sub-formulae, and each formula takes at most O(|S| + |R|) time.
- The complexity of this algorithm is $O((|f| \cdot (|S| + |R|)))$.

イロト 不得下 イヨト イヨト 二日

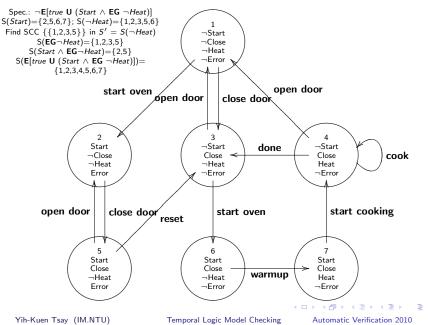
An Example



25 / 49

An Example (cont.)

26 / 49



Fairness Constraints

• Let M = (S, R, L, F) be a fair Kripke structure.

• Let
$$F = \{P_1, \ldots, P_k\}$$
.

- We say that a SCC C is *fair* w.r.t F iff for each $P_i \in F$, there is a state $t_i \in (C \cap P_i)$.
- To handle formulae of the form EG f in a fair kripke structure, we need the following lemma:

Let
$$M' = (S', R', L', F')$$
, where $S' = \{s \in S \mid M, s \models_F f\}$.
 $M, s \models_F EGf$ iff the following two conditions holds:

- 1. $s \in S'$.
- There exists a path in S' that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

Fairness Constraints

- We can create a CheckFairEG algorithm which is very similar to the CheckEG algorithm based on this lemma.
- The complexity of *CheckFairEG* is $O((|S| + |R|) \cdot |F|)$, since we have to check which SCC is fair.
- To check other CTL formulae, we introduce another proposition fair and stipulate that

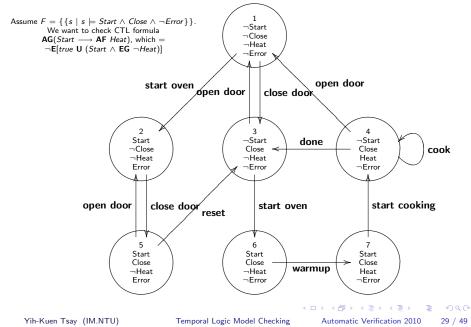
$$M, s \models fair \text{ iff } M, s \models_F EG true.$$

- $M, s \models_F p$, for some $p \in AP$, we check $M, s \models p \land fair$.
- $M, s \models_F \mathsf{EX}f$, we check $M, s \models \mathsf{EX}(f \land fair)$.
- $M, s \models_F \mathbf{E}[f_1 \cup f_2]$, we check $M, s \models \mathbf{E}[f_1 \cup (f_2 \land f_air)]$.
- Overall complexity: $O(|f| \cdot (|S| + |R|) \cdot |F|)$.

Yih-Kuen Tsay (IM.NTU)

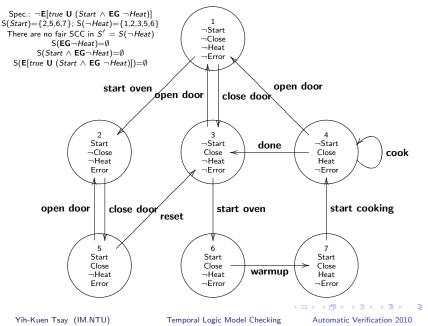
イロト 不得 トイヨト イヨト 二日

An Example



An Example (cont.)

30 / 49



The LTL Model Checking Problem

- Let M = (S, R, L) be a Kripke structure with $s \in S$.
 - Let A g be an LTL formula (so, g is a restricted path formula).
- We want to check if $M, s \models A g$.

•
$$M, s \models \mathbf{A} g$$
 iff $M, s \models \neg \mathbf{E} \neg g$.

