

# **Temporal Logic Model Checking**

(Based on [Clarke et al. 1999])

Yih-Kuen Tsay (with help from Yu-Fang Chen)

> Dept. of Information Management National Taiwan University

### **About Temporal Logic**



- Temporal logic is a formalism for describing temporal ordering (or dependency) between occurrences of "events" (represented by propositions).
- It provides such expressive features by introducing temporal/modal operators into classic logic.
- These temporal operators usually do not explicitly mention time points.
- There are two principal views of the structure of time:
  - linear-time: occurrences of events form a sequence
  - branching-time: occurrences of events form a tree

#### **Outline**



- Temporal Logics
  - CTL\* (generalized Computation Tree Logic)
  - 🌞 CTL (Computation Tree Logic; subset of CTL\*)
  - 🌞 LTL (Linear Temporal Logic; subset of CTL\*)
- 😚 Fairness
- Algorithmic Temporal Logic Verification
  - CTL Model Checking
  - 🌞 LTL Model Checking
  - 🌞 CTL\* Model Checking

### CTL\*



- CTL\* formulae describe properties of a computation tree (generated from a Kripke structure).
- They are composed of path quantifiers and temporal operators.
- Path quantifiers:
  - E (for some path)
  - 鯵 🗛 (for all paths)
- Temporal operators:
  - X (next)
  - 🌞 **F** (eventually or sometime in the future)
  - 🌞 **G** (always or globally)
  - U (until)
  - 鯵 **R** (release)

# Syntax of CTL\*



- $\bigcirc$  Let AP be a set of atomic propositions.
- The syntax of state formulae:
  - $\not$  If  $p \in AP$ , then p is a state formula.
  - **\*** If  $f_1$  and  $f_2$  are state formulae, then so are  $\neg f_1$ ,  $f_1 \lor f_2$  and  $f_1 \land f_2$ .
  - lpha If g is a path formula, then  $\mathbf{E} g$  and  $\mathbf{A} g$  are state formulae.
- The syntax of path formulae:

  - $ilde{*}$  If  $g_1$  and  $g_2$  are path formulae, then so are  $\neg g_1$ ,  $g_1 \lor g_2$ ,  $g_1 \land g_2$ ,  $\mathbf{X}g_1$ ,  $\mathbf{F}g_1$ ,  $\mathbf{G}g_1$ ,  $g_1$   $\mathbf{U}$   $g_2$ , and  $g_1$   $\mathbf{R}$   $g_2$ .
- CTL\* is the set of state formulae generated by the above rules.

## **Example CTL\* Formulae**



- Formula:  $\mathbf{AG}$  ( $Req \rightarrow \mathbf{AF}$  Ack). Intended meaning: every request will eventually be granted.
- Formula: **AG** (**EF** *Restart*). Intended meaning: it is always possible at any time to get to the *Restart* state.

### **Kripke Structures**



- $\bigcirc$  Let AP be a set of atomic propositions.
- $\bullet$  A *Kripke structure M* over *AP* is a tuple  $\langle S, S_0, R, L \rangle$ :
  - 🌞 S is a finite set of states,
  - $ilde{*} S_0 \subseteq S$  is the set of initial states,
  - $ilde{*}$   $R\subseteq S imes S$  is a total transition relation, and
  - \*  $L: S \to 2^{AP}$  is a function labeling each state with a subset of propositions (which are true in that state).
- **⊙** A *computation* or *path*  $\pi$  of M from a state s is an infinite sequence  $s_0, s_1, s_2, \cdots$  of states such that  $s_0 = s$  and  $(s_i, s_{i+1}) \in R$ , for all  $i \geq 0$ .
- 🚱 In the sequel,  $\pi^i$  denotes the *suffix* of  $\pi$  starting at  $s_i$ .

