Binary Decision Diagrams
 (Based on [Clarke et al. 1999] and [Bryant 1986])

Yih-Kuen Tsay
(original created by Ming-Hsien Tsai)

Department of Information Management
National Taiwan University

Boolean Functions

Boolean functions are widely used in
digital logic design and testing,
artificial intelligence,
combinatorics, and
model checking.
Boolean operators
Conjunction (and): $x \cdot y \quad(x \wedge y)$
, Disjunction (or): $x+y \quad(x \vee y)$
Negation (not): $\bar{x} \quad(\neg x)$
, Equivalence (if and only if): \leftrightarrow
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$

Representations of Boolean Functions

A variety of methods had earlier been developed for representing and manipulating Boolean functions:

* Truth table
, Karnaugh map
. Sum-of-products form
Binary decision tree
These representations are quite impractical, because every function of n arguments has a representation of size 2^{n} or more.

Truth Table

A truth table for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

x_{1}	x_{2}	x_{3}	x_{4}	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0

x_{1}	x_{2}	x_{3}	x_{4}	f
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Karnaugh Map

A Karnaugh table for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

$x_{1} x_{2}$	00	01	11	10
00	1	0	1	0
11	0	0	0	0
10	0	0	1	0
0	0	0	0	

Binary Decision Tree

A binary decision tree for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$.

Representations of Boolean Functions (cont.)

- More practical approaches utilize representations that, at least for many functions, are not of exponential size.
, reduced sum of products
6 factored into unate (cf. monotone) functions
- These representations still suffer from several drawbacks:
* Certain common functions require representations of exponential size.
* Performing a simple operation could yield a function with an exponential representation.
*) None of these representations are canonical forms (which are convenient for equivalence testing).

Binary Decision Diagrams

- A binary decision diagram (BDD) represents a Boolean function as a rooted, directed acyclic graph (function graph).
We use $r(G)$ to denote the root of a function graph G.
The vertex set V of a function graph G contains two types of vertices.

A nonterminal vertex v has
(an argument index index $(v) \in\{1, \ldots, n\}$ and
(w two children low $(v), h i g h(v) \in V$.

* A terminal vertex v has a value value $(v) \in\{0,1\}$.

Ordered Binary Decision Diagrams

An ordered binary decision diagram (OBDD) is defined by imposing a total ordering over the nonterminal vertices.

For any nonterminal vertex v,
(6) if low (v) is nonterminal, then we must have index $(v)<\operatorname{index}(\operatorname{low}(v))$;
(w) if $\operatorname{high}(v)$ is nonterminal, then we must have index $(v)<\operatorname{index}(h i g h(v))$.
Further minimality conditions will be introduced later.

- OBDDs are representations of Boolean functions with canonical forms and reasonable size.
The size of the graph is highly sensitive to arguments ordering.

Ordering

Two OBDDs for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \leftrightarrow x_{2}\right) \cdot\left(x_{3} \leftrightarrow x_{4}\right)$ with different orderings.

Notations

All functions have the same n arguments: x_{1}, \cdots, x_{n}.
A restriction of f is denoted $\left.f\right|_{x_{i}=b}$ where b is a constant.

$$
\left.f\right|_{x_{i}=b}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{n}\right)
$$

A composition of f and g is denoted $\left.f\right|_{x_{i}=g}$ where g is a Boolean function.

$$
\left.f\right|_{x_{i}=g}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, g\left(x_{1}, \ldots, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)
$$

Notations (cont.)

The Shannon expansion of a function around variable x_{i} is given by:

$$
f=\left.x_{i} \cdot f\right|_{x_{i}=1}+\left.\bar{x}_{i} \cdot f\right|_{x_{i}=0}
$$

- The dependency set of a function f is denoted I_{f}.

$$
I_{f}=\left\{i|f|_{x_{i}=0} \neq\left. f\right|_{x_{i}=1}\right\}
$$

The satisfying set of a function f is denoted S_{f}.

$$
S_{f}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=1\right\}
$$

Correspondence

A function graph (OBDD) G having root vertex v denotes a function f_{v} defined recursively as follows:

If v is a terminal vertex:
(2) If value $(v)=1$, then $f_{v}=1$.
(2) If value $(v)=0$, then $f_{v}=0$.

潮. If v is a nonterminal vertex with $\operatorname{index}(v)=i$, then f_{v} is the function

$$
f_{v}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}_{i} \cdot f_{\operatorname{low}(v)}\left(x_{1}, \ldots, x_{n}\right)+x_{i} \cdot f_{h i g h(v)}\left(x_{1}, \ldots, x_{n}\right) .
$$

Correspondence (cont.)

