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Introduction: The Need to Abstract

Abstraction is probably the most important technique for
alleviating the state-explosion problem.

Traditionally, finite-state verification (in particular, model
checking) methods are geared towards control-oriented systems.

When nontrivial data manipulations are involved, the complexity
of verification is often very high.

Fortunately, many verification tasks do not require complete
information about the system (e.g., one may concern only about
whether the value of a variable is odd or even).

The main idea is to map the set of actual data values to a small
set of abstract values.

An abstract version of the actual system thus obtained is smaller
and easier to verify.
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Bisimulation Equivalence

Let M = 〈AP , S , S0,R , L〉 and M ′ = 〈AP , S ′, S ′0,R
′, L′〉 be two

Kripke structures with the same set AP of atomic propositions.

A relation B ⊆ S × S ′ is a bisimulation relation between M and
M ′ iff, for all s and s ′, B(s, s ′) implies the following:

L(s) = L′(s ′).
For every state s1 satisfying R(s, s1), there is s ′1 such that
R ′(s ′, s ′1) and B(s1, s

′
1).

For every state s ′1 satisfying R ′(s ′, s ′1), there is s1 such that
R(s, s1) and B(s1, s

′
1).

Two structures M and M ′ are bisimulation equivalent, denoted
M ≡ M ′, if there exists a bisimulation relation B between M
and M ′ such that:

for every s0 ∈ S0 there is an s ′0 ∈ S ′0 such that B(s0, s
′
0), and

for every s ′0 ∈ S ′0 there is an s0 ∈ S0 such that B(s0, s
′
0).
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Bisimulation Equivalence (cont.)

Unwinding preserves bisimulation.

a b

b

a a

b
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Bisimulation Equivalence (cont.)

Duplication preserves bisimulation.

a

b b

c c d

a

b b

c d d

Two states related by a bisimulation relation is said to be
bisimular.
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Bisimulation Equivalence (cont.)

These two structures are not bisimulation equivalent:

a

b b

c d

a

b

c d
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Relating CTL* and Bisimulation

Theorem

If M ≡ M ′ then, for every CTL* formula f , M � f ⇔ M ′ � f .

This can be proven with the following two lemmas.

We say that two paths π = s0s1 . . . in M and π′ = s ′0s ′1 . . . in M ′

correspond iff, for every i ≥ 0, B(si , s
′
i ).

Lemma

Let s and s ′ be two states such that B(s, s ′). Then for every path
starting from s there is a corresponding path starting from s ′ and vice
versa.
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Relating CTL* and Bisimulation (cont.)

Lemma

Let f be either a state or a path formula. Assume that s and s ′ are
bisimilar states and that π and π′ are corresponding paths. Then,

if f is a state formula, then s � f ⇔ s ′ � f , and

if f is a path formula, then π � f ⇔ π′ � f .

Base: f = p ∈ AP . Since B(s, s ′), L(s) = L′(s ′). Thus,
s � p ⇔ s ′ � p.

Induction (partial): f = Ef1, a state formula.

If s � Ef1 then there is a path π from s s.t. π � f1.
From the previous lemma, there is a corresponding path π′

starting from s ′.
From the induction hypothesis, π � f1 ⇔ π′ � f1.
Therefore, s ′ � Ef1.

Yih-Kuen Tsay (IM.NTU) Equivalence, Simulation, and Abstraction Automatic Verification 2012 9 / 34



Simulation Relation (Preorder)

Let M = 〈AP , S , S0,R , L〉 and M ′ = 〈AP ′, S ′, S ′0,R
′, L′〉 be two

structures with AP ⊇ AP ′.

A relation H ⊆ S × S ′ is a simulation relation between M and
M ′ iff, for all s and s ′, if H(s, s ′) then the following conditions
hold:

L(s) ∩ AP ′ = L′(s ′).
For every state s1 satisfying R(s, s1) there is s ′1 such that
R ′(s ′, s ′1) and H(s1, s

′
1).

We say that M ′ simulates M or M is simulated by M ′, denoted
M � M ′, if there exists a simulation relation H such that for
every s0 ∈ S there is an s ′0 ∈ S ′0 for which H(s0, s

′
0) holds.

The simulation relation can be shown to be a preorder (i.e.,
reflexive and transitive).
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Relating ACTL* and Simulation

Theorem

Suppose M � M ′. Then for every ACTL* formula f (with atomic
propositions in AP ′), M ′ � f ⇒ M � f .