#### Semantics of CTL\*



- When f is a state formula,  $M, s \models f$  means that f holds at state s in the Kripke structure M.
- When f is a path formula,  $M, \pi \models f$  means that f holds along the path  $\pi$  in the Kripke structure M.
- Assuming that  $f_1$  and  $f_2$  are state formulae and  $g_1$  and  $g_2$  are path formulae, the semantics of CTL\* is as follows:
  - $\stackrel{*}{\circ} M, s \models p \iff p \in L(s)$
  - $\stackrel{\text{\tiny{$\emptyset$}}}{=} M, s \models \neg f_1 \iff M, s \nvDash f_1$
  - $\stackrel{\text{\tiny{\$}}}{=} M, s \models f_1 \lor f_2 \Longleftrightarrow M, s \models f_1 \text{ or } M, s \models f_2$
  - $ilde{*}$   $M,s\models f_1\wedge f_2\Longleftrightarrow M,s\models f_1$  and  $M,s\models f_2$
  - $ilde{*}$   $M,s \models \mathbf{E} g_1 \iff$  for some path  $\pi$  from s,  $M,\pi \models g_1$
  - $\rlap{\#} M, s \models \mathbf{A}g_1 \Longleftrightarrow$  for every path  $\pi$  from  $s, M, \pi \models g_1$

## Semantics of CTL\* (cont.)



- The semantics of CTL\* (cont.):
  - $ilde{*}\hspace{0.1cm} M,\pi\models \mathit{f}_1\Longleftrightarrow \mathit{s}$  is the first state of  $\pi$  and  $M,\mathit{s}\models \mathit{f}_1$
  - $\stackrel{\text{\tiny{$\emptyset$}}}{\bullet} M, \pi \models \neg g_1 \Longleftrightarrow M, \pi \not\models g_1$
  - $\red{\hspace{-0.1cm} \#} M,\pi \models g_1 \vee g_2 \Longleftrightarrow M,\pi \models g_1 \text{ or } M,\pi \models g_2$
  - $ilde{*}\hspace{0.1cm} M,\pi\models g_1\wedge g_2 \Longleftrightarrow M,\pi\models g_1 \hspace{0.1cm}\mathsf{and}\hspace{0.1cm} M,\pi\models g_2$
  - $\stackrel{\clubsuit}{=} M, \pi \models \mathbf{X} g_1 \Longleftrightarrow M, \pi^1 \models g_1$
  - $ilde{*} M, \pi \models \mathbf{F} g_1 \Longleftrightarrow$  for some  $k \geq 0$ ,  $M, \pi^k \models g_1$
  - $ilde{*} M, \pi \models \mathbf{G}g_1 \Longleftrightarrow \text{ for all } i \geq 0, \ M, \pi^i \models g_1$
  - \*  $M, \pi \models g_1 \cup g_2 \iff$  for some  $k \ge 0$ ,  $M, \pi^k \models g_2$  and, for all  $0 \le j < k, M, \pi^j \models g_1$  ( $g_1$  remains true until  $g_2$  becomes true, which eventually happens.)
  - \*  $M, \pi \models g_1 \mathbf{R} \ g_2 \iff$  for all  $j \ge 0$ , if for every i < j,  $M, \pi^i \not\models g_1$ , then  $M, \pi^j \models g_2$  (Only after  $g_1$  becomes true,  $g_2$  may become false.)

#### Minimalistic CTL\*



- The operators ∨, ¬, X, U, and E are sufficient to express any other CTL\* formula (in an equivalent way).
- 🕝 In particular,
  - # **F**f = true**U**f
  - $\bullet$  **G** $f = \neg$ **F** $(\neg f)$

  - $\clubsuit$  **A** $f = \neg$ **E** $(\neg f)$
- $\neg (\neg f \ \mathbf{U} \ \neg g)$  says that it should not be the case that from some state g becomes false and until then f has never been true.
- This is the same as saying that only after f becomes true, g may become false (or f "releases" g), namely f  $\mathbf{R}$  g.

#### CTL and LTL



- CTL and LTL are restricted subsets of CTL\*.
- 😚 CTL is a branching-time logic, while LTL is linear-time.
- In CTL, each temporal operator X, F, G, U, or R must be immediately preceded by a path quantifier E or A.
- The syntax of path formulae in CTL is more restricted:
  - **I** If  $f_1$  and  $f_2$  are state formulae, then  $\mathbf{X}f_1$ ,  $\mathbf{F}f_1$ ,  $\mathbf{G}f_1$ ,  $f_1$   $\mathbf{U}$   $f_2$ , and  $f_1$   $\mathbf{R}$   $f_2$  are path formulae.
- The syntax of state formulae remains the same:
  - $\red$  If  $p \in AP$ , then p is a state formula.
  - **\*** If  $f_1$  and  $f_2$  are state formulae, then so are  $\neg f_1$ ,  $f_1 \lor f_2$  and  $f_1 \land f_2$ .
  - lpha If g is a path formula, then **E**g and **A**g are state formulae.