• Therefore, it suffices to be able to check $M, s \models \mathbf{E} f$, where f is a restricted path formula.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2010 31 / 49

イロト イポト イヨト イヨト

Complexity of LTL Model Checking

- 😚 The problem is PSPACE-complete.
- We can more easily show this problem to be NP-hard by a reduction from the Hamiltonian path problem.
- Consider a directed graph G = (V, A) where $V = \{v_1, v_2, \dots, v_n\}.$
- Tetermining whether G has a directed Hamiltonian path is reducible to the problem of determining whether $M, s \models f$, where
 - M is a finite Kripke structure (constructed from G),
 - 👂 s is a state in M, and
 - *f* is the formula (using atomic propositions p_1, \ldots, p_n):

$$\mathsf{E}[\mathsf{F} p_1 \wedge \ldots \wedge \mathsf{F} p_n \wedge \mathsf{G}(p_1 \to \mathsf{X} \mathsf{G} \neg p_1) \wedge \ldots \wedge \mathsf{G}(p_n \to \mathsf{X} \mathsf{G} \neg p_n)].$$

Yih-Kuen Tsay (IM.NTU)

Complexity of LTL Model Checking (cont.)

The Kripke structure M = (U, B, L) is obtained from G = (V, A) as follows: $U = V \cup \{u_1, u_2\}$ where $u_1, u_2 \notin V$. $B = A \cup \{(u_1, v_i) \mid v_i \in V\} \cup \{(v_i, u_2) \mid v_i \in V\} \cup \{(u_2, u_2)\}.$ L is an assignment of propositions to states s.t.: p_i is true in v_i for $1 \le i \le n$, p_i is false in v_j for $1 \le i \le n$, p_i is false in u_1, u_2 for $1 \le i \le n$.
Let *s* be u_1 .

• $M, u_1 \models f$ iff there is a directed infinite path in M starting at u_1 that goes through every $v_i \in V$ exactly once and ends in the self loop at u_2 .

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

LTL Model Checking

Here we introduce an algorithm by Lichtenstein and Pnueli.

- The algorithm is exponential in the length of the formula, but linear in the size of the state graph.
- 😚 It involves an implicit tableau construction.
- A tableau is a graph derived from the formula from which a model for the formula can be extracted iff the formula is satisfiable.
- To check whether M satisfies f, the algorithm composes the tableau and the Kripke structure and determines whether there exists a computation of the structure that is a path in the tableau.

イロト 不得下 イヨト イヨト 二日

Closure

- S Like before, we need only deal with X and U.
- The closure CL(f) of f contains formulae whose truth values can influence the truth value of f.
- 😚 It is the smallest set containing f and satisfying:

イロト 不得 トイヨト イヨト 二日

Atom

- An *atom* is a pair $A = (s_A, K_A)$ with $s_A \in S$ and $K_A \subseteq CL(f) \cup AP$ s.t.:
 - $ilde{>}$ for each proposition $p\in AP$, $p\in \mathcal{K}_A$ iff $p\in L(s_A)$,
 - If for every $f_1 \in CL(f)$, $f_1 \in K_A$ iff $\neg f_1 \notin K_A$,
 - onumber i for every $f_1 \lor f_2 \in CL(f)$, $f_1 \lor f_2 \in K_A$ iff $f_1 \in K_A$ or $f_2 \in K_A$,
 - $ilde{P}$ for every $eg \mathbf{X} \ f_1 \in \mathit{CL}(f)$, $eg \mathbf{X} \ f_1 \in \mathit{K}_A \ \mathrm{iff} \ \mathbf{X}
 eg f_1 \in \mathit{K}_A$,
 - * for every $f_1 \cup f_2 \in CL(f)$, $f_1 \cup f_2 \in K_A$ iff $f_2 \in K_A$ or $f_1, \mathbf{X}[f_1 \cup f_2] \in K_A$.
 - Intuitively, an atom (s_A, K_A) is defined so that K_A is a maximal consistent set of formulae that are also consistent with the labelling of s_A .

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Behavior Graph and Self-Fulfilling SCC

- A graph G is constructed with the set of atoms as the set of vertices.
- (A, B) is an edge of G iff
 - $(s_A, s_B) \in R$ and
 - $ilde{>}$ for every formula $\mathsf{X} \mathit{f}_1 \in \mathit{CL}(\mathit{f})$, $\mathsf{X} \mathit{f}_1 \in \mathit{K}_A$ iff $\mathit{f}_1 \in \mathit{K}_B$.
- A nontrivial SCC *C* of the graph *G* is said to be *self-fulfilling* iff for every atom *A* in *C* and for every f_1 **U** $f_2 ∈ K_A$ there exists an atom *B* in *C* s.t. $f_2 ∈ K_B$.
- Iemma: M, s ⊨ Ef ⇔ there exists an atom (s, K) in G s.t. f ∈ K and there is a path in G from (s, K) to a self-fulfilling SCC.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

イロト 不得下 イヨト イヨト 二日

Sketch of the Correctness Proof

A path ρ in G (generated from M and f) is an eventuality sequence if f₁ U f₂ ∈ K_A for some atom A on ρ, then there exists an atom B, reachable from A along π, such that f₂ ∈ K_B.
Claim: M, s ⊨ Ef ⇔ there exists an eventuality sequence starting from (s, K) such that f ∈ K.