Formulae in ACTL* describe properties that are quantified over
all possible behaviors of a structure.

Because every behavior of M is a behavior of M ′, every formula
of ACTL* that is true in M ′ must also be true in M .

The theorem does not hold for CTL* formulae.

In the example on the next slide, M ′ simulates M ; however,
AG(b → EX d) is true in M ′ but false in M .
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Compare Bisimulation and Simulation

Consider these two structures:
M M ′

a

b b

c d c

1 2
a

b b

c d d

3 4

M and M ′ are not bisimulation equivalent, but each simulates
the other.

AG(b → EX d) is true in M ′, but false in M .
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Cone of Influence Reduction

The cone of influence reduction attempts to decrease the size of
a state transition graph by focusing on the variables of the
system that are referred to in the desired property specification.

The reduction is obtained by eliminating variables that do not
influence the variables in the specification.

In this way, the checked properties are preserved, but the size of
the model that needs to be verified is smaller.
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Cone of Influence Reduction (cont.)

Let V = {v1, . . . , vn} be the set of Boolean variables of a given
structure M = (S ,R , S0, L).

The transition relation R is specified by
∧n

i=1[v ′i = fi(V )].

Suppose we are given a set of variables V ′ ⊆ V that are of
interest w.r.t. the property specification.

The cone of influence C of V ′ is the minimal set of variables
such that

V ′ ⊆ C
if for some vl ∈ C its fl depends on vj , then vj ∈ C .

We construct a new (reduced) structure by removing all the
clauses in R whose left hand side variables do not appear in C
and using C to construct states.
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An Example

Let V = {v0, v1, v2} and M = (S ,R , S0, L) a structure over V ,
where R = (v ′0 = ¬v0) ∧ (v ′1 = v0 ⊕ v1) ∧ (v ′2 = v1 ⊕ v2).

If V ′ = {v0} then C = {v0}, since f0 = ¬v0 does not depend on
any variable other than v0.
If V ′ = {v1} then C = {v0, v1}, since f1 = v0 ⊕ v1 depends on
both variables.
If V ′ = {v2} then C = {v0, v1, v2}, since f2 = v1 ⊕ v2 depends
on v1, v2 and f1 = v0 ⊕ v1 depends on v0, v1 (because v1 is in
C ).
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The Reduced Model

Let V = {v1, . . . , vn}.
M = (S ,R , S0, L) is a structure over V :

S = {0, 1}n is the set of all valuations of V .
R =

∧n
i=1[v ′i = fi (V )].

L(s) = {vi | s(vi ) = 1 for 1 ≤ i ≤ n}.
S0 ⊆ S .

The reduced model M̂ = (Ŝ , R̂ , Ŝ0, L̂) w.r.t. C = {v1, . . . , vk}
for some k ≤ n:

Ŝ = {0, 1}k is the set of all valuations of C .
R̂ =

∧k
i=1[v ′i = fi (V )].

L̂(ŝ) = {vi | ŝ(vi ) = 1 for 1 ≤ i ≤ k}.
Ŝ0 = {(d̂1, . . . , d̂k) | there is a state (d1, . . . , dn) ∈ S0 s.t.

d̂1 = d1 ∧ · · · ∧ d̂k = dk}.
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Bisimulation Equivalence between Models

Let B ⊆ S × Ŝ be the relation defined as follows:
((d1, . . . , dn), (d̂1, . . . , d̂k)) ∈ B ⇔ di = d̂i for all 1 ≤ i ≤ k .

We show that B is a bisimulation relation between M and M̂
(M ≡ M̂).

For every s0 ∈ S there is a corresponding ŝ0 ∈ Ŝ and vice versa.
Let s = (d1, . . . , dn) and ŝ = (d̂1, . . . , d̂k) s.t. (s, ŝ) ∈ B.
L(s) ∩ C = L̂(ŝ).
If s → t is a transition in M, then there is a transition ŝ → t̂ in
M̂ s.t. (t, t̂) ∈ B.
If ŝ → t̂ is a transition in M̂, then there is a transition s → t in
M s.t. (t, t̂) ∈ B.
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Bisimulation Equiv. between Models (cont.)

Let s → t be a transition in M .