# CTL and LTL (cont.)



- The syntax of path formulae in LTL is as follows:
  - $\circledast$  If  $p \in AP$ , then p is a path formula.
  - If  $g_1$  and  $g_2$  are path formulae, then so are  $\neg g_1$ ,  $g_1 \lor g_2$ ,  $g_1 \land g_2$ ,  $\mathbf{X}g_1$ ,  $\mathbf{F}g_1$ ,  $\mathbf{G}g_1$ ,  $g_1$   $\mathbf{U}$   $g_2$ , and  $g_1$   $\mathbf{R}$   $g_2$ .

### **Expressive Powers**



- CTL, LTL, and CTL\* have distinct expressive powers.
- Some discriminating examples:
  - $\clubsuit$  **A**(**FG** p) in LTL, not expressible in CTL.
  - $\overset{*}{>}$  **AG**(**EF** p) in CTL, not expressible in LTL.
  - $\red$  Both **A**(**FG** p) and **AG**(**EF** p) are expressible in CTL\*.
- So, CTL\* is strictly more expressive than CTL and LTL, the two of which are incomparable.

### Fair Kripke Structures



- A fair Kripke structure is a 4-tuple M = (S, R, L, F), where S, L, and R are defined as before and  $F \subseteq 2^S$  is a set of fairness constraints. (Generalized Büchi acceptance conditions)
- igoplus 1000 Let  $\pi = extstyle s_0, extstyle s_1, \dots$  be a path in M.
- ightharpoonup Define  $\inf(\pi) = \{s \mid s = s_i \text{ for infinitely many } i\}$ .
- $\odot$  We say that  $\pi$  is *fair* iff, for every  $P \in F$ ,  $\inf(\pi) \cap P \neq \emptyset$ .

#### **Fair Semantics**



- We write  $M, s \models_F f$  to indicate that the state formula f is true in state s of the fair Kripke structure M.
- $M, \pi \models_F g$  indicates that the path formula g is true along the path  $\pi$  in M.
- Only the following semantic rules are different from the original ones:
  - \*  $M, s \models_F p \iff$  there exists a fair path starting from s and  $p \in L(s)$ .
  - \*  $M, s \models_F \mathbf{E}(g_1) \iff$  there exists a fair path  $\pi$  starting from s s.t.  $M, \pi \models_F g_1$ .
  - \*  $M, s \models_F \mathbf{A}(g_1) \iff$  for every fair path  $\pi$  starting from s,  $M, \pi \models_F g_1$ .

### **CTL Model Checking**



- Let M = (S, R, L) be a Kripke structure.
- We want to determine which states in S satisfy the CTL formula f.
- The algorithm will operate by labelling each state s with the set label(s) of sub-formulae of f which are true in s.
  - # Initially, label(s) is just L(s).
  - $\bullet$  During the *i*-th stage, sub-formulae with i-1 nested CTL operators are processed.
  - When a sub-formula is processed, it is added to the labelling of each state in which it is true.
  - Once the algorithm terminates, we will have that  $M, s \models f \text{ iff } f \in \text{label}(s)$ .

### **Handling CTL Operators**



- There are ten basic CTL temporal operators: AX and EX, AF and EF, AG and EG, AU and EU, and AR and ER.
- All these operators can be expressed in terms of EX, EU, and EG:
  - $\bullet$  **AX** $f = \neg$ **EX** $(\neg f)$
  - $\bullet$  **EF** $f = \mathbf{E}[true \ \mathbf{U} \ f]$

  - % AG $f = \neg EF(\neg f)$

# CTL Model Checking: AP, ¬, ∨, EX



So, for CTL model checking, it suffices to handle the following six cases: atomic proposition,  $\neg$ ,  $\lor$ , **EX**, **EU** and **EG**.

- Atomic propositions are handled at the beginning of the algorithm (by the initial setting label(s) = L(s)).
- ightharpoonup For eg f , we label those states that are not labelled by f .
- For  $f_1 \vee f_2$ , we label any state that is labelled either by  $f_1$  or by  $f_2$ .
- For EX f, we label every state that has some successor labelled by f.

