Satisfiability Solving and Tools [original created by Chun-Nan Chou]

Ko-Lung Yuan

Graduate Institute of Electronics Engineering National Taiwan University

June 9, 2012

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

Boolean Satisfiability Problem(SAT Problem)

- Given a Boolean formula (propositional logic formula), find a variable assignment such that the function evaluates to 1, or prove that no such assignment exists.
 - * EX. $F = (a \lor b) \land (\bar{a} \lor \bar{b} \lor c)$ This function is SAT when a = 1, b = 1, c = 1
- \bullet For *n* variables, there are 2^n possible truth assignments to be checked.

- First proofed NP-Complete problem.
 - S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the Theory of Computing, 1971.

Boolean Formula

- There are many ways for representing Boolean function like truth table, Boolean formula, BDD...etc.
- We use Boolean formula when solve SAT problems.
- Boolean variable
 - Boolean variable has two possible value: 0 and 1.
 - 🌞 If a is a Boolean variable, a is also a Boolean formula.
- **Boolean formula** is constructed by several Boolean formulae with logic connective symbol \lor , \land , and negation. If g and h are Boolean formulae, then so are:
 - $(g \lor h)$
 - $(g \wedge h)$
 - 🏓 👨

Satisfiable and Unsatisfiable

- Given a Boolean formula F
 - * Unsatisfiable (UNSAT): All assignments let F = 0.
 - * Satisfiable (SAT): there exits one assignment such that F = 1.
 - \bullet Ex1: F = a is satisfiable when a = 1.
 - Ex2: $F = a \land b \land (\bar{a} \lor \bar{b})$ is unsatisfiable.

Boolean Satisfiability Solvers

- Boolean SAT solvers have been very successful recent years in the verification area.
 - Cooperate with BDDs
 - Applications: equivalence checking and model checking
 - Applicable even for million-gate designs in EDA
- Popular SAT Solvers
 - MiniSat (2008 winner, the most popular one)
 - CryptoMiniSat (2011 winner)

Types of Boolean Satisfiability Solvers

- Conjunctive Normal Form (CNF) Based
 - * A Boolean formula is represented as a CNF (i.e. Product of Sum).
 - * For example: $(a \lor b \lor c) \land (\bar{a} \lor \bar{b} \lor c) \land (\bar{a} \lor b \lor \bar{c})$
 - To be satisfied, all the clauses should be 1.
- Circuit-Based
 - A Boolean formula is represented as a circuit netlist.
 - The SAT algorithm is directly operated on the netlist.

CNF (Conjunction Normal Form)

- Literal is a variable or its negation.
- CNF formula is a conjunction of clauses, where a clause is a disjunction of literals.
- lacktriangledown For example, a CNF formula: $(a \lor b \lor c) \land (\bar{a} \lor \bar{b} \lor c)$
 - Variable: a, b, c in this CNF formula.
 - Literals: a, \underline{b}, c are literals in $(a \lor \underline{b} \lor c)$.
 - Literals: \bar{a}, \bar{b}, c are literals in $(\bar{a} \lor \bar{b} \lor c)$.
 - * Clauses: $(a \lor b \lor c)$, $(\bar{a} \lor \bar{b} \lor c)$ are clauses in this CNF formula.

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

CNF-Based SAT Algorithms

- Davis-Putnam (DP), 1960.
 - Explicit resolution based
 - May explode in memory
- Davis-Putnam-Logemann-Loveland (DPLL), 1962.
 - Search based
 - Most successful, basis for almost all modern SAT solvers
- GRASP, 1996
 - Conflict driven learning and non-chronological backtracking
- zChaff, 2001.
 - Boolean constraint propagation (BCP) algorithm (two watched literals)

Davis-Putnam Algorithm

- M. Davis, H. Putnam, "A computing procedure for quantification theory", J. of ACM, 1960. (New York Univ.)
- ullet Three satisfiability-preserving (\approx) transformations in DP:
 - Unit propagation rule
 - Pure literal rule
 - Resolution rule
 - By repeatedly applying these rules, eventually obtain:
 - a formula containing an empty clause indicates unsatisfiability
 - a formula with no clauses indicates satisfiability.
 - No rule can be used and no empty clause existing indicates satisfiability.

