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History of SPIN

The tool was developed at Bell Labs in the original Unix group of the
Computing Sciences Research Center, starting in 1980 by
Gerard Holzmann and others.

The software has been available freely since 1991, and continues to
evolve to keep pace with new developments in the field.

In April 2002 the tool was awarded the prestigious System Software
Award for 2001 by the ACM.
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What is SPIN

SPIN (Simple PROMELA INterpreter)

Is a popular open-source software that can be used for formal
verification of distributed software systems.
It supports the design and verification of asynchronous process system.
The verification models of SPIN are focused on proving the correctness
of process interactions, and abstract from internal sequential
computations.
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What is SPIN (cont.)

As a formal methods tool, SPIN aims to provide:

an intuitive, program-like notation for specifying design choices
unambiguously, without implementation detail,
a powerful, concise notation for expressing general correctness
requirements,
a methodology for establishing the logical consistency of the design
from above.

The tool supports a high level language to specify system description,
called PROMELA (PROcess MEta LAnguage).
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What is SPIN (cont.)
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What is PROMELA

PROMELA (PROcess MEta-LAnguage)

PROMELA is not an implementation language but a system
description language.
The emphasis is on the modeling of process synchronization and
coordination, not on computation.
resembles the programming language C.
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What is PROMELA (cont.)

Models that can be specified in PROMELA are required to be
bounded:

There can be only finitely many running processes.
There can only be finitely many statements in a proctype.
All data types have a finite range.
All message channels have an a bounded capacity.

Enforcing that restriction helps to guarantee that any correctness
property that can be stated in PROMELA is decidable.
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What is PROMELA (cont.)

A PROMELA model is constructed from three basic types of objects:

Processes
Data objects
Message channels
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Process

Defined by using proctype keyword or init keyword.

There are two ways to instantiation a process:
Adding the prefix active to a proctype declaration
Using a run operator

Example1: Hello World

active proctype begin(){

printf("Hello World\n")

}

Example2: Hello World

proctype begin2(){

printf("Hello World Again\n")

}

init{

run begin2()

}

Note: Semicolon is defined as a separator, not terminator.
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Process (cont.)

By using run operator, we can pass the value to process (passing by
value).

If processes created through active keyword, their parameters are
initialized to zero.

proctype value_pass ( byte x ){

printf(" x = %d\n ",x)

}

init{

run value_pass (0);

run value_pass (1);

}
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Process (cont.)

We can create multiple instantiations by adding the desired number in
square brackets.

Processes are executes concurrently with all other processes.

They can interleave their statement executions in arbitrary ways with
other processes.

Each running process has a unique process instantiation number, and
can be accessed by local variable pid.

Example:Hello World

active [2] proctype main(){

printf("my pid is: %d\n",_pid)

}

/* Output will be: my pid is: 0 */

/* my pid is: 1 */
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Process termination

A process ”terminates” when it reaches the end of its code (the
closing curly brace).

A process can only ”die” and be removed if all processes instantiated
later than this process have died first.

Process can terminate in any order, but they can only die in the
reverse order of their creation.
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Data Objects

The default initial value of all data objects is zero.

Type Typical Range Sample Declaration
bit 0, 1 bit turn = 1

bool false, true bool flag = true
byte 0..255 byte cnt
chan 1..255 chan q

mtype 1..255 mtype msg
pid 0..255 pid p

short -215..215 − 1 short s = 100
int -231..231 − 1 int x = 1

unsigned 0..2n − 1, 1 ≤ n ≤ 32 unsigned w : 3 = 5

Support array.

unsigned w : 3 = 5 means w ranged from 0 to 7, and initially is 5.
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Data Objects (cont.)

There are only 2 levels of scope in PROMELA models:

global (visible in the entire model)
process local (visible only to the process that contains the declaration)

active proctype main(){

int x;

{

int y;

printf("x = %d,y = %d",x,y); /* x=0 , y=0 */

x++;

y++;

}

printf("x = %d,y = %d",x,y); /* x=1 , y=1 */

}
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Data Objects (cont.)

