Ordered Sets and Fixpoints (Based on [Davey and Priestley 2002])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Partial Orders

Let P be a set.
A partial order, or simply order, on P is a binary relation \leq on P such that:

$$
\begin{aligned}
& \text { 1. } \forall x \in P, x \leq x \text {, (reflexivity) } \\
& \text { 2. } \forall x, y, z \in P, x \leq y \wedge y \leq z \rightarrow x \leq z \text {, (transitivity) } \\
& \text { 3. } \forall x, y \in P, x \leq y \wedge y \leq x \rightarrow x=y \text {. (antisymmetry) }
\end{aligned}
$$

- A set P equipped with a partial order \leq, often written as $\langle P, \leq\rangle$, is called a partially ordered set, or simply ordered set, sometimes abbreviated as poset.
A binary relation that is reflexive and transitive is called a pre-order or quasi-order.
We write $x<y$ to mean $x \leq y$ and $x \neq y$.

Examples of Ordered Sets

$\langle\mathcal{N}, \leq\rangle$

- $\mathcal{N}=\{1,2,3, \cdots\}$, the set of natural numbers.
- \leq is the usual "less than or equal to" relation.

Variant: $\left\langle\mathcal{N}_{0}, \leq\right\rangle$ with $\mathcal{N}_{0}=\mathcal{N} \cup\{0\}=\{0,1,2,3, \cdots\}$.

- $\langle\mathcal{P}(X), \subseteq\rangle$
. $\mathcal{P}(X)$ is the powerset of X, consisting of all subsets of X.
, \subseteq is the set inclusion relation.
$\left\langle\Sigma^{*}, \leq\right\rangle$
Σ^{*} is the set of all finite strings over the alphabet Σ.
b \leq is the "is a prefix of" relation.

Order-Isomorphisms

We want to be able to tell when two ordered sets are essentially the same.
Let $\left\langle P, \leq_{P}\right\rangle$ and $\left\langle Q, \leq_{Q}\right\rangle$ be two ordered sets.

- P and Q are said to be (order-)isomorphic, denoted $P \cong Q$, if there is a map φ from P onto Q such that $x \leq_{P} y$ if and only if $\varphi(x) \leq_{Q} \varphi(y)$.
The map φ above is called an order-isomorphism.
- For example, \mathcal{N}_{0} and \mathcal{N} are order-isomorphic with the successor function $n \mapsto n+1$ as the order-isomorphism.
An order-isomorphism is necessarily bijective (one-to-one and onto). Therefore, an order-isomorphism $\varphi: P \rightarrow Q$ has a well-defined inverse $\varphi^{-1}: Q \rightarrow P$.

Chains and Antichains

Let P be an ordered set.
P is called a chain if $\forall x, y \in P, x \leq y \vee y \leq x$, i.e., any two elements in P are comparable.
For example, $\langle\mathcal{N}, \leq\rangle$ is a chain.

- Alternative names for a chain are totally ordered set and linearly ordered set.
P is called an antichain if $\forall x, y \in P, x \leq y \rightarrow x=y$, i.e., no two distinct elements in P are ordered.
Clearly, any subset of a chain (an antichain) is a chain (an antichain).
We write \mathbf{n} to denote a chain of n elements and $\overline{\mathrm{n}}$ an antichain of n elements.

Sums of Ordered Sets

Let P and Q be two disjoint ordered sets.
The disjoint union $P \uplus Q$ is defined by $x \leq y$ in $P \uplus Q$ if and only if

1. $x, y \in P$ and $x \leq y$ in P, or
2. $x, y \in Q$ and $x \leq y$ in Q.

The linear sum $P \oplus Q$ is defined by $x \leq y$ in $P \oplus Q$ if and only if

1. $x, y \in P$ and $x \leq y$ in P, or
2. $x, y \in Q$ and $x \leq y$ in Q, or
3. $x \in P$ and $y \in Q$.

Diagrams for Ordered Sets

All possible ordered sets with three elements:

$\langle\mathcal{P}(\{1,2,3\}), \subseteq\rangle:$

Partial Maps

A (total) map or function f from X to Y is a binary relation on X and Y satisfying the following conditions:

1. (single-valued) For every $x \in X$, there is at most one $y \in Y$ such that (x, y) is related by f.
In other words, if both $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ are related by f, then y_{1} and y_{2} must be equal.
2. (total) For every $x \in X$, there is at least one $y \in Y$ such that (x, y) is related by f.
A partial map f from X to Y is a single-valued, not necessarily total, binary relation on X and Y.

- Representation of a total or partial map f from X to Y as a subset of $X \times Y$, or as an element of $\mathcal{P}(X \times Y)$, is called the graph of f, denoted $\operatorname{graph}(f)$.