# CTL Model Checking: EU



- To handle formulae of the form  $\mathbf{E}[f_1\mathbf{U}f_2]$ , we follow these steps:

  - \* Work backward using the converse of the transition relation R and find all states that can be reached by a path in which each state is labelled with  $f_1$ .
  - $\stackrel{\clubsuit}{=}$  Label all such states by  $\mathbf{E}[f_1\mathbf{U}f_2]$ .
- $\bigcirc$  This requires time O(|S| + |R|).





```
procedure CheckEU(f_1, f_2)
    T := \{s \mid f_2 \in label(s)\};
    for all s \in T do label(s) := label(s) \cup \{\mathbf{E}[f_1 \ \mathbf{U} \ f_2]\};
    while T \neq \emptyset do
        choose s \in T:
        T := T \setminus \{s\};
        for all t s.t. R(t,s) do
             if \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \notin label(t) and f_1 \in label(t) then
                 label(t) := label(t) \cup \{\mathbf{E}[f_1 \ \mathbf{U} \ f_2]\};
                 T := T \cup \{t\};
             end if:
        end for all:
    end while:
end procedure;
```

# CTL Model Checking: EG



To handle formulae of the form **EG** *f*, we need the following lemma:

Let M' = (S', R', L'), where  $S' = \{s \in S \mid M, s \models f\}$ .  $M, s \models \mathbf{EG}f$  iff the following two conditions hold:

- 1.  $s \in S'$ .
- 2. There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component (SCC) C of the graph (S', R').
- Note: an SCC is nontrivial if either it contains at least two nodes or it contains only one node with a self loop.

# CTL Model Checking: EG (cont.)



- $\bigcirc$  With the lemma, we can handle **EG** f by the following steps:
  - 1. Construct the restricted Kripke structure M'.
  - 2. Partition the (S', R') into SCCs. (Complexity: O(|S'| + |R'|)).
  - 3. Find those states that belong to nontrivial components.
  - 4. Work backward using the converse of R' and find all of those states that can be reached by a path in which each state is labelled with f. (Complexity: O(|S| + |R|))

# CTL Model Checking: EG (cont.)



```
procedure CheckEG(f)
   S' := \{s \mid f \in label(s)\};
   SCC := \{C \mid C \text{ is a nontrivial SCC of S'}\};
    T := \bigcup_{C \in SCC} \{ s \mid s \in C \};
   for all s \in T do label(s) := label(s) \cup \{ \mathbf{EG}f \};
   while T \neq \emptyset do
       choose s \in T:
        T := T \setminus \{s\};
       for all t s.t. t \in S' and R(t, s) do
           if EGf \notin label(t) and f \in label(t) then
               label(t) := label(t) \cup \{ \mathbf{EG}f \};
                T := T \cup \{t\};
           end if:
       end for all;
    end while; end procedure;
```

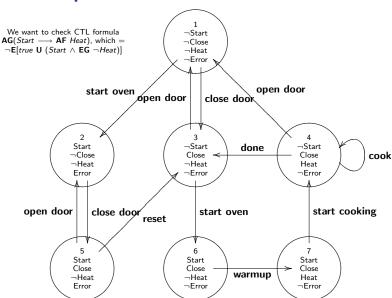
# CTL Model Checking (cont.)



- We successively apply the state-labelling algorithm to the sub-formulae of f, starting with the shortest, most deeply nested, and work outward to include the whole formula.
- By proceeding in this manner, we guarantee that whenever we process a sub-formula of f all its sub-formulae have already been processed.
- There are at most |f| sub-formulae, and each formula takes at most O(|S| + |R|) time.
- The complexity of this algorithm is  $O((|f| \cdot (|S| + |R|))$ .

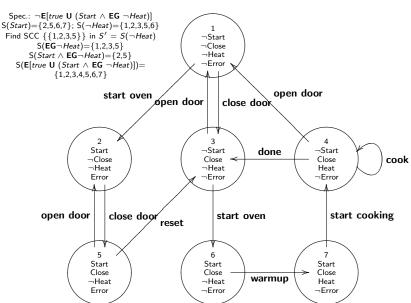
### An Example





# An Example (cont.)





#### **Fairness Constraints**



- Let M = (S, R, L, F) be a fair Kripke structure.
- Let  $F = \{P_1, \dots, P_k\}.$
- We say that a SCC C is *fair* w.r.t F iff for each  $P_i \in F$ , there is a state  $t_i \in (C \cap P_i)$ .
- To handle formulae of the form **EG** f in a fair kripke structure, we need the following lemma:

Let M' = (S', R', L', F'), where  $S' = \{s \in S \mid M, s \models_F f\}$ .  $M, s \models_F EGf$  iff the following two conditions holds:

- 1.  $s \in S'$ .
- 2. There exists a path in S' that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').

