

Equivalence, Simulation, and Abstraction (Based on [Clarke et al. 1999])

Yih-Kuen Tsay (with help from Yu-Fang Chen)

> Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

Automatic Verification 2011

2011 1/34

Introduction: The Need to Abstract

2 / 34

- Abstraction is probably the most important technique for alleviating the state-explosion problem.
- Traditionally, finite-state verification (in particular, model checking) methods are geared towards control-oriented systems.
- When nontrivial data manipulations are involved, the complexity of verification is often very high.
- Fortunately, many verification tasks do not require complete information about the system (e.g., one may concern only about whether the value of a variable is odd or even).
- The main idea is to map the set of actual data values to a small set of abstract values.
- An abstract version of the actual system thus obtained is smaller and easier to verify.

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

Outline

- 😚 Bisimulation Equivalence
- 📀 Simulation Relation (Preorder)
- 📀 Cone of Influence Reduction
- 📀 Data Abstraction
 - Approximation
 - Exact Approximation

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

Automatic Verification 2011

Bisimulation Equivalence

• Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP, S', S'_0, R', L' \rangle$ be two Kripke structures with the same set AP of atomic propositions.

- A relation $B \subseteq S \times S'$ is a bisimulation relation between M and M' iff, for all s and s', B(s, s') implies the following:
 - $\stackrel{\scriptstyle \bullet}{=} L(s) = L'(s').$
 - For every state s_1 satisfying $R(s, s_1)$, there is s'_1 such that $R'(s', s'_1)$ and $B(s_1, s'_1)$.
 - For every state s'_1 satisfying $R'(s', s'_1)$, there is s_1 such that $R(s, s_1)$ and $B(s_1, s'_1)$.
- Two structures M and M' are bisimulation equivalent, denoted $M \equiv M'$, if there exists a bisimulation relation B between M and M' such that:

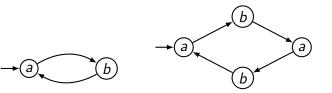
* for every $s_0 \in S_0$ there is an $s'_0 \in S'_0$ such that $B(s_0, s'_0)$, and tor every $s'_0 \in S'_0$ there is an $s_0 \in S_0$ such that $B(s_0, s'_0)$.

Yih-Kuen Tsay (IM.NTU)

イロト イポト イヨト イヨト 二日

Bisimulation Equivalence (cont.)

local measures of the second s



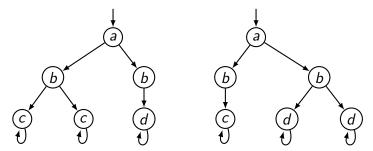
Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

Automatic Verification 2011

Bisimulation Equivalence (cont.)

Duplication preserves bisimulation.



Two states related by a bisimulation relation is said to be bisimular.

Yih-Kuen Tsay (IM.NTU)

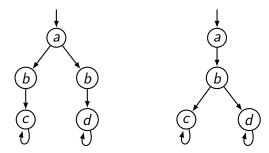
Equivalence, Simulation, and Abstraction

 ▲
 ■
 ▲
 ■
 ■

 Automatic Verification 2011

Bisimulation Equivalence (cont.)

These two structures are not bisimulation equivalent:



Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

 Automatic Verification 2011

Relating CTL* and Bisimulation

Theorem

If $M \equiv M'$ then, for every CTL^* formula $f, M \vDash f \Leftrightarrow M' \vDash f$.

This can be proven with the following two lemmas.

• We say that two paths $\pi = s_0 s_1 \dots$ in M and $\pi' = s'_0 s'_1 \dots$ in M' correspond iff, for every $i \ge 0$, $B(s_i, s'_i)$.

Lemma

Let s and s' be two states such that B(s, s'). Then for every path starting from s there is a corresponding path starting from s' and vice versa.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

< □ → < □ → < ≥ → < ≥ → < ≥ → ≥
 n Automatic Verification 2011

Relating CTL* and Bisimulation (cont.)