A path in the graph starting from the root is defined by a set of argument values.

- The value of the function for these arguments equals the value of the terminal vertex at the end of the path.
Every vertex in the graph is contained in at least one path.

Correspondence (cont.)

$$
\begin{aligned}
f_{v_{8}} & =0 \\
f_{v_{7}} & =1 \\
f_{v_{6}} & =\bar{x}_{4} \cdot f_{v_{8}}+x_{4} \cdot f_{v_{7}} \\
& =x_{4} \\
f_{v_{5}} & =\bar{x}_{4} \cdot f_{v_{7}}+x_{4} \cdot f_{v_{8}} \\
& =\bar{x}_{4} \\
f_{v_{4}} & =\bar{x}_{3} \cdot f_{v_{5}}+x_{3} \cdot f_{v_{6}} \\
& =\bar{x}_{3} \cdot \bar{x}_{4}+x_{3} \cdot x_{4}
\end{aligned}
$$

$$
f_{v_{1}}=\left(\bar{x}_{1} \cdot \bar{x}_{2}+x_{1} \cdot x_{2}\right) \cdot\left(\bar{x}_{3} \cdot \bar{x}_{4}+x_{3} \cdot x_{4}\right)
$$

Subgraph

For any vertex v in a function graph G, the subgraph rooted at v, denoted by $\operatorname{sub}(G, v)$ is defined as the graph consisting of v and all its descendants.

Subgraph

For any vertex v in a function graph G, the subgraph rooted at v, denoted by $\operatorname{sub}(G, v)$ is defined as the graph consisting of v and all its descendants.

Isomorphism

Function graphs G and G^{\prime} are isomorphic, denoted by $G \sim G^{\prime}$, if there exists a one-to-one function σ from vertices of G onto the vertices of G^{\prime} such that for any vertex v if $\sigma(v)=v^{\prime}$, then either
both v and v^{\prime} are terminal vertices with value $(v)=$ value $\left(v^{\prime}\right)$, or

* both v and v^{\prime} are nonterminal vertices with $\operatorname{index}(v)=\operatorname{index}\left(v^{\prime}\right), \sigma(\operatorname{low}(v))=\operatorname{low}\left(v^{\prime}\right)$, and $\sigma(h i g h(v))=h i g h\left(v^{\prime}\right)$

Isomorphism (cont.)

Is this an isomorphic mapping? (part of it is)

Isomorphism (cont.)

- The isomorphic mapping σ is quite constrained:

俨 $r(G)$ must map to the $r\left(G^{\prime}\right)$,

* $\operatorname{low}(r(G))$ must map to $\operatorname{low}\left(r\left(G^{\prime}\right)\right)$,
and so on all the way down to the terminal vertices.
Lemma 1: If G is isomorphic to G^{\prime} by mapping σ, denoted by $G \sim{ }_{\sigma} G^{\prime}$, then for any vertex v in $G, \operatorname{sub}(G, v) \sim \operatorname{sub}\left(G^{\prime}, \sigma(v)\right)$.

Reduced Function Graph

-

A function graph G is reduced if
it it contains no vertex v with low $(v)=\operatorname{high}(v)$, nor does it contain distinct vertices v and v^{\prime} such that the subgraphs rooted by v and v^{\prime} are isomorphic.
A reduced function graph is now commonly called (Reduced) OBDD.
Lemma 2: For every vertex v in a reduced function graph G, $\operatorname{sub}(G, v)$ is itself a reduced function graph.

Reduced Function Graph (cont.)

Canonical Form

Theorem: For any Boolean function f, there is a unique (up to isomorphism) reduced function graph denoting f and any other function graph denoting f contains more vertices.

Basic Operations

Procedure	Result	Time Complexity
Reduce	G reduced to canonical form	$O(\|G\| \cdot \log \|G\|)$
Apply	$f_{1}\langle o p\rangle f_{2}$	$O\left(\left\|G_{1}\right\| \cdot\left\|G_{2}\right\|\right)$
Restrict	$\left.f\right\|_{x_{i}=b}$	$O(\|G\| \cdot \log \|G\|)$
Compose	$f_{1} \mid X_{x_{i}=f_{2}}$	$O\left(\left\|G_{1}\right\|{ }^{2} \cdot\left\|G_{2}\right\|\right)$
Satisfy-one	some element of S_{f}	$O(n)$
Satisfy-all	S_{f}	$O\left(n \cdot\left\|S_{f}\right\|\right)$
Satisfy-count	$\left\|S_{f}\right\|$	$O(\|G\|)$

Reduction

The reduction algorithm transforms an arbitrary function graph into a reduced graph denoting the same function.
The algorithm works from the terminal vertices up to the root:
, Remove duplicate terminals (terminal vertices v and u such that $\operatorname{value}(v)=\operatorname{value}(u))$.