Enumerated Types is a set of symbolic constants:

mtype stands for message type.
There can be multiple mtype declarations but they are equivalent to a
single mtype declaration that contains the concatenation of all separate
lists of symbolic names.

mtype = { appel, pear, orange, banana };

mtype n = pear;

User defined data type:

typedef record{

short f1;

byte f2 = 4

};
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Message Channels

Used to model the exchange of data between processes.

They are declared either locally or globally, but the channel itself is
always a global object.

A locally declared and instantiated channel disappears, when the
process that declare it dies.

chan qname = [16] of { short, byte, bool}

According to the capacity of channel, there are two types of channel:

capacity > 0: a FIFO buffered channel is initialized (asynchronous).
capacity = 0: a rendezvous channel is initialized (synchronous).
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Message Passing

/*send message*/

qname ! expre1, expr2, expr3

/*receive message*/

qname ? var1, var2, var3

Send a message to channel with corresponding values.

Retrieves a message from the channel, and copies the values into
corresponding variables.

The message will be removed from the channel buffer (optional).

It is an error to send or receive either more of fewer message fields
than declared.

Yi-Hsiung Wang (SVVRL @ IM.NTU) The SPIN Model Checker May 12, 2010 20 / 84



Message Passing (cont.)

A send statement on buffered channel is executable when the target
channel is non-full.

A send statement on rendezvous channel contains two steps:

a rendezvous offer: can be made at any time.
a rendezvous accept: can be accepted only if another process can
perform the matching receive operation immediately (i.e., with no
intervening steps by any process).

A receive statement is executable if the first message in the channel
match the pattern from the receive statement.

A match of a message is obtained if all message fields that contain
constant values in the receive statement equal the values of the
corresponding message fields in the message.
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Rendezvous Communication

The size of the channel is set to zero.

That is, the channel can pass, but cannot store messages.

mtype = { msgtype };

chan name = [0] of {mtype, byte};

active proctype A() {

name ! msgtype,124;

name ! msgtype,121

}

active proctype B() {

byte state;

name ? msgtype,state

}
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Asynchronous and Synchronous Message Passing
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Rules for executability

Any statement in PROMELA is either executable or blocked.

6 types of basic PROMELA statements: assign, print, assert,
expression, communication (send/receive)

A statement(expression) is executable iff evaluates to true or to a
non-zero integer value.
A statement is blocked iff there is no executable statements left to
execute.
Print and assignment are always executable.

/* In c language we have to write like that: */

while (a!=b) {}

/* But we can achieve the same effect in PROMELA by */

(a==b);
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Control Flow

Atomic sequences, making things indivisible:

atomic{...}
d step{...}

Non-deterministic selection and iteration

if...fi
do...od

Goto, break and labels

Escape sequences:

{...} unless {...}

Yi-Hsiung Wang (SVVRL @ IM.NTU) The SPIN Model Checker May 12, 2010 25 / 84



Atomic Sequences

atomic { guard -> stmt1; stmt2; ...; stmtn; }
Executable if the guard statement is executable.
Any statement can serve as the guard statement.
Executes all statements in the sequence without interleaving with other
processes.
If any statement other than the guard blocks, atomicity is lost.
Atomicity can be regained when the statement becomes executable.

atomic{

/* swap the values of a and b */

tmp = b;

b = a;

a = tmp

}
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D step Sequences

d step { guard -> stmt1; stmt2; ...; stmtn; }
Like atomic sequence, but must be deterministic and may not block
anywhere inside the sequence.
It will be an error if any statement except the guard statement in a
d step sequence be unexecutable.
A Goto statement into or out of d step sequences are forbidden.
Atomic and d step sequences are often used as a model reduction
method, to lower complexity of large models.
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Atomic and D step Sequences Example (1/3)

active proctype A() { s1; s2 }

active proctype B() { t1; t2 }
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Atomic and D step Sequences Example (2/3)

active proctype A() { atomic{ s1; s2 } }

active proctype B() { t1; t2 }
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Atomic and D step Sequences Example (3/3)

active proctype A() { d_step{ s1; s2 } }

active proctype B() { t1; t2 }
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Selection

if

:: guard_1 -> stmt_1.1 ; stmt_1.2 ; ...