Partial Maps as an Ordered Set

We write $(X \hookrightarrow Y)$ to denote the set of all partial maps from X to Y.

- For $\sigma, \tau \in(X \longrightarrow Y)$, we define $\sigma \leq \tau$ if and only if $\operatorname{graph}(\sigma) \subseteq \operatorname{graph}(\tau)$.
In other words, $\sigma \leq \tau$ if and only if whenever $\sigma(x)$ is defined, $\tau(x)$ is also defined and equals $\sigma(x)$.
$\langle(X \longrightarrow Y), \leq\rangle$ is an ordered set.

Programs as Partial Maps

Two programs P and Q with common sets X and Y respectively of initial states and final states may be seen as defining two partial maps $\sigma_{P}, \sigma_{Q}: X \mapsto Y$.
The two programs might be related by $\sigma_{P} \leq \sigma_{Q}$, meaning that
潾 for any input state from which P terminates, Q also terminates, and

* for every case where P terminates, Q produces the same output as P does.
When $\sigma_{P} \leq \sigma_{Q}$ does hold, we say P is refined by Q or Q refines P. (Some prefer the opposite.)
The refinement relation between two programs as defined is clearly a partial order.

Order-Preserving Maps

Let P and Q be ordered sets.
A map $\varphi: P \rightarrow Q$ is said to be order-preserving (or monotone) if $x \leq y$ in P implies $\varphi(x) \leq \varphi(y)$ in Q.
The composition of two order-preserving maps is also order-preserving.
A map $\varphi: P \rightarrow Q$ is said to be an order-embedding (denoted $P \hookrightarrow Q)$ if $x \leq y$ in P if and only if $\varphi(x) \leq \varphi(y)$ in Q.

Galois Connections and Insertions

Let P and Q be ordered sets.

- A pair (α, γ) of maps $\alpha: P \rightarrow Q$ and $\gamma: Q \rightarrow P$ is a Galois connection between P and Q if, for all $p \in P$ and $q \in Q$,

$$
\alpha(p) \leq q \leftrightarrow p \leq \gamma(q)
$$

Alternatively, (α, γ) is a Galois connection between P and Q if, for all $p, p_{1}, p_{2} \in P, q, q_{1}, q_{2} \in Q$,

1. $p_{1} \leq p_{2} \rightarrow \alpha\left(p_{1}\right) \leq \alpha\left(p_{2}\right)$ and $q_{1} \leq q_{2} \rightarrow \gamma\left(q_{1}\right) \leq \gamma\left(q_{2}\right)$
(i.e., α and γ are monotone)
2. $p \leq \gamma(\alpha(p))$ and $\alpha(\gamma(q)) \leq q$.

A Galois insertion is a Galois connection where $\alpha \circ \gamma$ is the identity map, i.e., $\alpha(\gamma(q))=q$.

Dual of an Ordered Set

Given an ordered set P, we can form a new ordered set P^{∂} (the "dual of $P^{\prime \prime}$) by defining $x \leq y$ to hold in P^{∂} if and only if $y \leq x$ holds in P.
For a finite P, a diagram for P^{∂} can be obtained by turning upside down a diagram for P :

P

The Duality Principle

For a statement Φ about ordered sets, its dual statement Φ^{∂} is obtained by replacing each occurrence of \leq with \geq and vice versa.
The Duality Principle: Given a statement Φ about ordered sets that is true for all ordered sets, the dual statement ϕ^{∂} is also true for all ordered sets.

Bottom and Top

Let P be an ordered set.

- P has a bottom element if there exists $\perp \in P$ ("bottom") such that $\perp \leq x$ for all $x \in P$.
Dually, P has a top element if there exists $T \in P$ ("top") such that $x \leq T$ for all $x \in P$.
\perp is unique when it exists; dually, T is unique when it exists.
In $\langle\mathcal{P}(X), \subseteq\rangle$, we have $\perp=\emptyset$ and $T=X$.
- A finite chain always has a bottom and a top elements; this may not hold for an infinite chain.
- Given a bottomless P, we may form P_{\perp} (P lifted or the lifting of $P)$ by $P_{\perp} \triangleq \mathbf{1} \oplus P$.

Maximal and Minimal Elements

Let P be an ordered set and $S \subseteq P$.
An element $a \in S$ is a maximal element of S if $a \leq x$ and $x \in S$ imply $x=a$.

- If Q has a top element T_{Q}, it is called the greatest element (or maximum) of Q.
-

A minimal element of S and the least element (or minimum) of S (if it exists) are defined dually.