#### **Fairness Constraints**



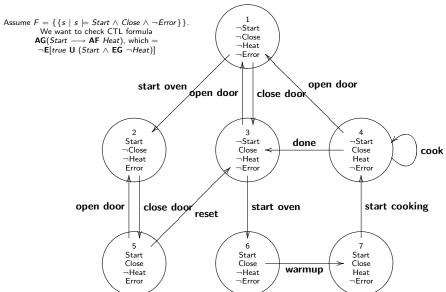
- We can create a *CheckFairEG* algorithm which is very similar to the *CheckEG* algorithm based on this lemma.
- The complexity of *CheckFairEG* is  $O((|S| + |R|) \cdot |F|)$ , since we have to check which SCC is fair.
- To check other CTL formulae, we introduce another proposition fair and stipulate that

$$M, s \models fair \text{ iff } M, s \models_F \textbf{EG} \text{ true.}$$

- $\bigcirc$   $M, s \models_F \mathsf{EX} f$ , we check  $M, s \models \mathsf{EX} (f \land fair)$ .
- Overall complexity:  $O(|f| \cdot (|S| + |R|) \cdot |F|)$ .

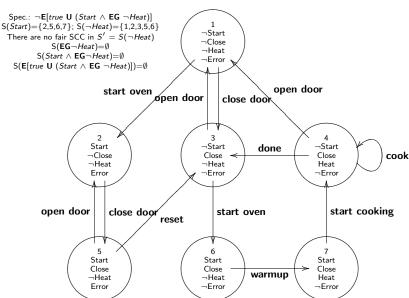
### **An Example**





# An Example (cont.)





# The LTL Model Checking Problem



- Let M = (S, R, L) be a Kripke structure with  $s \in S$ .
- lacktriangle Let  $oldsymbol{A}$  g be an LTL formula (so, g is a restricted path formula).
- ightharpoonup We want to check if  $M,s \models \mathbf{A} \ g$  .
- $M, s \models \mathbf{A} \ g \ \text{iff} \ M, s \models \neg \mathbf{E} \ \neg g.$
- Therefore, it suffices to be able to check  $M, s \models \mathbf{E} f$ , where f is a restricted path formula.

# Complexity of LTL Model Checking



- The problem is PSPACE-complete.
- We can more easily show this problem to be NP-hard by a reduction from the Hamiltonian path problem.
- Consider a directed graph G = (V, A) where  $V = \{v_1, v_2, \dots, v_n\}$ .
- igoplus Determining whether G has a directed Hamiltonian path is reducible to the problem of determining whether  $M, s \models f$ , where
  - M is a finite Kripke structure (constructed from G),
  - 🌞 s is a state in M, and
  - $ilde{*}$  f is the formula (using atomic propositions  $p_1,\ldots,p_n$ ):

$$\textbf{E}[\textbf{F}p_1 \wedge \ldots \wedge \textbf{F}p_n \wedge \textbf{G}(p_1 \rightarrow \textbf{X}\textbf{G}\neg p_1) \wedge \ldots \wedge \textbf{G}(p_n \rightarrow \textbf{X}\textbf{G}\neg p_n)].$$



# Complexity of LTL Model Checking (cont.)



- The Kripke structure M = (U, B, L) is obtained from G = (V, A) as follows:
  - $U = V \cup \{u_1, u_2\} \text{ where } u_1, u_2 \notin V.$
  - $B = A \cup \{(u_1, v_i) \mid v_i \in V\} \cup \{(v_i, u_2) \mid v_i \in V\} \cup \{(u_2, u_2)\}.$
  - L is an assignment of propositions to states s.t.:
    - $\wp_i$  is true in  $v_i$  for  $1 \le i \le n$ ,
    - $m{\omega}$   $p_i$  is false in  $v_j$  for  $1 \leq i, j \leq n$ ,  $i \neq j$ , and
    - $oldsymbol{\omega}$   $p_i$  is false in  $u_1, u_2$  for  $1 \leq i \leq n$ .
- $\bigcirc$  Let s be  $u_1$ .
- $\emptyset$   $M, u_1 \models f$  iff there is a directed infinite path in M starting at  $u_1$  that goes through every  $v_i \in V$  exactly once and ends in the self loop at  $u_2$ .