Unit Propagation Rule

- Suppose (a) is a unit clause, i.e. a clause contains only one literal.
 - Remove any instances of a from the formula.
 - Remove all clauses containing a.
- Example:
 - * $(a) \wedge (\overline{a} \vee b \vee c) \wedge (a \vee \overline{b} \vee c) \wedge (\overline{a} \vee \overline{c} \vee d)$ $\approx (b \vee c) \wedge (\overline{c} \vee d)$
 - * (a) \land (a \lor b) \approx satisfiable
 - * (a) \wedge (\bar{a}) \approx () unsatisfiable

Pure Literal Rule

- If a literal appears only positively or only negatively, delete all clauses containing that literal.
- Example: $(\bar{a} \lor b \lor c) \land (\bar{a} \lor \bar{b} \lor c) \land (\bar{b} \lor c \lor d) \land (\bar{a} \lor \bar{c} \lor \bar{d})$ $\approx (\bar{b} \lor c \lor d)$

Resolution Rule

- For a single pair of clauses, $(a \lor l_1 \lor \cdots \lor l_m)$ and $(\bar{a} \lor k_1 \lor \cdots \lor k_n)$, resolution on a forms the new clause $(l_1 \lor \cdots \lor l_m \lor k_1 \lor \cdots \lor k_n)$.
- Example: $(a \lor b) \land (\bar{a} \lor c) \approx (b \lor c)$
 - st If a is true, then for the formula to be true, c must be true.
 - If a is false, then for the formula to be true, b must be true.
 - \bullet So regardless of a, for the formula to be true, $b \lor c$ must be true.

Resolution Rule (cont.)

- Choose a propositional variable p which occurs positively in at least one clause and negatively in at least one other clause.
- ullet Let P be the set of all clauses in which p occurs positively.
- Let N be the set of all clauses in which p occurs negatively.
- Replace the clauses in P and N with those obtained by resolving each clause in P with each clause in N.

Example 1

$$(a \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor c) \land (c \lor d) \land (\overline{a} \lor \overline{c}) \land (d)$$

$$\downarrow Unit \ Propagation \ Rule$$

$$(a \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor c) \land (\overline{a} \lor \overline{c})$$

$$Resolution \ Rule$$

$$(a) \land (\overline{a} \lor c) \land (\overline{a} \lor \overline{c})$$

$$\downarrow Unit \ Propagation \ Rule$$

$$(c) \land (\overline{c})$$

$$Resolution \ Rule$$

$$(b) \ Unsatisfiable$$

Potential memory explosion problembecauseofresolutionrule

Example 2

- Solve $(a \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor c) \land (\overline{a} \lor \overline{c})$
- Wrong resolution:

```
(a \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor c) \land (\overline{a} \lor \overline{c}) Use resolution rule \approx (b \lor c) \land (\overline{b} \lor \overline{c}) Use resolution rule \approx (c \lor \overline{c}) No rule can be used and no clause is empty! \approx \mathsf{SAT} \to \mathsf{Wrong} result!
```

- We have to resolve each clause in P with each clause in N.
- Correct resolution:
 - Choose a to do resolution
 - $P = \{(a \lor b), (a \lor \bar{b})\}$
 - $N = \{(\bar{a} \vee c), (\bar{a} \vee \bar{c})\}$
 - $R = \{(b \lor c), (b \lor \bar{c}), (\bar{b} \lor c), (\bar{b} \lor \bar{c})\}$
 - * $(a \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor c) \land (\overline{a} \lor \overline{c})$ $\approx (b \lor c) \land (b \lor \overline{c}) \land (\overline{b} \lor c) \land (\overline{b} \lor \overline{c})$ Replace P, N with R! $\approx ...$

DPLL Algorithm

- M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", Communications of ACM, 1962. (New York Univ.)
- The basic framework for many modern SAT solvers.
- Main strategy
 - Decision Making
 - Unit Clause Rule
 - Implication
 - Conflict Detection
 - Backtracking

DPLL Algorithm

```
DPLL Pseudo Code
Function DPLL(\Phi, A)
    A \leftarrow Unit - Propagation(\Phi, A);
    if A is inconsistent then
        return UNSAT;
    if A assigns a value to every variable then
        return SAT;
    v \leftarrow a variable not assigned a value by A;
    if DPLL(\Phi, A \cup \{ v = false \} ) = SAT
        return SAT;
    else
        return DPLL(\Phi, A \cup \{ v = true \});
```

- $(\bar{a} \lor b \lor c)$
- $(a \lor c \lor d)$
- $(a \lor c \lor \bar{d})$
- $(a \lor \bar{c} \lor d)$
- $(a \lor \bar{c} \lor \bar{d})$
- $(\bar{b} \vee \bar{c} \vee d)$
- $(\bar{a} \lor b \lor \bar{c})$
- $(\bar{a} \lor \bar{b} \lor c)$