:: guard_2 -> stmt_2.1 ; stmt_2.2 ; ...

:: ...

:: guard_n -> stmt_n.1 ; stmt_n.2 ;...

fi

The if statement is executable if at least one guard is executable.

If more than one guard is executable, than selected
non-deterministically.

If none of the guard statements is executable, the if statement blocks
until at least one of them can be selected.

Any type of basic or compound statement can be used as a guard.
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Repetition

do

:: guard_1 -> stmt_1.1 ; stmt_1.2 ;...

:: guard_2 -> stmt_2.1 ; stmt_2.2 ;...

:: ...

:: guard_n -> stmt_n.1 ; stmt_n.2 ;...

od

The execution of the repetition structure is repeated.

If there is none executable statement in the do-loop, the entire loop
blocks.

Any type of basic or compound statement can be used as a guard.

Only a break or a goto can exit from a do-loop.
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Timeout v.s. Else

A special type of statement in selection and repetition is the else
statement.

An else statement become executable only if no other statement
within same process, at the same control-flow point, is executable.

Another similar global variable is timeout.

Timeout becomes true iff there are no executable statements in all of
currently running processes.

byte counter;

active proctype counter(){

do

:: (count !=0 ) ->

if

::count++

::count--

::else //redundant

fi

:: else -> break

od

}
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Label

To exit the repetition we can use goto statement and labeling.

Multiple labels may be used to label the same statement.

int x, y

active proctype Euclid(){

do

:: (x > y ) -> x = x - y

:: (x < y ) -> y = y - x

:: (x == y) -> goto done

od;

done: printf("answer: %d\n", x)

}
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Unless Statement

S unless E

S and E is any PROMELA fragments.
The statement of S has a lower execution priority than the statement
of E.
The executability of S is constraint to the non-executability of guard
statements in E.
If E ever becomes enabled during the execution of S, then S is aborted
and the execution continues with E.

do

:: b1 -> B1

:: b2 -> B2

od unless { c -> C };
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Correctness Claims

Two types of correctness requirements:

Safety: the set of properties that the system may not violate.
Liveness: the set of properties that the system must satisfy.

Correctness properties can be specified as system or process invariants
(using assertions), as linear temporal logic requirements (LTL), as
formal Bu”chi Automata in the syntax of never claims.
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Correctness Claims (cont.)

Correctness properties in PROMELA are formalized with following
constructs:

Basic assertions
End-state labels
Progress-state labels
Never claims
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Basic assertions

assert ( expression )

Is always executable.

If the expression evaluates to true, then has no effect.

If the expression evaluates to false, an error message will be trigger
during verifications with SPIN.

An assertions statement is the only type of correctness property in
PROMELA that can be checked during simulation runs with SPIN.
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Basic assertions (cont.)

If SPIN fails to find an assertion violation in simulation runs, this does
not mean that assertions cannot be violated,

Only a verification run with SPIN can assure that assertion wont be
violated.

The assertion statement can be used to check safety properties.

An assertion statement can be use as a system invariant.

Because it is in an asynchronous process, this statement may be
executed at any time.
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End-state labels

The verifier must be able to distinguish valid system end states from
invalid ones (deadlock).

By default, the only valid end states are the end of its code (the
closing curly brace).

But not all PROMELA processes are meant to reach the end of the
code.

We can use end-state label to tell the verifier that these states are
also valid.

There can be any number of end-state labels, but in the same
process, they have to have unique identifer (by prefix with end).
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End-state labels

mtype {p,v};

chan sema = [0] of {mtype};

active proctype Dijkstra(){

byte count = 1;

end: do

:: (count == 1) ->

sema ! p ; count = 0

:: (count == 0) ->

sema ? v ; count = 1

od

}

active [3] proctype user() {

do

:: sema ? p; /*enter*/

skip; /*leave*/

sema ! v;

od

}
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Progress-state labels

Checking whether a statement is idling or waiting for other process to
make progress.

A progress label states that at least one of the labeled states must be
visited infinitely often in any infinite system execution.