## LTL Model Checking



Here we introduce an algorithm by Lichtenstein and Pnueli.

- The algorithm is exponential in the length of the formula, but linear in the size of the state graph.
- 😚 It involves an implicit tableau construction.
- A tableau is a graph derived from the formula from which a model for the formula can be extracted iff the formula is satisfiable.
- To check whether M satisfies f, the algorithm composes the tableau and the Kripke structure and determines whether there exists a computation of the structure that is a path in the tableau.

#### **Closure**



- 🚱 Like before, we need only deal with 🗙 and 🛡.
- The closure CL(f) of f contains formulae whose truth values can influence the truth value of f.
- It is the smallest set containing f and satisfying:
  - $\stackrel{\text{\tiny{$\emptyset$}}}{=} \neg f_1 \in CL(f) \text{ iff } f_1 \in CL(f),$

  - $\red$  if  $\mathbf{X}$   $f_1 \in \mathit{CL}(f)$ , then  $f_1 \in \mathit{CL}(f)$ ,
  - $\red$  if  $\neg \mathbf{X}$   $f_1 \in \mathit{CL}(f)$ , then  $\mathbf{X} \neg f_1 \in \mathit{CL}(f)$ ,
  - $ilde{*}$  if  $f_1 \ f U \ f_2 \in \mathit{CL}(f)$ , then  $f_1, f_2, f X[f_1 \ f U \ f_2] \in \mathit{CL}(f)$ .

#### **Atom**



- An atom is a pair  $A = (s_A, K_A)$  with  $s_A \in S$  and  $K_A \subseteq CL(f) \cup AP$  s.t.:
  - $ilde{*}$  for each proposition  $p \in AP$ ,  $p \in K_A$  iff  $p \in L(s_A)$ ,
  - $ilde{*}$  for every  $f_1 \in \mathit{CL}(f)$ ,  $f_1 \in \mathit{K}_A$  iff  $\neg f_1 \notin \mathit{K}_A$ ,
  - $ilde{*}$  for every  $f_1 \lor f_2 \in \mathit{CL}(f)$ ,  $f_1 \lor f_2 \in \mathit{K}_A$  iff  $f_1 \in \mathit{K}_A$  or  $f_2 \in \mathit{K}_A$ ,
  - $ilde{*}$  for every  $eg \mathsf{X} \ f_1 \in \mathit{CL}(f)$ ,  $eg \mathsf{X} \ f_1 \in \mathit{K}_{\mathcal{A}} \ \mathrm{iff} \ \mathsf{X} 
    eg \mathit{f}_1 \in \mathit{K}_{\mathcal{A}}$ ,
- Intuitively, an atom  $(s_A, K_A)$  is defined so that  $K_A$  is a maximal consistent set of formulae that are also consistent with the labelling of  $s_A$ .

## Behavior Graph and Self-Fulfilling SCC



- A graph *G* is constructed with the set of atoms as the set of vertices.
- - $(s_A, s_B) \in R$  and
  - $ilde{*}$  for every formula  $\mathsf{X}\mathit{f}_1 \in \mathit{CL}(\mathit{f})$ ,  $\mathsf{X}\mathit{f}_1 \in \mathit{K}_{\mathcal{A}}$  iff  $\mathit{f}_1 \in \mathit{K}_{\mathcal{B}}$ .
- A nontrivial SCC C of the graph G is said to be self-fulfilling iff for every atom A in C and for every f₁ U f₂ ∈ KA there exists an atom B in C s.t. f₂ ∈ KB.
- **Quantize** Lemma:  $M, s \models \mathbf{E}f \Leftrightarrow \text{there exists an atom } (s, K) \text{ in } G \text{ s.t.}$   $f \in K$  and there is a path in G from (s, K) to a self-fulfilling SCC.