Lemma

Let f be either a state or a path formula. Assume that s and s' are bisimilar states and that π and π' are corresponding paths. Then,

- if f is a state formula, then $s \vDash f \Leftrightarrow s' \vDash f$, and
- if f is a path formula, then $\pi \vDash f \Leftrightarrow \pi' \vDash f$.
- Sase: $f = p \in AP$. Since B(s, s'), L(s) = L'(s'). Thus, $s \models p ⇔ s' \models p$.
- 😚 Induction (partial): $f = \mathbf{E} f_1$, a state formula.
 - Solution If $s \vDash \mathbf{E} f_1$ then there is a path π from s s.t. $\pi \vDash f_1$.
 - From the previous lemma, there is a corresponding path π' starting from s'.
 - Solution From the induction hypothesis, $\pi \vDash f_1 \Leftrightarrow \pi' \vDash f_1$.
 - Therefore, $s' \vDash \mathbf{E} f_1$.

Yih-Kuen Tsay (IM.NTU)

Simulation Relation (Preorder)

- Let $M = \langle AP, S, S_0, R, L \rangle$ and $M' = \langle AP', S', S'_0, R', L' \rangle$ be two structures with $AP \supseteq AP'$.
- A relation $H \subseteq S \times S'$ is a simulation relation between M and M' iff, for all s and s', if H(s, s') then the following conditions hold:
 - $\stackrel{\text{\tiny{\bullet}}}{=} L(s) \cap AP' = L'(s').$
 - For every state s_1 satisfying $R(s, s_1)$ there is s'_1 such that $R'(s', s'_1)$ and $H(s_1, s'_1)$.
- We say that M' simulates M or M is simulated by M', denoted $M \leq M'$, if there exists a simulation relation H such that for every $s_0 \in S$ there is an $s'_0 \in S'_0$ for which $H(s_0, s'_0)$ holds.
- The simulation relation can be shown to be a preorder (i.e., reflexive and transitive).

Yih-Kuen Tsay (IM.NTU)

Relating ACTL* and Simulation

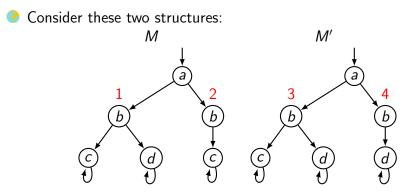
Theorem

Suppose $M \leq M'$. Then for every ACTL* formula f (with atomic propositions in AP'), $M' \vDash f \Rightarrow M \vDash f$.

- Formulae in ACTL* describe properties that are quantified over all possible behaviors of a structure.
- Because every behavior of M is a behavior of M', every formula of ACTL* that is true in M' must also be true in M.
- The theorem does not hold for CTL* formulae.
- In the example on the next slide, M' simulates M; however, $AG(b \rightarrow EX d)$ is true in M' but false in M.

Yih-Kuen Tsay (IM.NTU)

Compare Bisimulation and Simulation



- M and M' are not bisimulation equivalent, but each simulates the other.
- $\mathbf{AG}(b \to \mathbf{EX} \ d)$ is true in M', but false in M.

Yih-Kuen Tsay (IM.NTU)

K 4 E K 4 E K

Cone of Influence Reduction

- The cone of influence reduction attempts to decrease the size of a state transition graph by focusing on the variables of the system that are referred to in the desired property specification.
- The reduction is obtained by eliminating variables that do not influence the variables in the specification.
- In this way, the checked properties are preserved, but the size of the model that needs to be verified is smaller.

Cone of Influence Reduction (cont.)

- Let $V = \{v_1, \ldots, v_n\}$ be the set of Boolean variables of a given structure $M = (S, R, S_0, L)$.
- The transition relation R is specified by $\bigwedge_{i=1}^{n} [v'_i = f_i(V)]$.
- Suppose we are given a set of variables $V' \subseteq V$ that are of interest w.r.t. the property specification.
- The cone of influence C of V' is the minimal set of variables such that
 - $V' \subseteq C$
 - \circledast if for some $v_l \in C$ its f_l depends on v_j , then $v_j \in C$.
- We construct a new (reduced) structure by removing all the clauses in R whose left hand side variables do not appear in C and using C to construct states.