Any violation of this requirement can be reported by verifier as a
non-progress cycle.

The progress-state label can be used to check liveness properties.

active proctype Dijkstra(){ /* modify the last slide’s example Dijkstra() */

/* no non-progress cycles are found */

byte count = 1;

end: do

:: (count == 1) ->

progress: sema ! p ; count = 0

:: (count == 0) ->

sema ? v ; count = 1

od

}
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Progress-state labels (cont.)

Below is a case where there is a non-progress cycle:

byte x = 2;

active proctype A()

{

do

::x = 3 - x; progress: skip

od

}

active proctype B()

{

do

::x = 3 - x

od

}
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Never Claims

A never claim gives us the capability to check properties just before
and just after each statement execution

Originally, a never claim was meant to match behavior that should
never occur.

That is, the verifier will flag it as an error if the full behavior specified
in the claim be matched by any feasible system execution.

never{ /* if p becomes false, an error occured */

do

:: !p -> break

:: else

od

}
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Never Claims (cont.)

Never claim can either be written by hands or generated mechanically
from LTL formula (SPIN has built-in translator).

To translate an LTL formulae into a never claim, we have to consider
the property:

Positive property (good behavior): we have to negate it at first.
Negative property (bad behavior): just translate it.

For example, we want to check the positive property [] p (SPIN LTL
syntax):

never { /* ![]p = <>!p */

do

:: true

:: !p -> break

od

}
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SPIN’s LTL Syntax

f ::= p
| true
| false
| ( f )
| f binop f
| unop f

uniop ::= [] (always)
| <> (eventually)
| ! (logical negation)

binop ::= U (until)
| && (logical and)
| || (logical or)
| -> (implication)
| <-> (equivalence)
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Specifying LTL properties

LTL Formulae examples:

Formula Pronounced Type/Template

[] p always p invariance
<> p eventually p guarantee

p -> (<> q) p implies eventually q response
p -> (q U r) p implies q until r precedence

[] <> p always, eventually p recurrence (progress)
<> [] p eventually, always p stability (non-progress)

(<> p) -> (<> q) eventually p implies eventually q correlation
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PROMELA Semantics

SPIN translates each process into a finite automaton.

The global behavior of the concurrent system is obtained by
computing an asynchronous interleaving product of automata, one
automaton per asynchronous process behavior.

The resulting global system behavior is itself again represented by an
automaton.

This interleaving product is often referred to as the state space of the
system, and, because it can easily be represented as a graph, it is also
commonly referred to as the global reachability graph.
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PROMELA Semantics (cont.)

By simulating the execution of a SPIN model we can generate a
reachability graph.

The PROMELA semantics rules define how the global reachability
graph for any given PROMELA model is to be generated.

Basic correctness claims in PROMELA can be interpreted as the
presence or absence of specific types of nodes or edges.

LTL properties can be interpreted as the presence or absence of
specific types of sub-graph, or paths.
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Transition Relation

Every PROMELA proctype defines a finite state automaton,
(S, s0, L, T, F)

Symbol Finite State Automaton PROMELA Model
S Set of states Possible points of control within the proctype
L Transition label set Specific basic statement (six basic types)
T Transition relation Flow of control
F Set of final states End-state
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Proctype and Automata(1/2)

active proctype not_euclid(int x , y)

{

if

:: (x > y) -> L: x = x - y

:: (x < y) -> y = y -x

:: (x == y) -> assert (x != y); goto L

fi;

printf(‘‘%d\n’’, x)

}
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Proctype and Automata(2/2)
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Operational Model(1/8)

To define the semantics of the modeling language, we can define an
operational model in terms of states and state transitions.

We have to define what a ”state” is.
We have to define what a ”transition” is.

i.e., how the ’next-state’ relation is defined.

Global system states are defined in terms of a small number of
primitive objects:

We have to define: variables, messages, message channels, and
processes.
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Operational Model(2/8)

State transitions require the definition of 3 things:

transition executability rules
transition selection rules
the effect of transition

We only have to define one-step semantics to define the full language.