(a)

$$(\bar{a} \lor b \lor c)$$

$$(a \lor c \lor d)$$

$$(a \lor c \lor \bar{d})$$

$$(a \lor \bar{c} \lor d)$$

$$(a \lor \bar{c} \lor \bar{d})$$

$$(\bar{b} \vee \bar{c} \vee d)$$

$$(\bar{a} \lor b \lor \bar{c})$$

$$(\bar{a} \vee \bar{b} \vee c)$$

$$(\bar{a} \lor b \lor c)$$

$$(a \lor c \lor d)$$

$$(a \lor c \lor \bar{d})$$

$$(a \lor \bar{c} \lor d)$$

$$(a \lor \bar{c} \lor \bar{d})$$

$$(\bar{b} \vee \bar{c} \vee d)$$

$$(\bar{a} \lor b \lor \bar{c})$$

$$(\bar{a} \vee \bar{b} \vee c)$$

$$(\bar{a} \lor b \lor c)$$

$$(a \lor c \lor d)$$

$$(a \lor c \lor \bar{d})$$

$$(a \lor \bar{c} \lor d)$$

$$(a \lor \bar{c} \lor \bar{d})$$

$$(\bar{b} \vee \bar{c} \vee d)$$

$$(\bar{a} \lor b \lor \bar{c})$$

$$(\bar{a} \vee \bar{b} \vee c)$$

 $(\overline{a} \lor b \lor c)$ $(a \lor c \lor d)$ $(a \lor c \lor \overline{d})$ $(a \lor \overline{c} \lor d)$ $(\overline{a} \lor \overline{c} \lor \overline{d})$ $(\overline{b} \lor \overline{c} \lor d)$ $(\overline{a} \lor b \lor \overline{c})$

 $(\bar{a} \vee \bar{b} \vee c)$

$$\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor c \lor \bar{d}) \\
(a \lor \bar{c} \lor d) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}$$

- $(\bar{a} \lor b \lor c)$ $(a \lor c \lor d)$
- $(a \lor c \lor \overline{d})$
- $(a \lor \overline{c} \lor d)$
- $(a \lor \bar{c} \lor \bar{d})$
- $(\bar{b} \vee \bar{c} \vee d)$
- $(\bar{a} \lor b \lor \bar{c})$
- $(\bar{a} \lor \bar{b} \lor c)$

$$\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor c \lor \bar{d}) \\
(a \lor \bar{c} \lor d) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}$$

$$\begin{array}{l}
(\overline{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor c \lor \overline{d}) \\
(a \lor \overline{c} \lor d)
\end{array}$$

$$(a \lor \bar{c} \lor \bar{d})$$

$$(\bar{b} \lor \bar{c} \lor d)$$

$$(\bar{a} \lor b \lor \bar{c})$$

$$(\bar{a} \vee \bar{b} \vee c)$$

- $(\bar{a} \lor b \lor c)$ $(a \lor c \lor d)$
- $(a \lor c \lor \bar{d})$
- $(a \lor \bar{c} \lor d)$
- $(a \lor \bar{c} \lor \bar{d})$
- $(\bar{b} \vee \bar{c} \vee d)$
- $(\bar{a} \lor b \lor \bar{c})$
- $(\bar{a} \vee \bar{b} \vee c)$

$$\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor c \lor \bar{d}) \\
(a \lor \bar{c} \lor d) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}$$

- $(\bar{a} \lor b \lor c)$ $(a \lor c \lor d)$
- $(a \lor c \lor \bar{d})$
- $(a \lor \bar{c} \lor d)$
- $(a \lor \bar{c} \lor \bar{d})$
- $(\bar{b} \vee \bar{c} \vee d)$
- $(\bar{a} \lor b \lor \bar{c})$
- $(\bar{a} \lor \bar{b} \lor c)$ $(\bar{a} \lor \bar{b} \lor c)$

$$(\bar{a} \lor b \lor c)$$

$$(a \lor c \lor d)$$

$$(a \lor c \lor \bar{d})$$

$$(a \lor \bar{c} \lor d)$$

$$(a \lor \bar{c} \lor \bar{d})$$

← Backtrack

$$(\bar{a} \lor b \lor c)$$
$$(a \lor c \lor d)$$

$$(a \lor c \lor a)$$

$$(a \lor c \lor \bar{d})$$

$$(a \lor \bar{c} \lor d)$$

$$(a \lor \bar{c} \lor \bar{d})$$

$$(\bar{b} \vee \bar{c} \vee d)$$

$$(\bar{a} \lor b \lor \bar{c})$$

$$(\bar{a} \vee \bar{b} \vee c)$$

$$\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor \bar{c} \lor \bar{d}) \\
(a \lor \bar{c} \lor \bar{d}) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c})
\end{array}$$