Down-sets and Up-sets

- Let P be an ordered set and $S \subseteq P$.
S is a down-set (order ideal) if, whenever $x \in S, y \in P$, and $y \leq x$, we have $y \in S$.
Dually, S is a up-set (order filter) if, whenever $x \in S, y \in P$, and $y \geq x$, we have $y \in S$.
- Given an arbitrary $Q \subseteq P$ and $x \in P$, we define

$$
\begin{aligned}
& \left.\downarrow Q \triangleq\{y \in P \mid \exists x \in Q, y \leq x\} \text { ("down } Q^{\prime \prime}\right), \\
& \uparrow Q \triangleq\{y \in P \mid \exists x \in Q, y \geq x\} \text { ("up } Q \text { "), } \\
& \downarrow x \triangleq\{y \in P \mid y \leq x\}, \text { and } \\
& \uparrow x \triangleq\{y \in P \mid y \geq x\} .
\end{aligned}
$$

$\downarrow Q$ is the smallest down-set containing Q and Q is a down-set if and only if $Q=\downarrow Q$; dually for $\uparrow Q$.

Upper and Lower Bounds

Let P be an ordered set and $S \subseteq P$.
An element $x \in P$ is an upper bound of S if, for all $s \in S, s \leq x$.
Dually, an element $x \in P$ is an lower bound of S if, for all $s \in S$, $s \geq x($ or $x \leq s)$.

- The set of all upper bounds of S is denoted by S^{u} ("S upper"); $S^{u}=\{x \in P \mid \forall s \in S, s \leq x\}$.
The set of all lower bounds of S is denoted by S^{\prime} ("S lower"); $S^{\prime}=\{x \in P \mid \forall s \in S, s \geq x\}$.
By convention, $\emptyset^{u}=P$ and $\emptyset^{\prime}=P$.
Since \leq is transitive, S^{u} is an up-set and S^{\prime} a down-set.

Least Upper and Greatest Lower Bounds

Let P be an ordered set and $S \subseteq P$.

- If S^{u} has a least element, it is called the least upper bound (supremum) of S, denoted $\sup (S)$.
Equivalently, x is the least upper bound of S if
x is an upper bound of S, and \% for every upper bound y of $S, x \leq y$.
Dually, if S^{\prime} has a greatest element, it is called the greatest lower bound (infimum) of S, denoted $\inf (S)$.
When P has a top element, $P^{u}=\{T\}$ and $\sup (P)=T$. Dually, if P has a bottom element, $P^{\prime}=\{\perp\}$ and $\inf (P)=\perp$.
Since $\emptyset^{u}=\emptyset^{\prime}=P, \sup (\emptyset)$ exists if P has a bottom element; dually, $\inf (\emptyset)$ exists if P has a top element.

Join and Meet

We write $x \vee y($ " x join y ") in place of $\sup (\{x, y\})$ when it exists and $x \wedge y$ (" x meet y ") in place of $\inf (\{x, y\})$ when it exists.
Let P be an ordered set. If $x, y \in P$ and $x \leq y, x \vee y=y$ and $x \wedge y=x$.

- In the following two cases, $a \vee b$ does not exist.

Analogously, we write $\bigvee S$ (the "join of S ") and $\wedge S$ (the "meet of $S^{\prime \prime}$).

Lattices and Complete Lattices

Let P be a non-empty ordered set.

- P is called a lattice if $x \vee y$ and $x \wedge y$ exist for all $x, y \in P$.
P is called a complete lattice if $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$. Note: as S may be empty, the definition implies that every complete lattice is bounded, i.e., it has top and bottom elements.
Every finite lattice is complete.

Fixpoints

Given an ordered set P and a map $F: P \rightarrow P$, an element $x \in P$ is called a fixpoint of F if $F(x)=x$.
The set of fixpoints of F is denoted $\operatorname{fix}(F)$.
The least element of fix (F), when it exists, is denoted $\mu(F)$, and the greatest by $\nu(F)$ if it exists.

A Fixpoint Theorem for Complete Lattices

Theorem (Knaster-Tarski Fixpoint Theorem)

Let L be a complete lattice and $F: L \rightarrow L$ an order-preserving map.
Then,

$$
\mu(F)=\bigwedge\{x \in L \mid F(x) \leq x\}
$$

Dually, $\nu(F)=\bigvee\{x \in L \mid x \leq F(x)\}$.
Let $M=\{x \in L \mid F(x) \leq x\}$ and $\alpha=\bigwedge M$. We need to show (1) $F(\alpha)=\alpha$ and (2) for every $\beta \in \operatorname{fix}(F), \alpha \leq \beta$.