Yih-Kuen Tsay (IM.NTU)

An Example

- Solution We are associated with the set of the set
 - * If $V' = \{v_0\}$ then $C = \{v_0\}$, since $f_0 = \neg v_0$ does not depend on any variable other than v_0 .
 - * If $V' = \{v_1\}$ then $C = \{v_0, v_1\}$, since $f_1 = v_0 \oplus v_1$ depends on both variables.
 - * If $V' = \{v_2\}$ then $C = \{v_0, v_1, v_2\}$, since $f_2 = v_1 \oplus v_2$ depends on v_1, v_2 and $f_1 = v_0 \oplus v_1$ depends on v_0, v_1 (because v_1 is in C).

The Reduced Model

• Let
$$V = \{v_1, \ldots, v_n\}$$
.
• $M = (S, R, S_0, L)$ is a structure over V :
• $S = \{0, 1\}^n$ is the set of all valuations of V .
• $R = \bigwedge_{i=1}^n [v'_i = f_i(V)]$.
• $L(s) = \{v_i \mid s(v_i) = 1 \text{ for } 1 \le i \le n\}$.
• $S_0 \subseteq S$.
• The reduced model $\widehat{M} = (\widehat{S}, \widehat{R}, \widehat{S}_0, \widehat{L})$ w.r.t. $C = \{v_1, \ldots, v_k\}$ for some $k \le n$:
• $\widehat{S} = \{0, 1\}^k$ is the set of all valuations of C .
• $\widehat{R} = \bigwedge_{i=1}^k [v'_i = f_i(V)]$.
• $\widehat{L}(\widehat{s}) = \{v_i \mid \widehat{s}(v_i) = 1 \text{ for } 1 \le i \le k\}$.
• $\widehat{S}_0 = \{(\widehat{d}_1, \ldots, \widehat{d}_k) \mid \text{ there is a state } (d_1, \ldots, d_n) \in S_0 \text{ s.t.}$
• $\widehat{d}_1 = d_1 \land \cdots \land \widehat{d}_k = d_k\}$.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 16 / 34

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bisimulation Equivalence between Models

• Let $B \subseteq S \times \widehat{S}$ be the relation defined as follows: $((d_1,\ldots,d_n),(\widehat{d_1},\ldots,\widehat{d_k})) \in B \Leftrightarrow d_i = \widehat{d_i}$ for all $1 \le i \le k$. We show that B is a bisimulation relation between M and \hat{M} $(M \equiv M).$ For every $s_0 \in S$ there is a corresponding $\widehat{s_0} \in \widehat{S}$ and vice versa. Let $s = (d_1, \ldots, d_n)$ and $\widehat{s} = (\widehat{d_1}, \ldots, \widehat{d_k})$ s.t. $(s, \widehat{s}) \in B$. $L(s) \cap C = L(\widehat{s}).$ ${\ensuremath{\stackrel{@}{=}}}$ If s o t is a transition in M, then there is a transition $\widehat{s} o \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$. \circledast If $\widehat{s} \to \widehat{t}$ is a transition in \widehat{M} , then there is a transition $s \to t$ in M s.t. $(t, \hat{t}) \in B$.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 17 / 34

Bisimulation Equiv. between Models (cont.)