#### Sketch of the Correctness Proof



- A path  $\rho$  in G (generated from M and f) is an *eventuality* sequence if  $f_1 \cup f_2 \in K_A$  for some atom A on  $\rho$ , then there exists an atom B, reachable from A along  $\pi$ , such that  $f_2 \in K_B$ .
- - \* ( $\Leftarrow$ ) If  $\pi = s_0(=s), s_1, s_2, \cdots$  corresponds to an eventuality sequence  $(s, K) = (s_0, K_0), (s_1, K_1), \cdots$ , then for every  $g \in CL(f)$  and every  $i \geq 0$ ,  $\pi^i \models g$  iff  $g \in K_i$ .
  - $(\Rightarrow)$  For a path  $\pi = s_0(=s), s_1, s_2, \cdots$  such that  $M, \pi \models f$ , define  $K_i = \{g \mid g \in CL(f) \text{ and } \pi^i \models g\}$ , then  $(s_0, K_0), (s_1, K_1), \cdots$  is an eventuality sequence.
- ♦ Claim: there exists an eventuality sequence starting from (s, K)
   ⇒ there is a path in G from (s, K) to a self-fulfilling SCC.

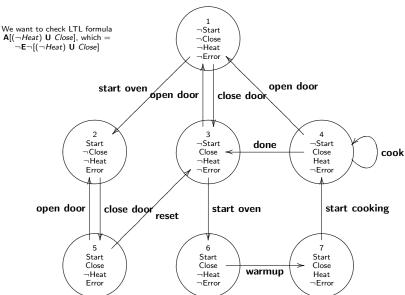
### The LTL Model Checking Algorithm



- Solution Given a Kripke structure M = (S, R, L), we want to check if  $M, s \models \mathbf{E}f$ , where f is a restricted path formula.
  - $\stackrel{*}{\circ}$  Construct the behavior graph G = (V, E).
  - **※** Find initial atom set  $A = \{(s, K) \mid (s, K) \in V \land f \in K\}$ .
  - Consider nontrivial self-fulfilling SCCs, traverse backward using the converse of E and mark all reachable states.
  - $\red$  If any state in A is marked,  $M, s \models \mathbf{E}f$  is true.
- **⊙** Time complexity:  $O((|S| + |R|) \cdot 2^{O(|f|)})$ .
- For a fair Kripke structure M' = (S', R', L', F'), we should check if there exists any self-fulfilling and fair SCC.

#### **An Example**





# An Example (cont.)



- Let f denote ( $\neg Heat$ ) **U** Close.
- $\bigcirc$   $CL(\neg f) = {\neg f, f, Xf, \neg Xf, X\neg f, Heat, \neg Heat, Close, \neg Close}.$
- ¬Close and ¬Heat in states 1 and 2, so the possible "K" includes
  {¬Close, ¬Heat, f, Xf}, {¬Close, ¬Heat, ¬f, X¬f, ¬Xf}.
- Close and  $\neg$ Heat in states 3, 5 and 6, so the possible "K" includes  $\{Close, \neg Heat, f, Xf\}, \{Close, \neg Heat, f, X\neg f, \neg Xf\}.$
- Close and Heat in states 4 and 7, so the possible "K" includes  $\{Close, Heat, f, Xf\}, \{Close, Heat, f, X\neg f, \neg Xf\}.$

We can construct atoms using the states and the corresponding "K" and then build a graph based on those atoms.

### Overview of CTL\* Model Checking



- We will study an algorithm developed by Clarke, Emerson, and Sistla.
- The basic idea is to integrate the state labeling technique from CTL model checking into LTL model checking.
- The algorithm for LTL handles formula of the form Ef where f is a restricted path formula.
- The algorithm can be extended to handle formulae in which f contains arbitrary state sub-formulae.

### **Handling CTL\* Operators**



Again, the operators  $\neg$ ,  $\lor$ ,  $\mathbf{X}$ ,  $\mathbf{U}$ , and  $\mathbf{E}$  are sufficient to express any other CTL\* formula.