 $(\bar{a} \vee \bar{b} \vee c)$


```
\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor \bar{c} \lor \bar{d}) \\
(a \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}
```


$$\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor \bar{c} \lor d) \\
(a \lor \bar{c} \lor d) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}$$

 $\begin{array}{l}
(\overline{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor \overline{c} \lor d) \\
(a \lor \overline{c} \lor d) \\
(\overline{a} \lor \overline{c} \lor d) \\
(\overline{b} \lor \overline{c} \lor d) \\
(\overline{a} \lor b \lor \overline{c}) \\
(\overline{a} \lor \overline{b} \lor c)
\end{array}$

 $(\overline{a} \lor b \lor c)$ $(a \lor c \lor d)$ $(a \lor c \lor \overline{d})$ $(a \lor \overline{c} \lor d)$ $(a \lor \overline{c} \lor \overline{d})$ $(\overline{b} \lor \overline{c} \lor d)$ $(\overline{a} \lor b \lor \overline{c})$ $(\overline{a} \lor \overline{b} \lor c)$

 $\begin{array}{l}
(\bar{a} \lor b \lor c) \\
(a \lor c \lor d) \\
(a \lor c \lor d) \\
(a \lor \bar{c} \lor d) \\
(\bar{a} \lor \bar{c} \lor \bar{d}) \\
(\bar{b} \lor \bar{c} \lor d) \\
(\bar{a} \lor b \lor \bar{c}) \\
(\bar{a} \lor \bar{b} \lor c)
\end{array}$

Implications and Unit Clause Rule

- Implication
 - * A variable is forced to be True or False based on previous assignments.
- Unit clause rule
 - A rule for elimination of one-literal clauses
 - An unsatisfied clause is a unit clause if it has exactly one unassigned literal.

$$(a \lor \overline{b} \lor c) \land (b \lor \overline{c}) \land (\overline{a} \lor \overline{c})$$

 $a = T, b = T, c$ is unassigned
Satisfied Literal, Unsatisfied Literal,
Unassigned Literal

* The unassigned literal is implied because of the unit clause.

Boolean Constraint Propagation

- Boolean Constraint Propagation (BCP)
 - Iteratively apply the unit clause rule until there is no unit clause available.
 - 🌻 a.k.a. Unit Propagation
- Workhorse of DPLL based algorithms.

Features of DPLL

- Eliminate the exponential memory requirements of DP
- Exponential time is still a problem
- Limited practical applicability largest use seen in automatic theorem proving
- Very limited size of problems are allowed
 - 32K word memory
 - Problem size limited by total size of clauses (about 1300 clauses)

GRASP

- Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)
 - J. P. Marques-Silva and K. A. Sakallah, "GRASP A New Search Algorithm for Satisfiability", Proc.ICCAD, 1996.
 - J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, 1999.
- Incorporate conflict driven learning and non-chronological backtracking.
- Practical SAT problem instances can be solved in reasonable time.

SAT Improvements

- Conflict driven learning
 - Once we encounter a conflict, figure out the cause(s) of this conflict and prevent to see this conflict again.
 - Add learned clause (conflict clause) which is the negative proposition of the conflict source.
- Non-chronological backtracking
 - After getting a learned clause from the conflict analysis, we backtrack to the "next-to-the-last" variable in the learned clause.
 - Instead of backtracking one decision at a time.

Conflict Driven Learning

 $(\overline{a} \lor b \lor c)$ $(a \lor c \lor d)$ $(a \lor c \lor \overline{d})$ $(a \lor \overline{c} \lor d)$ $(a \lor \overline{c} \lor \overline{d})$ $(\overline{b} \lor \overline{c} \lor d)$ $(\overline{a} \lor b \lor \overline{c})$

 $(\bar{a} \vee \bar{b} \vee c)$

Conflict Driven Learning

- lacktriangle 'a' is the next-to-the-last variable in the (current) learned clause.
 - c is the last (assigned) variable in this learned clause so a is called the next-to-the-last variable
 - Because of this learned clause, when a is assigned 0 then c will be implied and we don't have to make decision for c
- After doing non-chronological backtracking, we will not forgive the path a=0, b=0... if needed.


```
(\bar{a} \lor b \lor c)
(a \lor c \lor d)
(a \lor c \lor \bar{d})
(a \lor \overline{c} \lor d)
(a \lor \bar{c} \lor \bar{d})
(\bar{b} \vee \bar{c} \vee d)
(\bar{a} \lor b \lor \bar{c})
(\bar{a} \vee \bar{b} \vee c)
(a \lor c)
(a) Learned clause
```