* Remove duplicate nonterminals (nonterminal vertices v and u such that $\operatorname{index}(v)=\operatorname{index}(u), i d(\operatorname{low}(v))=i d(\operatorname{low}(u))$, and $i d(\operatorname{high}(v))=i d(\operatorname{high}(u)))$.
* Remove duplicate tests (a nonterminal vertex v such that $\operatorname{low}(v)=h i g h(v))$.

A Reduction Example

A Reduction Example

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Note: not strictly bottom to top (for better layouts).

A Reduction Example

Restriction

- The procedure Restrict transforms the graph representing a function f into one representing the function $\left.f\right|_{x_{i}=b}$.
Steps of Restrict:
Look for a vertex v with $\operatorname{index}(v)=i$.
© Change it to point either to $\operatorname{low}(v)($ for $b=0)$ or to $\operatorname{high}(v)$ (for $b=1$).
* After changing every vertex v with index $(v)=i$, run the reduction procedure.

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

A Restriction Example

$$
\left.\overline{\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}}\right|_{\mathrm{x}_{2}=0}=\overline{\mathrm{x}_{1} \cdot \mathrm{x}_{3}}
$$

Apply

The procedure Apply takes graphs representing functions f_{1} and f_{2}, a binary operator $\langle o p\rangle$, and produces a reduced graph representing the function $f_{1}\langle o p\rangle f_{2}$ defined as:

$$
\left[f_{1}\langle o p\rangle f_{2}\right]\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}, \ldots, x_{n}\right)\langle o p\rangle f_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

- It is based on the following recursion derived from the Shannon expansion:

$$
f_{1}\langle o p\rangle f_{2}=\bar{x}_{i} \cdot\left(\left.\left.f_{1}\right|_{x_{i}=0}\langle o p\rangle f_{2}\right|_{x_{i}=0}\right)+x_{i} \cdot\left(\left.\left.f_{1}\right|_{x_{i}=1}\langle o p\rangle f_{2}\right|_{x_{i}=1}\right)
$$

Apply (cont.)

Given function f_{1} rooted at v_{1} and function f_{2} rooted at v_{2}, there are four cases to consider:
v v_{1} and v_{2} are terminals: $f_{1}\langle o p\rangle f_{2}=\operatorname{value}\left(v_{1}\right)\langle o p\rangle$ value $\left(v_{2}\right)$ $\operatorname{index}\left(v_{1}\right)=\operatorname{index}\left(v_{2}\right)$: use the derived recursion $\operatorname{index}\left(v_{1}\right)(=i)<\operatorname{index}\left(v_{2}\right):\left.f_{2}\right|_{x_{i}=0}=\left.f_{2}\right|_{x_{i}=1}=f_{2}$, so

$$
f_{1}\langle o p\rangle f_{2}=\bar{x}_{i} \cdot\left(\left.f_{1}\right|_{x_{i}=0}\langle o p\rangle f_{2}\right)+x_{i} \cdot\left(\left.f_{1}\right|_{x_{i}=1}\langle o p\rangle f_{2}\right)
$$

* index $\left(v_{1}\right)>\operatorname{index}\left(v_{2}\right)$: analogously as above
- To avoid repeating the operation on two same nodes, we use dynamic programming.

Apply (cont.)

function Apply(v1, v2: vertex $\langle o p\rangle$: operator): vertex $\left\{\right.$ var T : array $\left[1 . .\left|G_{1}\right|, 1 . .\left|G_{2}\right|\right]$ of vertex; $\}$
begin
Initialize all elements of T to null;
$u:=\operatorname{Apply-step}(v 1, v 2)$;
return(Reduce(u));
end;

Apply (cont.)

```
function Apply-step(v1, v2: vertex): vertex;
begin
    u:= T[v1.id, v2.id];
    if u\not= null then return(u); {have already evaluated}
    u:= new vertex record; u.mark := false;
    T[v1.id, v2.id]:=u; {add vertex to table}
    u.value := v1.value \langleop\rangle v2.value;
    if u.value }\not=
        then u.index := n+1; u.low := null; u.high := null;
    else {create nonterminal and evaluate further down}
        u.index := Min(v1.index, v2.index);
        if v1.index = u.index
            then begin vlow1:= v1.low; vhigh1:= v1.high end
            else begin vlow1:= v1; vhigh1:= v1 end;
        if v2.index = u.index
            then begin vlow2 := v2.low; vhigh2 := v2.high end
            else begin vlow2:= v2; vhigh2 := v2 end;
        u.low := Apply-step(ulow1, vlow2);
        u.high := Apply-step(vhigh1, vhigh2);
    return(u);
end;
```


An Apply Example

An Apply Example

An Apply Example

An Apply Example

An Apply Example

An Apply Example

Complementation

To complement an OBDD, simply complement its terminal vertices.