There is a transition ŝ → t̂ in M̂ s.t. (t, t̂) ∈ B .

1. For 1 ≤ i ≤ n, v ′i = fi (V ). (Transition relation)
2. For 1 ≤ i ≤ k, vi depends only on variables in C , hence

v ′i = fi (C ). (Definition of C )

3. (s, ŝ) ∈ B implies
∧k

i=1(di = d̂i ). (Bisimilar states)
4. Let t = (e1, . . . , ek). For every 1 ≤ i ≤ k,

ei = fi (d1, . . . , dk) = fi (d̂1, . . . , d̂k). (From 2,3)
5. If we choose t̂ = (e1, . . . , ek), then ŝ → t̂ and (t, t̂) ∈ B as

required.

Theorem

Let f be a CTL* formula with atomic propositions in C . Then
M � f ⇔ M̂ � f .
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Data Abstraction

Data abstraction involves finding a mapping between the actual
data values in the system and a small set of abstract data values.

By extending this mapping to states and transitions, it is
possible to obtain an abstract system that simulates the original
system and is usually much smaller.

Example: Assume we are interested in expressing a property
involving the sign of x . We create a domain Ax of abstract
values for x , with {a0, a+, a−}, and define a mapping hx from Dx

to Ax as follows:

hx(d) =


a0 if d = 0
a+ if d > 0
a− if d < 0
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Data Abstraction (cont.)

The abstract value of x can be expressed by three APs:
“x̂ = a0”, “x̂ = a+”, and “x̂ = a−”.

All states labelled with “x̂ = a+” will be collapsed into one
state; that is, all states where x > 0 are merged into one.

If there is a transition between, e.g., states corresponding to
x = 0 and x = 5, there must be a transition between states
labelled x̂ = a0 and x̂ = a+.
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The Reduced Model by Abstraction

Let h be a mapping form D to an abstract domain A.

The mapping determines a set of abstract atomic propositions
AP .

We now obtain a new structure M = (S ,R , S0, L) that is
identical to the original one expect that L labels each state with
a subset of AP .

The structure M can be collapsed into a reduced structure Mr

over AP defined as follows:

Sr = {L(s) | s ∈ S}.
Rr (sr , tr ) iff there exist s and t s.t. sr = L(s), tr = L(t), and
R(s, t).
sr ∈ S r

0 iff there exists an s s.t. sr = L(s) and s ∈ S0.
Lr (sr ) = sr (each sr is a set of atomic propositions).
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The Reduced Model by Abstraction (cont.)

Mr simulates the structure M .

Every path that can be generated by M can also be generated
by Mr .

Whatever ACTL* properties we can prove about Mr will be also
hold in M .

Note that using this technique it is only possible to determine
whether formulae over AP are true in M .
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The Reduced Model by Abstraction (cont.)

green

red yellow

h(red) = stop; h(yellow) = stop; h(green) = go.

go

stop stop

go

stop
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Approximation

The construction of Mr , as described, requires the construction
of M .

When M is too large, we use an implicit representation in terms
of S0 and R.

In many cases, Mr may still be too large to construct exactly.

To further reduce the state space, an approximation Ma that
simulates Mr is constructed.

The goal here is to have Ma sufficiently close to Mr so that it is
still possible to verify interesting properties.
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The Model in FOL

We use the first order formulae S0 and R to define the Kripke
structure M = (S ,R , S0, L) with state set S = D × · · · × D.

S0 is the set of valuations satisfying S0.

Similarly, R is derived from R.

L is defined over abstract atomic propositions, e.g.,
{“x̂1 = a1”, “x̂2 = a2”, . . . , “x̂n = an”}.
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The Reduced Model in FOL

To produce Mr over the abstract state set A× · · · × A, we
construct formulae over x̂1, . . . , x̂n and x̂1

′, . . . , x̂n
′ that will

represent the initial states and transition relation of Mr .

Ŝ0 = ∃x1 · · · ∃xn(h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n ∧ S0(x1, . . . , xn)).

R̂ = ∃x1 · · · ∃xn∃x ′1 · · · ∃x ′n(h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n∧
h(x ′1) = x̂1

′ ∧ · · · ∧ h(x ′n) = x̂n
′ ∧R(x1, . . . , xn, x

′
1, . . . , x

′
n)).