For all $x \in M, \alpha \leq x$ and so $F(\alpha) \leq F(x) \leq x$. Thus, $F(\alpha) \in M^{\prime}$ and hence $F(\alpha) \leq \alpha(=\bigwedge M)$.$F(F(\alpha)) \leq F(\alpha)$, implying $F(\alpha) \in M$ and so $\alpha \leq F(\alpha)$.

- For every $\beta \in \operatorname{fix}(F), \beta \in M$ and hence $\alpha \leq \beta$.

Chain Conditions

Let P be an ordered set.
P satisfies the ascending chain condition (ACC), if given any sequence $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots$ of elements in P, there exists $k \in N$ such that $x_{k}=x_{k+1}=\cdots$.
Dually, P satisfies the descending chain condition (DCC), if given any sequence $x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq \cdots$ of elements in P, there exists $k \in N$ such that $x_{k}=x_{k+1}=\cdots$.

Directed Sets

Let S be a non-empty subset of an ordered set.
S is said to be directed if, for every pair of elements $x, y \in S$ there exists $z \in S$ such that $z \in\{x, y\}^{u}$.

- S is directed if and only if, for every finite subset F of S, there exists $z \in S$ such that $z \in F^{u}$.
- In an ordered set with the ACC, a set is directed if and only if it has a greatest element.
When D is directed for which $\bigvee D$ exists, we write $\bigsqcup D$ in place of $\bigvee D$.

Complete Partial Orders (CPO)

- An ordered set P is called a Complete Partial Order (CPO) if 1. P has a bottom element \perp and

2. $\bigsqcup D$ exists for each directed subset D of P.

Alternatively, P is a CPO if each chain of P has a least upper bound in P.

- Any complete lattice is a CPO.

For an ordered P satisfying Condition 2 above (called a pre-CPO), its lifting P_{\perp} is a CPO .

Continuous Maps

Let P and Q be CPOs.
A map $\varphi: P \rightarrow Q$ is said to be continuous if, for every directed set D in P,

1. the subset $\varphi(D)$ of Q is directed and
2. $\varphi(\bigsqcup D)=\bigsqcup \varphi(D)$.

A continuous map need not preserve bottoms, since by definition the empty set is not directed.

- A map $\varphi: P \rightarrow Q$ such that $\varphi(\perp)=\perp$ is called strict.

A Fixpoint Theorem for CPOs

The n-fold composite F^{n} of $F: P \rightarrow P$ is defined as follows. 1. F^{0} is the identity.
2. $F^{n}=F \circ F^{n-1}$ for $n \geq 1$.

If F is order-preserving, so is F^{n}.

Theorem (CPO Fixpoint Theorem I)

Let P be a $C P O$ and $F: P \rightarrow P$ an order-preserving map. Define $\alpha \triangleq \bigsqcup_{n \geq 0} F^{n}(\perp)$.

1. If $\alpha \in \operatorname{fix}(F)$, then $\alpha=\mu(F)$.
2. If F is continuous, then $\mu(F)$ exists and equals α.

Proof of CPO Fixpoint Theorem I (1)

$\perp \leq F(\perp)$. So, $F^{n}(\perp) \leq F^{n+1}(\perp)$, for all n, inducing a chain in P:

$$
\perp \leq F(\perp) \leq F^{2}(\perp) \leq \cdots \leq F^{n}(\perp) \leq F^{n+1}(\perp) \leq \cdots
$$

- Since P is a CPO, $\alpha \triangleq \bigsqcup_{n \geq 0} F^{n}(\perp)$ exists.Let β be any fixpoint of F; we need to show that $\alpha \leq \beta$.By induction, $F^{n}(\beta)=\beta$, for all n.
We have $\perp \leq \beta$, hence $F^{n}(\perp) \leq F^{n}(\beta)=\beta$.
The definition of α then ensures $\alpha \leq \beta$.

Proof of CPO Fixpoint Theorem I (2)

- It suffices to show that $\alpha \in \operatorname{fix}(F)$.
- We have

$$
\begin{array}{rlrl}
F\left(\bigsqcup_{n \geq 0} F^{n}(\perp)\right) & =\bigsqcup_{n \geq 0} F\left(F^{n}(\perp)\right) & (F \text { continuous }) \\
& =\bigsqcup_{n \geq 1} F^{n}(\perp) & & \\
& =\bigsqcup_{n \geq 0} F^{n}(\perp) & \left(\perp \leq F^{n}(\perp) \text { for all } n\right)
\end{array}
$$

Another Fixpoint Theorem for CPOs

Theorem (CPO Fixpoint Theorem II)
Let P be a $C P O$ and $F: P \rightarrow P$ an order-preserving map. Then F has a least fixpoint.