- * If π corresponds to an eventuality sequence, then for every $g \in CL(f)$ and every $i \ge 0$, $\pi^i \models g$ iff $g \in K_i$.
- * For a path $\pi = s_0(=s), s_1, s_2, \cdots$ such that $M, \pi \models f$, define $K_i = \{g \mid g \in CL(f) \text{ and } \pi^i \models g\}$, then $(s_0, K_0), (s_1, K_1), \cdots$ is an eventuality sequence.
- Claim: there exists an eventuality sequence starting from (s, K) \Leftrightarrow there is a path in G from (s, K) to a self-fulfilling SCC.

Yih-Kuen Tsay (IM.NTU)

The LTL Model Checking Algorithm

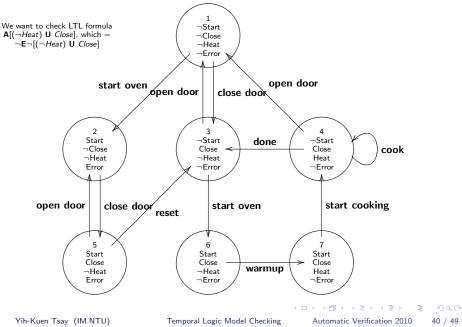
Given a Kripke structure M = (S, R, L), we want to check if $M, s \models \mathbf{E}f$, where f is a restricted path formula.

- Solution $\in (V, E)$.
- Sind initial atom set $A = \{(s, K) \mid (s, K) \in V \land f \in K\}$.
- Consider nontrivial self-fulfilling SCCs, traverse backward using the converse of E and mark all reachable states.
- if any state in A is marked, $M, s \models \mathbf{E}f$ is true.
- Time complexity: $O((|S| + |R|) \cdot 2^{O(|f|)})$.
- For a fair Kripke structure M' = (S', R', L', F'), we should check if there exists any self-fulfilling and fair SCC.

イロト 不得下 イヨト イヨト 二日

An Example

40 / 49



An Example (cont.)

- Let f denote $(\neg Heat)$ **U** Close.
- $\ \odot \ CL(\neg f) = \{\neg f, f, Xf, \neg Xf, X\neg f, Heat, \neg Heat, Close, \neg Close\}.$
- ¬Close and ¬Heat in states 1 and 2, so the possible "K" includes

 $\{\neg Close, \neg Heat, f, \mathbf{X}f\}, \{\neg Close, \neg Heat, \neg f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$

- Close and \neg Heat in states 3, 5 and 6, so the possible "K" includes $\{Close, \neg Heat, f, \mathbf{X}f\}, \{Close, \neg Heat, f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$
- Close and Heat in states 4 and 7, so the possible "K" includes $\{Close, Heat, f, Xf\}, \{Close, Heat, f, X\neg f, \neg Xf\}.$

We can construct atoms using the states and the corresponding "K" and then build a graph based on those atoms.

Yih-Kuen Tsay (IM.NTU)

Overview of CTL* Model Checking

- We will study an algorithm developed by Clarke, Emerson, and Sistla.
- The basic idea is to integrate the state labeling technique from CTL model checking into LTL model checking.
- The algorithm for LTL handles formula of the form Ef where f is a restricted path formula.
- The algorithm can be extended to handle formulae in which f contains arbitrary state sub-formulae.

Handling CTL* Operators

Again, the operators \neg , \lor , X, U, and E are sufficient to express any other CTL* formula.