- $f \wedge g \equiv \neg(\neg f \vee \neg g)$
- $\bigcirc$  **F**  $f \equiv true$ **U**<math>f
- $\bigcirc$  G  $f \equiv \neg F \neg f$
- $f \mathbf{R} g \equiv \neg(\neg f \mathbf{U} \neg g)$
- $\bigcirc$  A  $f \equiv \neg E \neg f$

# One Stage in CTL\* Model Checking



- igcup Let  $\mathbf{E} f'$  be an "inner most" formula with  $\mathbf{E}$ .
- Assuming that the state sub-formulae of f' have already been processed and that state labels have been updated accordingly, proceed as follows:
  - " If  $\mathbf{E}f'$  is in CTL, then apply the CTL algorithm.
  - $\bullet$  Otherwise, f' is a LTL path formula, then apply the LTL model checking algorithm.
  - In both cases, the formula is added to the labels of all states that satisfy it.
- If  $\mathbf{E}f'$  is a sub-formula of a more complex CTL\* formula, then the procedure is repeated with  $\mathbf{E}f'$  replaced by a fresh AP.
- Note: each state sub-formula will be replaced by a fresh AP in both the labeling of the model and the formula.

#### Levels of State Sub-formulae



- The state sub-formulae of level *i* are defined inductively as follows:
  - Level 0 contains all atomic propositions.
  - **...** Level i+1 contains all state sub-formulae g s.t. all state sub-formulae of g are of level i or less and g is not contained in any lower level.
- Let g be a CTL\* formula, then a sub-formula  $\mathbf{E}$   $h_1$  of g is maximal iff  $\mathbf{E}$   $h_1$  is not a strict sub-formula of any strict sub-formula  $\mathbf{E}$  h of g.

### State Sub-formulae (Examples)



- Consider the formula
  - $\neg \mathsf{EF}(\neg \mathit{Close} \land \mathit{Start} \land \mathsf{E}(\mathsf{F}\mathit{Heat} \land \mathsf{G}\mathit{Error})).$
- 😚 The levels of the state sub-formulae are:
  - 🌞 Level 0: *Close, Start, Heat,* and *Error*
  - $ilde{*}$  Level 1:  $\mathbf{E}(\mathsf{F} \textit{Heat} \wedge \mathsf{G} \textit{Error})$  and  $\neg \textit{Close}$
  - Level 2: ¬Close ∧ Start
  - ♦ Level 3: ¬Close  $\land$  Start  $\land$  E(FHeat  $\land$  GError)
  - $\red$  Level 4: **EF**( $\neg$ *Close*  $\land$  *Start*  $\land$  **E**(**F***Heat*  $\land$  **G***Error*))
  - $\clubsuit$  Level 5:  $\neg \mathbf{EF}(\neg Close \land Start \land \mathbf{E}(\mathbf{F}Heat \land \mathbf{G}Error))$
- Note: this is slightly different from [Clarke et al.].

## CTL\* Model Checking



- Let M = (S, R, L) be a Kripke structure, f a CTL\* formula, and g a state sub-formula of f of level i.
- The states of *M* have already been labelled correctly with all state sub-formulae of level smaller than *i*.
- In stage i, each such g is added to the labels of all states that make it true.
- $\odot$  For g a CTL\* state formula, we proceed as follows:
  - # If  $g \in AP$ , then g is in label(s) iff it is in L(s).
  - # If  $g = \neg g_1$ , then g is in label(s) iff  $g_1$  is not in label(s).
  - \* If  $g = g_1 \vee g_2$ , then g is added to label(s) iff either  $g_1$  or  $g_2$  are in label(s). (To reduce the number of levels, do analogously for  $g_1 \wedge g_2$ .)
  - $\red$  If  $g = \mathbf{E} \ g_1$  call the *CheckE*(g) procedure.

# CheckE(g) **Procedure**



```
procedure CheckE(g)
   if g is a CTL formula then
       apply CTL model checking for g;
       return; // next formula or next stage
   end if:
   g' := g[a_1/\mathbf{E}h_1, \dots, a_k/\mathbf{E}h_k]; //\mathbf{E}h_i's are maximal sub-formulae
   for all s \in S
       for i = 1, \ldots, k do
          if Eh_i \in label(s) then label(s) := label(s) \cup \{a_i\};
   end for all:
   apply LTL model checking for g';
   for all s \in S do
       if g' \in label(s) then label(s) := label(s) \cup \{g\};
   end for all:
end procedure;
```

# Complexity of the Algorithm for CTL\*



- The complexity depends on the complexity of the algorithm for CTL and that for LTL.
- So, if the previous algorithms are used, the complexity is  $O((|S| + |R|) \cdot 2^{O(|f|)})$ .
- In real implementation, state sub-formulae need not be replaced by, but just need to be treated as, atomic propositions.