For conciseness, this existential abstraction operation is denoted
by [·].
If φ depends on the free variables x1, . . . , xm, then define
[φ](x̂1, . . . , x̂m) =
∃x1 · · · ∃xm(h(x1) = x̂1 ∧ · · · ∧ h(xm) = x̂m ∧ φ(x1, . . . , xm))

So, Ŝ0 = [S0] and R̂ = [R].

Yih-Kuen Tsay (IM.NTU) Equivalence, Simulation, and Abstraction Automatic Verification 2012 26 / 34



Computing Approximation

Ideally, we would like to extract S r
0 and Rr from [S0] and [R].

However, this is often computationally expensive.

To circumvent this difficulty, we define a transformation A on
formula φ.

The idea is to simplify the formulae to which [·] is applied
(“pushing the abstractions inward”).

This will make it easier to extract the Kripke structure from the
formulae.
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Computing Approximation (cont.)

Assume φ is given in the negation normal form.

The approximation A(φ) of [φ] is computed as follows.

A(P(x1, . . . , xm)) = [P](x̂1, . . . , x̂m) if P is a primitive relation.
Similarly, A(¬P(x1, . . . , xm)) = [¬P](x̂1, . . . , x̂m).
A(φ1 ∧ φ2) = A(φ1) ∧ A(φ2).
A(φ1 ∨ φ2) = A(φ1) ∨ A(φ2).
A(∃xφ) = ∃x̂A(φ).
A(∀xφ) = ∀x̂A(φ).
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Computing Approximation (cont.)

The approximation Kripke structure Ma = (Sa, s
a
0 ,Ra, La) can be

derived from A(S0) and A(R).

Let sa = (a1, . . . , an) ∈ Sa. Then
La(sa) = {“x̂1 = a1”, “x̂2 = a2”, . . . , “x̂n = an”}.
Note that s = (d1, . . . , dn) ∈ S and sa will be labeled identically
if for all i , h(di) = ai .
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Computing Approximation (cont.)

The price for the approximation is that it may be necessary to
add extra initial states and transitions to the corresponding
structure.

This is because [φ] implies A(φ), but the converse may not be
true.

In particular, [S0]→ A(S0) and [R]→ A(R).

Theorem

[φ] implies A(φ).
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Computing Approximation (cont.)

The proof is by induction on the structure of φ.

We show the case φ(x1, . . . , xm) = ∀xφ1 only.

[∀xφ1]
= ∃x1 · · · ∃xm(

∧
h(xi) = x̂i ∧ ∀xφ1(x , x1, . . . , xm))

= ∃x1 · · · ∃xm∀x(
∧

h(xi) = x̂i ∧ φ1(x , x1, . . . , xm))
→ ∀x∃x1 · · · ∃xm(

∧
h(xi) = x̂i ∧ φ1(x , x1, . . . , xm))

→ ∀x̂∃x [∃x1 · · · ∃xm(h(x) = x̂ ∧
∧

h(xi) = x̂i ∧ φ1(x , x1, . . . , xm))
= ∀x̂ [φ1]
→ ∀x̂A(φ1)
= A(∀xφ1)
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Computing Approximation (cont.)

Theorem

M � Ma.

Proof.

1. Because the approximation Ma only adds extra initial states and
transitions to the reduced model Mr , all paths in the Mr are
reserved. So, Mr � Ma.

2. Since M � Mr and � is transitive, M � Ma.

Corollary

Every ACTL* formula that holds in Ma also holds in M.
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Exact Approximation

We consider some additional conditions that allow us to show
that M is bisimulation equivalent to Ma.

Each abstraction mapping hx for variable x induces an
equivalence relation ∼x :

Let d1 and d2 be in Dx .
d1 ∼x d2 iff hx(d1) = hx(d2).

The equivalence relation ∼xi
is a congruence with respect to a

primitive relation P iff

∀d1 · · · ∀dm∀e1 · · · ∀em

(
∧m

i=1 di ∼xi
ei → (P(d1, . . . , dm)⇔ P(e1, . . . , em)))
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Exact Approximation (cont.)

Theorem

If the ∼xi
are congruences with respect to the primitive relations and

φ is a formula defined over these relations, then [φ]⇔ A(φ), i.e.,
Ma ≡ Mr .

Theorem

If ∼xi
are congruences with respect to the primitive relations, then

M ≡ Ma.
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