The 3 parts of the semantics definition are defined over 4 types of
objects:

variables, messages, channels, processes

Well define these first.
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Operational Model(3/8)
variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */

active proctype not_euclid(){

S: if /* curval of x at S: 2 */

:: x > y -> L: x = x - y

:: x < y -> y = y - x

:: x == y -> assert(x != y); goto L

fi;

E: printf(‘‘%d\n’’, x) /* curval of x at E: 1 */

}

note: domain is a finite set of integers.
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Operational Model(4/8)
variables, messages, channels, processes, transitions, global states

A message is a finite, ordered set of variables
(Messages are stored in channels - defined next.)
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Operational Model(5/8)
variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.
A ch id is a positive integer uniquely identifies the channel.
An ordered set of messages with maximally nslots elements:
{ {slot1.field1 ,slot1.field2 }, {slot2.field1 ,slot2.field2 } }
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Operational Model(6/8)
variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, lvars, lstates, inistate, curstate, transitions }

process instantiation number
finite set of local variables
a finite set of integers defining local proc states
the initial state
the current state
a finite set of transitions (to be defined) between elements of lstates
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Operational Model(7/8)
variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr id, source-state, target-state, cond, effect, priority, rv }

source-state and target-state are elements from set P.lstates
Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
Predefined system variables that are used to define the semantics of
unless and rendezvous.
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Operational Model(8/8)
variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d step
predefined integer system variables that are used to define the
semantics of rendezvous
predefined Boolean system variables
for stutter extension rule
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Stutter extension

The reason why we have to use stutter extension is because
PROMELA model is finite.

When we use LTL as a correctness claim, the LTL formula will be
translated into Buchi automaton.

In Buchi automaton acceptance condition, there will be an infinite
cycle pass at least one of the element of accept sets.

If we want to do the interleaving product of the Buchi automaton
with PROMELA model, we have to deal with the infinite execution.

In stutter extension, we make the final state have a transition target
to itself, with label ε.
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One-Step Semantics(1/2)

Given an arbitrary global state of the system, determine the set of
possible immediate successor states.

To define a one-step semantics, we have to define 3 more things:

transition executability rules, transition selection rules, the effect of
transition
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One-Step Semantics(2/2)

We do so by defining an algorithm: an implementation-independent
”semantics engine” for Spin.

The semantics engine executes the model in a stepwise manner:
selection and executing one basic statement at a time
At the highest level of abstraction, the behavior of this engine is
defined as follows:
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PROMELA Semantics Engine

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

10 s = s’

11 p.curstate = t.target

12

13

14

15

16

17

18

19

20

21

22

23

24 }

25 }

26

27 while (stutter){

28 s = s /* ‘stutter’ extension*/

29 }
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Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10

E = {}

11

timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45

if (E == {} and timeout == false){

46

timeout == true

47

goto AllProcs

48

}

49

50 return E /* executable transitions */

51 }

next: extenstion for timeout, else, rendezvous, atomic, unless
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Executability Rules(1/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

41

42

43

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transitions */

51 }

next: extenstion for else
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Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18

else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28

if (e != {}){

29 add all elements of e to E

30

break /* on to next process */

31

} else if (else == false){

32

else = true

33

goto OneProc

34

}

35

36

37 }

next:
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Executability Rules(2/5)

12 AllProcs:

13 for each active process p{

14

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

37 }

next: extension for extension for rendezvous
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Adding Semantics for Rendezvous

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9

if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13 /* try to complete rv handshake */

14

15

16

17

18

19

20

21

22 handshake = 0

23

}

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }

effect of issuing a rendezvous offer is to set handshake to channel’s identity
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3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13 /* try to complete rv handshake */

14

15

16

17

18

19

20

21

22 handshake = 0

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }

effect of issuing a rendezvous offer is to set handshake to channel’s identity
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

}

37 }

next:
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14

if (exclusive == 0 or exclusive == p.pid){

15

16

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36

}

37 }

next: extenstion for atomic
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Executability Rules(3/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){
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17 e = {};
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21 for each transition t in p.trans{

22 if (t.source == p.curstate and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

35

36 }

37 }

next:

Yi-Hsiung Wang (SVVRL @ IM.NTU) The SPIN Model Checker May 12, 2010 68 / 84



Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40

if (E == {} and exclusive != 0){

41

exclusive = 0

42

goto AllProcs

43

}

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

next:
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4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

next:
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Executability Rules(4/5)

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4

5 Set

6 executable (State s){

7 new Set E

8 new Set e

9

10 E = {}

11 timeout = false

12 AllProcs:

...