Composition

The procedure Compose constructs the graph for the function obtained by composing two functions.

- Composition can be expressed in terms of restriction and Boolean operations according to the following expansion:

$$
\left.f_{1}\right|_{x_{i}=f_{2}}=\left.f_{2} \cdot f_{1}\right|_{x_{i}=1}+\left.\left(\neg f_{2}\right) \cdot f_{1}\right|_{x_{i}=0}
$$

It is sufficient to use Restrict and Apply to implement Compose.

Satisfy-one

The Satisfy-one procedure utilizes a classic depth-first search with backtracking.

```
function Satisfy-one(v: vertex; x: array[1..n] of integer): boolean
begin
    if value(v) = 0 then return false;
    if value(v) = 1 then return true;
    x[i] := 0;
    if Satisfy-one(low(v), x) then return true;
    x[i] := 1;
    return Satisfy-one(high(v), x);
end;
```


A Satisfy-one Example

Satisfy-all

procedure Satisfy-all(i: integer; v: vertex; x : array[1..n] of integer):
begin
if value $(v)=0$ then return;
if $\mathrm{i}=\mathrm{n}+1$ and value $(\mathrm{v})=1$
then begin
Print element $\times[1], \ldots, \times[n]$;
return;
end;

if index(v) ¿ i
then begin

$$
\times[i]:=0 \text {; Satisfy-all(}(i+1, v, x) \text {; }
$$

end

$$
\times[i]:=1 ; \text { Satisfy-all }(\mathrm{i}+1, \mathrm{v}, \mathrm{x}) \text {; }
$$

else begin
$x[i]:=0 ;$ Satisfy-all $(i+1, \operatorname{low}(v), x)$;
$x[i]:=1$; Satisfy-all $(i+1, \operatorname{high}(v), x)$;
end
end;

Satisfy-count

The procedure Satisfy-count computes a value α_{v} to each vertex v in the graph according to the following recursive formula:
, If v is a terminal vertex: $\alpha_{v}=$ value (v).
If v is a nonterminal vertex:

$$
\alpha_{v}=\alpha_{\operatorname{low}(v)} \cdot 2^{\operatorname{index}(\operatorname{low}(v))-\operatorname{index}(v)}+\alpha_{h i g h(v)} \cdot 2^{\operatorname{index}(h i g h(v))-\operatorname{index}(v)}
$$

- Once we have computed these values for a graph with root v, we compute the size of the satisfying set as

$$
\left|S_{f}\right|=\alpha_{v} \cdot 2^{\text {index }(v)-1}
$$

Kripke Structures

Given a set of atomic propositions $A P$, a Kripke structure M is a four tuple $\left(S, S_{0}, R, L\right)$:

洪 S is a finite set of states.
, $S_{0} \subseteq S$ is the set of initial states.
, $R \subseteq S \times S$ is a transition relation that must be total.
. $L: S \rightarrow 2^{A P}$ is a function that labels each state with the set of atomic propositions true in that state.

First Order Representations

The initial states can be represented by the formula:

$$
(a \wedge b)
$$

The transitions can be represented by the formula:

$$
\begin{aligned}
& \left(a \wedge b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge b^{\prime}\right)
\end{aligned}
$$

OBDD Representations

Use $x_{1}, x_{2}, x_{3}, x_{4}$ to represent $a, b, a^{\prime}, b^{\prime}$ respectively.

- The characteristic function of initial states:

$$
(a \wedge b)
$$

becomes

$$
\left(x_{1} \cdot x_{2}\right)
$$

OBDD Representations (cont.)

The characteristic function of transitions:

$$
\begin{aligned}
& \left(a \wedge b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge \neg b^{\prime}\right) \\
& \left(a \wedge \neg b \wedge a^{\prime} \wedge b^{\prime}\right)
\end{aligned}
$$

becomes

$$
\begin{array}{ll}
\left(x_{1} \cdot x_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) & + \\
\left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot \bar{x}_{4}\right) & + \\
\left(x_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot x_{4}\right) &
\end{array}
$$

OBDD Representations (cont.)

Initial states: $x_{1} \cdot x_{2}$

OBDD Representations (cont.)

Summary

OBDDs are representations of Boolean functions with
, canonical forms and
reasonable size.

- Transition systems can be encoded in Boolean functions and thus representable in OBDDs.
Symbolic model checking becomes possible with OBDDs.