Let $s \to t$ be a transition in M. • There is a transition $\widehat{s} \to \widehat{t}$ in \widehat{M} s.t. $(t, \widehat{t}) \in B$. 1. For $1 \le i \le n, v'_i = f_i(V)$. (Transition relation) 2. For $1 \le i \le k$, v_i depends only on variables in C, hence $v'_i = f_i(C)$. (Definition of C) 3. $(s, \hat{s}) \in B$ implies $\bigwedge_{i=1}^{k} (d_i = \hat{d}_i)$. (Bisimilar states) 4. Let $t = (e_1, \ldots, e_k)$. For every $1 \le i \le k$, $e_i = f_i(d_1, \dots, d_k) = f_i(\hat{d_1}, \dots, \hat{d_k}).$ (From 2.3) 5. If we choose $\hat{t} = (e_1, \ldots, e_k)$, then $\hat{s} \to \hat{t}$ and $(t, \hat{t}) \in B$ as required.

Theorem

Let f be a CTL* formula with atomic propositions in C. Then $M \vDash f \Leftrightarrow \widehat{M} \vDash f$.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 18 / 34

(日) (四) (王) (王) (王)

Data Abstraction

- Data abstraction involves finding a mapping between the actual data values in the system and a small set of abstract data values.
- By extending this mapping to states and transitions, it is possible to obtain an abstract system that simulates the original system and is usually much smaller.
- Example: Assume we are interested in expressing a property involving the sign of x. We create a domain A_x of abstract values for x, with {a₀, a₊, a₋}, and define a mapping h_x from D_x to A_x as follows:

$$h_x(d) = \left\{ egin{array}{cc} a_0 & {
m if} \ d=0 \ a_+ & {
m if} \ d>0 \ a_- & {
m if} \ d<0 \end{array}
ight.$$

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 19 / 34

イロト 不得下 イヨト イヨト 二日

Data Abstraction (cont.)

- The abstract value of x can be expressed by three APs: " $\hat{x} = a_0$ ", " $\hat{x} = a_+$ ", and " $\hat{x} = a_-$ ".
- All states labelled with " $\hat{x} = a_+$ " will be collapsed into one state; that is, all states where x > 0 are merged into one.
- If there is a transition between, e.g., states corresponding to x = 0 and x = 5, there must be a transition between states labelled $\hat{x} = a_0$ and $\hat{x} = a_+$.

(本間) (本語) (本語) (語)

The Reduced Model by Abstraction

- Solution \bullet Let *h* be a mapping form *D* to an abstract domain *A*.
- The mapping determines a set of abstract atomic propositions AP.
- We now obtain a new structure $M = (S, R, S_0, L)$ that is identical to the original one expect that L labels each state with a subset of AP.
- The structure M can be collapsed into a reduced structure M_r over AP defined as follows:

$$\bullet S_r = \{L(s) \mid s \in S\}.$$

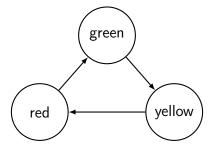
- * $R_r(s_r, t_r)$ iff there exist s and t s.t. $s_r = L(s)$, $t_r = L(t)$, and R(s, t).
- $ilde{s}$ $s_r \in S_0^r$ iff there exists an s s.t. $s_r = L(s)$ and $s \in S_0$.
- $lag{l} L_r(s_r) = s_r$ (each s_r is a set of atomic propositions).

Yih-Kuen Tsay (IM.NTU)

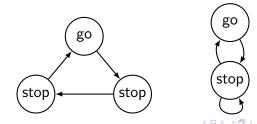
The Reduced Model by Abstraction (cont.)

- M_r simulates the structure M.
- Every path that can be generated by M can also be generated by M_r .
- Whatever ACTL* properties we can prove about M_r will be also hold in M.
- Note that using this technique it is only possible to determine whether formulae over *AP* are true in *M*.

The Reduced Model by Abstraction (cont.)



h(red) = stop; h(yellow) = stop; h(green) = go.



Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction

Automatic Verification 2011

Approximation

- The construction of M_r , as described, requires the construction of M.
- When *M* is too large, we use an implicit representation in terms of S_0 and \mathcal{R} .
- \clubsuit In many cases, M_r may still be too large to construct exactly.
- To further reduce the state space, an approximation M_a that simulates M_r is constructed.
- The goal here is to have M_a sufficiently close to M_r so that it is still possible to verify interesting properties.