• $f \wedge g \equiv \neg(\neg f \vee \neg g)$ • $\mathbf{F} \ f \equiv true \ \mathbf{U} \ f$ • $\mathbf{G} \ f \equiv \neg \mathbf{F} \ \neg f$ • $f \ \mathbf{R} \ g \equiv \neg(\neg f \ \mathbf{U} \ \neg g)$ • $\mathbf{A} \ f \equiv \neg \mathbf{E} \ \neg f$

- 本間 と えき と えき とうき

One Stage in CTL* Model Checking

- S Let Ef' be an "inner most" formula with E.
- Assuming that the state sub-formulae of f' have already been processed and that state labels have been updated accordingly, proceed as follows:
 - If Ef' is in CTL, then apply the CTL algorithm.
 - Otherwise, f' is a LTL path formula, then apply the LTL model checking algorithm.
 - In both cases, the formula is added to the labels of all states that satisfy it.
- If $\mathbf{E}f'$ is a sub-formula of a more complex CTL* formula, then the procedure is repeated with $\mathbf{E}f'$ replaced by a fresh AP.
- Note: each state sub-formula will be replaced by a fresh AP in both the labeling of the model and the formula.

イロト 不得下 イヨト イヨト 二日

Levels of State Sub-formulae

- The state sub-formulae of level i are defined inductively as follows:
 - Level 0 contains all atomic propositions.
 - Level i + 1 contains all state sub-formulae g s.t. all state sub-formulae of g are of level i or less and g is not contained in any lower level.
- Let g be a CTL* formula, then a sub-formula E h₁ of g is maximal iff E h₁ is not a strict sub-formula of any strict sub-formula E h of g.

State Sub-formulae (Examples)

Consider the formula

 $\neg EF(\neg Close \land Start \land E(FHeat \land GError)).$

😚 The levels of the state sub-formulae are:

- 🌻 Level 0: *Close, Start, Heat,* and *Error*
- Sevel 1: $E(FHeat \land GError)$ and $\neg Close$

- ♦ Level 3: $\neg Close \land Start \land E(FHeat \land GError)$
- Seven 4: $EF(\neg Close \land Start \land E(FHeat \land GError))$
- Level 5: $\neg EF(\neg Close \land Start \land E(FHeat \land GError))$
- Note: this is slightly different from [Clarke *et al.*].

イロト 不得下 イヨト イヨト

CTL* Model Checking

- Let M = (S, R, L) be a Kripke structure, f a CTL* formula, and g a state sub-formula of f of level i.
- The states of *M* have already been labelled correctly with all state sub-formulae of level smaller than *i*.
- In stage i, each such g is added to the labels of all states that make it true.
- For g a CTL* state formula, we proceed as follows:
 - If $g \in AP$, then g is in label(s) iff it is in L(s).
 - If $g = \neg g_1$, then g is in *label*(s) iff g_1 is not in *label*(s).
 - If g = g₁ ∨ g₂, then g is added to *label(s)* iff either g₁ or g₂ are in *label(s)*. (To reduce the number of levels, do analogously for g₁ ∧ g₂.)
 - $\stackrel{\label{eq:glassical_states}}{=}$ If $g = \mathbf{E} \ g_1$ call the CheckE(g) procedure.

Yih-Kuen Tsay (IM.NTU)

イロト 不得 トイヨト イヨト 二日

CheckE(*g*) **Procedure**

procedure *CheckE*(*g*)

if g is a CTL formula then

apply CTL model checking for g;

```
return; // next formula or next stage
```

end if;

 $g' := g[a_1/\mathsf{E}h_1, \ldots, a_k/\mathsf{E}h_k]; \ // \ \mathsf{E}h_i$'s are maximal sub-formulae for all $s \in S$

for $i = 1, \ldots, k$ do

if $Eh_i \in label(s)$ then $label(s) := label(s) \cup \{a_i\}$; end for all:

```
apply LTL model checking for g';
```

```
for all s \in S do
```

```
if g' \in label(s) then label(s) := label(s) \cup \{g\};
```

end for all;

end procedure;

Yih-Kuen Tsay (IM.NTU)

Complexity of the Algorithm for CTL*

- The complexity depends on the complexity of the algorithm for CTL and that for LTL.
- So, if the previous algorithms are used, the complexity is $O((|S| + |R|) \cdot 2^{O(|f|)}).$
- In real implementation, state sub-formulae need not be replaced by, but just need to be treated as, atomic propositions.

(日) (周) (三) (三)