Systems Modeling
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012

NTU

1/23

Introduction

First two steps in correctness verification:

1. Specify the desired properties
2. Construct a formal model (with the desired properties in mind)

w Capture the necessary properties and leave out the irrelevant
w Example: gates and boolean values vs. voltage levels
w Example: exchange of messages vs. contents of messages

Description of a formal model

Graphs (state-transition diagrams)
Logic formulae

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 2/23

Concurrent Reactive Systems

Interact frequently with the environment and may not terminate
Arise from digital circuits, communication protocols, etc.
Temporal (not just input-output) behaviors are most important
Modeling elements:

State: a snapshot of the system at a particular instance
Transition:

w how the system changes its state as a result of some action
w described by a pair of the state before and the state after the
action

Computation: an infinite sequence of states resulted from
transitions

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 3/23

Kripke Structures

Kripke structures are one of the most popular types of formal
models for concurrent systems.

Let AP be a set of atomic propositions (representing things you
want to observe).
A Kripke structure M over AP is a tuple (S, So, R, L):
S is a finite set of states,
So C S is the set of initial states,
R C S x S is a total transition relation, and
L : S — 24P is a function labeling each state with a subset of
propositions (which are true in that state).

A computation or path of M from a state s is an infinite
sequence of states 0 = sg, 51, S, - - - such that s € Sy and
(S,',S,'+1) € R, forall i > 0.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 4/23

First-Order Representations

First-order formulae serve as a unifying formalism for describing
concurrent systems.

Elements of first-order logic:

Logical connectives (A, V, =, —, etc.) and quantifiers (V and 3)
Predicate and function symbols (with predefined meanings)

Variables range over a finite domain D.

A valuation for a set V of variables is a map from the variables
in V' to the values in the domain D.

A state of a system is a valuation for the system variables.
A set of states can be described by a first-order formula.

The set of initial states of a system will typically be described by
So(V).

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 5/23

First-Order Representations (cont.)

To describe transitions by logic formulae, we create a second
copy of variables V.

Each variables v in V has a corresponding primed version v’ in
V/

The variables in V' are present state variables, while the variables
in V' are next state variables.

A valuation for V and V'’ can be seen as designating a pair of
states or a transition.

A set of transitions or transition relation R can then be
described by a first-order formula R(V, V').

Be careful about the issue of granularity.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 6 /23

From Formulae to Kripke Structures

Given Sp(V) and R(V, V') that represent a concurrent system,
a Kripke structure M = (S, Sy, R, L) may be derived:
S is the set of all valuations for V.
The set of initial states Sg is the set of all valuations for V
satisfying Sp.
R(s,s’) holds if R evaluates to true when each v € V is
assigned the value s(v) and each v/ € V/ is assigned the value
s'(v).
L is defined such that L(s) is the set of atomic propositions true
ins.
To make R total, for every state s that does not have a
successor, (s, s) is added into R.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 7/23

Varieties of Concurrent Systems

A concurrent system consists of a set of components that
execute together.

Modes of execution:

Asynchronous
Synchronous

Modes of communication:

Shared variables
Message-passing
Handshaking (or joint events)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 8/23

A Synchronous Modulo 8 Counter

L

v2

vl

vo

i

Source: redrawn from [Clarke et al. 1999, Fig 2.1]

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

Automatic Verification 2012

9/23

A Synchronous Modulo 8 Counter (cont.)

L v2=0

vl=1

r v0o=1

Yih-Kuen Tsay (IM.NTU)

Systems Modeling

0
v2 1
1
0 1
vl L4 \ 0
9
1
0 1 0
r v0
Automatic Verification 2012

10/ 23

First-Order Representations (Circuit)

Let V be {vo, vi, 2 }.
The transitions of the modulo 8 counter are
. Vé = "\
Y vi=vwon
S vi=(wAvi)dw
In terms of formulae, they are
. Ro(V, V/) 2 V6<:>—\Vo
* Rl(v, V/) é V{<:>Vo Dwv
. R2(V, V/) = V£<:>(V0 A Vl) D w

Conjoining the formulae, we obtain

R(V, V') £ Ro(V, V') ARy (V, V') ARV, V)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012

11/ 23

Programs

Concurrent programs are composed of sequential
programs/statements.

A sequential program consists of statements sequentially
composed with each other.

We assume that all statements of a program have a unique entry
point and a unique exit point (they are structured).

To obtain a first-order representation of a program, it is
convenient to /abel each statement of the program.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 12 /23

Labeling a Sequential Statement

Given a sequential statement P, the labeled statement P! is
defined as follows, assuming

If P is not composite, then pPL—=p.

If P= Pi; P>, then pL — P{-; /: PZL.

If P =if bthen Py else P, fi, then

PL —if b then : P1 else b : P2 fi.

If P = while b do P od, then P- = while b do /1 : P- od.

The above labeling procedure may be extended to treat other
statement types.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 13 /23

First-Order Representations (Sequential)

Consider a labeled program P, with the entry labeled m and exit
labeled m'.

Let V denote the set of program variables.