イロト 不得下 イヨト イヨト 二日

- We use the first order formulae S_0 and \mathcal{R} to define the Kripke structure $M = (S, R, S_0, L)$ with state set $S = D \times \cdots \times D$.
- \mathcal{S}_0 is the set of valuations satisfying \mathcal{S}_0 .
- 📀 Similarly, R is derived from \mathcal{R} .
- *L* is defined over abstract atomic propositions, e.g., $\{ \hat{x}_1 = a_1^n, \hat{x}_2 = a_2^n, \dots, \hat{x}_n = a_n^n \}.$

化橡胶 化医胶 化医胶 一座

The Reduced Model in FOL

• To produce M_r over the abstract state set $A \times \cdots \times A$, we construct formulae over $\hat{x_1}, \ldots, \hat{x_n}$ and $\hat{x_1}', \ldots, \hat{x_n}'$ that will represent the initial states and transition relation of M_r .

•
$$\widehat{\mathcal{S}_0} = \exists x_1 \cdots \exists x_n (h(x_1) = \widehat{x_1} \wedge \cdots \wedge h(x_n) = \widehat{x_n} \wedge \mathcal{S}_0(x_1, \dots, x_n)).$$

$$\widehat{\mathcal{R}} = \exists x_1 \cdots \exists x_n \exists x'_1 \cdots \exists x'_n (h(x_1) = \widehat{x_1} \land \cdots \land h(x_n) = \widehat{x_n} \land h(x'_1) = \widehat{x_1}' \land \cdots \land h(x'_n) = \widehat{x_n}' \land \mathcal{R}(x_1, \dots, x_n, x'_1, \dots, x'_n)).$$

For conciseness, this existential abstraction operation is denoted by [·].

Yih-Kuen Tsay (IM.NTU)

イロト 不得 トイヨト イヨト 二日

Computing Approximation

- Ideally, we would like to extract S^r₀ and R_r from [S₀] and [R]. However, this is often computationally expensive.
- To circumvent this difficulty, we define a transformation $\mathcal A$ on formula ϕ .
- The idea is to simplify the formulae to which [·] is applied ("pushing the abstractions inward").
- This will make it easier to extract the Kripke structure from the formulae.

イロト イポト イヨト イヨト 二日

 $\ref{eq: started}$ Assume ϕ is given in the negation normal form.

The approximation $\mathcal{A}(\phi)$ of $[\phi]$ is computed as follows.

$$\begin{array}{l} & \mathcal{A}(P(x_1,\ldots,x_m)) = [P](\widehat{x_1},\ldots,\widehat{x_m}) \text{ if } P \text{ is a primitive relation.} \\ & \text{Similarly, } \mathcal{A}(\neg P(x_1,\ldots,x_m)) = [\neg P](\widehat{x_1},\ldots,\widehat{x_m}). \\ & \mathcal{A}(\phi_1 \land \phi_2) = \mathcal{A}(\phi_1) \land \mathcal{A}(\phi_2). \\ & \mathcal{A}(\phi_1 \lor \phi_2) = \mathcal{A}(\phi_1) \lor \mathcal{A}(\phi_2). \\ & \mathcal{A}(\exists x \phi) = \exists \widehat{x} \mathcal{A}(\phi). \\ & \mathcal{A}(\forall x \phi) = \forall \widehat{x} \mathcal{A}(\phi). \end{array}$$

Yih-Kuen Tsay (IM.NTU)

イロト 人間ト イヨト イヨト

The approximation Kripke structure $M_a = (S_a, s_0^a, R_a, L_a)$ can be derived from $\mathcal{A}(S_0)$ and $\mathcal{A}(\mathcal{R})$.