38

39

40 if (E == {} and exclusive != 0){

41 exclusive = 0

42 goto AllProcs

43 }

44

45 if (E == {} and timeout == false){

46 timeout == true

47 goto AllProcs

48 }

49

50 return E /* executable transition */

51 }

next: extenstion for unless (priorities)
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Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15

/* priority */

16

for u from high to low{

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate

and t.prty == u

and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 }

/* or else lower the priority */

35

}

36 }

37 }
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Executability Rules(5/5)

12 AllProcs:

13 for each active process p{

14 if (exclusive == 0 or exclusive == p.pid){

15 /* priority */

16 for u from high to low{

17 e = {};

18 else = false

19

20 OneProc:

21 for each transition t in p.trans{

22 if (t.source == p.curstate and t.prty == u and (handshake == 0 or handshake == t.rv)

23 and eval(t.cond == true)){

24 add (p, t) to set e

25 }

26 }

27

28 if (e != {}){

29 add all elements of e to E

30 break /* on to next process */

31 } else if (else == false){

32 else = true

33 goto OneProc

34 } /* or else lower the priority */

35 }

36 }

37 }
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PROMELA Semantics Engine

1 global states s, s’

2 processes p, p’

3 transitions t, t’

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s’ = apply(t.effect, s)

9 if (handshake == 0){

10 s = s’

11 p.curstate = t.target

12 } else{

13 /* try to complete rv handshake */

14 E’ = executable(s’)

15 /* if E’ is {}, s is unchanged */

16

17 for some (p’, t’) from E’{

18 s = apply(t’.effect, s’)

19 p.curstate = t.target

20 p’.curstate = t’.target

21 }

22 handshake = 0

23 }

24 }

25 }

26

27 while (stutter){

28 s = s /* stutter extension */

29 }
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Interpreting PROMELA models

The semantic engine

manipulate the basic objects of a PROMELA model.
does not have to know anything about control-flow constructs.

e.g., if, do, break, and goto

merely deals with local states and transitions.

Three examples
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PROMELA Models(1/2)

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}
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PROMELA Models(2/2)

Rendezvous handshakes occur in two parts:

Sender offers
Receiver accepts
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Example 1:3

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x?0 unless y!0}

active proctype B() {y?0 unless x!0}
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Example 2:3

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x!0 unless y!0}

active proctype B() {y?0 unless x?0}
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Example 3:3

chan x = [0] of {bit};

chan y = [0] of {bit};

active proctype A() {x!0 unless y?0}

active proctype B() {y!0 unless x?0}
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Verification in SPIN

The goal of system verification is to establish what is possible and
what is not.

When performing verification we are interested in whether design
requirements could be violated, not how likely or unlikely such
violations might be.

To perform verification, SPIN takes a correctness claim that is
specified as a LTL, converts that formula into a Buchi automaton,
and computes the synchronous product of this claim and the
automaton representing the global state space.

The result is again a Buchi automaton.

If the language accepted by this automaton is empty, this means that
the original claim is not satisfied for the given system.

If the language is nonempty, it contains precisely those behaviors that
satisfy the original temporal logic formula.
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DEMO

You can use the SPIN model checker in three types:

Using Command Line
Using XSPIN
Using JSPIN
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DEMO

Mutual Exclusion 1.pml

This example is a software solution to the mutual exclusion problem
proposed by Hyman.
Find a counterexample to demonstrate that this solution is incorrect.

Mutual Exclusion 2.pml (using assertion)

Mutual Exclusion 3.pml (using a monitor as invariant)

Mutual Exclusion 4.pml (using LTL property)

Peterson Mutual Exclusion.pml (using LTL property)
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