We postulate a special variable pc called the program counter
that ranges over the set of program labels plus the undefined
value 1 (bottom).

Let same(Y') abbreviate /\ (Y =y).

yYey
Given some condition pre(V) on the initial values, the set of
initial states is

So(V, pc) = pre(V) A pc = m.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 14 /23

First-Order Representations (cont.)

The transition relation C(/, P, /") for a statement P with entry / and
exit /' is defined recursively as follows:

Assignment:

C(l,v:=el) Spc=IApd =NV = e A same(V \ {v}).
Skip:

C(1, skip, I') & pc = I A pc’ = I' A same(V).

Sequential Composition:

C(l,Py; I": Py, 1) 2 C(l, Py, 1"y v C(I", Py, I").

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 15 / 23

First-Order Representations (cont.)

Conditional:
C(l,if bthen |, : P, else h, : P, fi, /") is the disjunction of the
following:
pc =1Apc =h AbAsame(V)
pc = 1A pc’ =h A—=bAsame(V)
C(h, Ps, 1"
C(h, Py, 1"
Wihile:
C(/,while bdo I, : P; od, ") is the disjunction of the following:
pc =1Apc =h AbAsame(V)
pc =1Apc =1 AN-bAsame(V)
C(h, P1,1)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 16 / 23

Concurrent Programs

Concurrent programs are composed of sequential processes
(programs/statements).

We consider only asynchronous concurrent programs, where
exactly one process can make a transition at any time.

A concurrent program P has the following form:
cobegin P || P, ||--- || P, coend

where P;'s are processes.

Let V be the set of all program variables and V; the set of
variables that can be changed by P;.

Let pc be the program counter of P and pc; that of P;; let PC
be the set of all program counters.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 17 / 23

Labeling Concurrent Programs

Given P = cobegin P, || P, ||--- || P, coend, then
P- = cobegin iy : PE I, || b= Psly |-+ || fy: P 1) coend.

Note that each process P; has a unique exit label /.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 18 / 23

First-Order Representations (Concurrent)

Assume the entry is labeled m and exit labeled n7'.

Given some condition pre(V) on the initial values, the set of
initial states is

So(V, PC) 2 pre(V) A pc = mA /\(pc,- =1)

i=1

where pc; = L indicates that P; is not active.
C(l,cobegin ly : Py] || h:Py 5 ||--- || I,: Py I, coend, /") is
the disjunction of the following:
pc=1Apc;=hA--Apc),= I, Npc’ = L (initialization)
pc=_LApa=KA---ANpcya=1IApc =1 N_i(pcl = 1)
(termination)
ViZ (C(l, Pi, 1) A same(V \ V;) A same(PC \ {pc;})
(interleaving)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 19 /23

Synchronization Statements

Assume the statement belongs to P;.
Wait (or await):
C(/, wait(b), I") is the disjunction of the following:
pci =1 A pc) =1 AN —=b A same(V))
pci =1 Apc; =1"AbAsame(V))
Lock (or test-and-set):
C(/,lock(v), I') is the disjunction of the following:
pci =1 A pcl=1Av=1Asame(V;)
pci=1Apcl=1"ANv=0AV =1Asame(V;\ {v})
Unlock:
C(/,unlock(v), /") 2 pe = INpc; = 1"Av = 0Asame(V;\{v}).

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 20 /23

A Mutual Exclusion Program

Pux = m : cobegin P, || P, coend m’

PO = Pl =

b : while true do : while true do
NG - wait T = 0; NG :wait T =1;
CRy: T :=1; CR,: T :=0;
od; od;

lo h

V=V=WV=A{T};, PC=/{pc,pcy, pc1}.
The pc of Pyx may take m, L, or m'.
The pcy of Po: L, Iy, NGy, CRy, or [.
The pg of Py: L, h, NG, CRy, or 1.

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012

21 /23

First-Order Representation of P x

Initial states So(V, PC): pc = mA pco = L Apca = L.
Transition relation R(V, PC, V', PC’) is the disjunction of
pc=mApcy=1IloApci=hApcd =1
pco =I5 Apca =1 Apc =m Apch=_LApc =1
C(l, Po, Iy) A same(V \ Vo) A same(PC \ {pco})
C(h, P1, 1) A same(V \ V1) A same(PC \ {pc1})
For each P;, C(I;, P;, I!) is the disjunction of
pc; = Ii A pc] = NG; A true A\ same(T)
pci = NCi A pci = CRi AT =i A same(T)
pci = CR,‘/\,DC,{:/,'/\ T:(l—i)
pci = NC; A pci = NG AT # i A same(T)
pci = Ii A pc] = I! A false \ same(T)

Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 22 /23

A Kripke Structure for Py x

Source: redrawn from [Clarke et al. 1999, Fig 2.2]
Yih-Kuen Tsay (IM.NTU) Systems Modeling Automatic Verification 2012 23 /23

	Introduction
	Modeling Concurrent Systems
	Concurrent Systems
	Synchronous Circuits
	Asynchronous Concurrent Programs

	An Example of Program Translation