Let
$$s_a = (a_1, \ldots, a_n) \in S_a$$
. Then
$$L_a(s_a) = \{ ``\widehat{x_1} = a_1", ``\widehat{x_2} = a_2", \ldots, ``\widehat{x_n} = a_n" \}.$$

Note that $s = (d_1, ..., d_n) \in S$ and s_a will be labeled identically if for all i, $h(d_i) = a_i$.

- 4 同 6 4 日 6 4 日 6

- The price for the approximation is that it may be necessary to add extra initial states and transitions to the corresponding structure.
- This is because $[\phi]$ implies $\mathcal{A}(\phi)$, but the converse may not be true.
 - In particular, $[\mathcal{S}_0] o \mathcal{A}(\mathcal{S}_0)$ and $[\mathcal{R}] o \mathcal{A}(\mathcal{R}).$

Theorem

 $[\phi]$ implies $\mathcal{A}(\phi)$.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 30 / 34

- \bigcirc The proof is by induction on the structure of ϕ .
- We show the case $\phi(x_1, \ldots, x_m) = \forall x \phi_1$ only.

$$\begin{array}{l} [\forall x\phi_1] \\ = & \exists x_1 \cdots \exists x_m (\bigwedge h(x_i) = \widehat{x_i} \land \forall x\phi_1(x, x_1, \dots, x_m)) \\ = & \exists x_1 \cdots \exists x_m \forall x (\bigwedge h(x_i) = \widehat{x_i} \land \phi_1(x, x_1, \dots, x_m)) \\ \rightarrow & \forall x \exists x_1 \cdots \exists x_m (\bigwedge h(x_i) = \widehat{x_i} \land \phi_1(x, x_1, \dots, x_m)) \\ \rightarrow & \forall \widehat{x} \exists x [\exists x_1 \cdots \exists x_m (h(x) = \widehat{x} \land \bigwedge h(x_i) = \widehat{x_i} \land \phi_1(x, x_1, \dots, x_m)) \\ = & \forall \widehat{x} [\phi_1] \\ \rightarrow & \forall \widehat{x} \mathcal{A}(\phi_1) \\ = & \mathcal{A}(\forall x\phi_1) \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Theorem

 $M \preceq M_a$.

Proof.

1. Because the approximation M_a only adds extra initial states and transitions to the reduced model M_r , all paths in the M_r are reserved. So, $M_r \leq M_a$.

2. Since
$$M \leq M_r$$
 and \leq is transitive, $M \leq M_a$.

Corollary

Every ACTL* formula that holds in M_a also holds in M.

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 32 / 34

イロト 不得下 イヨト イヨト 二日

Exact Approximation

- We consider some additional conditions that allow us to show that *M* is bisimulation equivalent to *M_a*.
- Each abstraction mapping h_x for variable x induces an equivalence relation \sim_x :
 - \circledast Let d_1 and d_2 be in D_x .
 - $ightarrow d_1 \sim_{\times} d_2$ iff $h_{\times}(d_1) = h_{\times}(d_2)$.
 - The equivalence relation ~_{xi} is a congruence with respect to a primitive relation P iff

$$\forall d_1 \cdots \forall d_m \forall e_1 \cdots \forall e_m \\ (\bigwedge_{i=1}^m d_i \sim_{x_i} e_i \rightarrow (P(d_1, \ldots, d_m) \Leftrightarrow P(e_1, \ldots, e_m)))$$

Yih-Kuen Tsay (IM.NTU)

Equivalence, Simulation, and Abstraction Automatic Verification 2011 33 / 34

- 本間 と えき と えき とうき

Exact Approximation (cont.)

Theorem

If the \sim_{x_i} are congruences with respect to the primitive relations and ϕ is a formula defined over these relations, then $[\phi] \Leftrightarrow \mathcal{A}(\phi)$, i.e., $M_a \equiv M_r$.

Theorem

If \sim_{x_i} are congruences with respect to the primitive relations, then $M \equiv M_a$.

イロト イポト イヨト イヨト 二日