- Since there is only one variable in the learned clause, no one is the next-to-the-last variable.
- Backtrack all decisions


```
(\bar{a} \lor b \lor c)
(a \lor c \lor d)
(a \lor c \lor \bar{d})
(a \lor \overline{c} \lor d)
(a \lor \bar{c} \lor \bar{d})
(\bar{b} \vee \bar{c} \vee d)
(\bar{a} \lor b \lor \bar{c})
(\bar{a} \vee \bar{b} \vee c)
(a \lor c)
                                                               (\bar{a} \lor \bar{b} \lor c)
                                                                                                         (\bar{b} \vee \bar{c} \vee d)
                                           a = 1
         Learned clause
                                            b = 1
```

What's the big deal?

- Significantly prune the search space because learned clause is useful forever!
- Useful in generating future conflict clauses.

Search Completeness

- With conflict driven learning, SAT search is still guaranteed to be complete.
- SAT search becomes a decision stack instead of a binary decision tree.
 - When encountering a conflict, the conflict analysis does the following tasks:
 - Learned clause
 - Indicate where to backtrack
 - Learned implication

SAT Becomes Practical

- Conflict driven learning greatly increases the capacity of SAT solvers (several thousand variables) for structured problems.
- Realistic applications became plausible.
 - Usually thousands and even millions of variables
 - Typical EDA applications can make use of SAT including circuit verification, FPGA routing and many other applications
- Research direction changes towards more efficient implementations.

zChaff

- M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik," Chaff: Engineering an Efficient SAT Solver" Proc. DAC 2001. (UC Berkeley, MIT and Princeton Univ.)
- Make the core operations fast.
 - After profiling, the most time-consuming parts are Boolean Constraint Propagation (BCP) and Decision.
- As always, good search space pruning (i.e. conflict driven learning) is important.

- When can BCP occur?
 - All literals in a clause but one are assigned to False.

The implied cases of
$$(v1 \lor v2 \lor v3)$$
: $(0 \lor 0 \lor v3)$ or $(0 \lor v2 \lor 0)$ or $(v1 \lor 0 \lor 0)$

- * For an N-literal clause, this can only occur after N-1 literals have been assigned to False.
- * So, (theoretically) we could completely ignore the first N-2 assignments to this clause.
- Two watched Literals: In reality, we pick two literals in each clause to "watch" and thus can ignore any assignments to the other literals in the clause.

- Heuristically start with watching two unassigned literals in each clause.
- When one of the two watched literals is assigned True, this clause becomes True.
- When one of the two watched literals is assigned False, we send the clause into an Update-Watch queue to do one of the followings:
 - 1. Updating (there exists another unassigned literal)
 - 2. BCP (only one watched literal unassigned)
 - 3. Conflict handling (all literals are False)

- Let's illustrate this with an example:
 - Green: watched literal
- Initially, we identify any two literals in each clause as the watched ones.
- Clauses of size one are a special case.

$$v2 \lor v3 \lor v1 \lor v4 \lor v5$$

$$v1 \lor v2 \lor \overline{v3}$$

$$v1 \lor \overline{v2}$$

$$\overline{v1} \lor v4$$

$$v1 \leftarrow \qquad Detect unit clause$$

• We begin by processing the assignment v1 = F (which is implied by the size one clause)

$$v2 \lor v3 \lor v1 \lor v4 \lor v5$$

 $v1 \lor v2 \lor \overline{v3}$
 $v1 \lor \overline{v2}$
 $\overline{v1} \lor \overline{v2}$
 $\overline{v1} \lor v4$
State: $(v1 = F)$
Pending:

Examine each clause where the assignment being processed has set a watched literal to F.

$$\Rightarrow v2 \lor v3 \lor v1 \lor v4 \lor v5$$

$$\Rightarrow v1 \lor v2 \lor \overline{v3}$$

$$\Rightarrow v1 \lor \overline{v2}$$

$$\overline{v1} \lor \overline{v2}$$

$$\overline{v1} \lor v4$$

$$State: (v1 = F)$$

$$Pending:$$

• We need not process clauses where a watched literal has been set to T, because the clause is now satisfied and so can not become unit.

$$v2 \lor v3 \lor v1 \lor v4 \lor v5$$

$$v1 \lor v2 \lor \overline{v3}$$

$$v1 \lor \overline{v2}$$

$$\Rightarrow \overline{v1} \lor \overline{v2}$$

$$\Rightarrow \overline{v1} \lor v4$$

$$State : (v1 = F)$$

$$Pending :$$

• We certainly need not process any clauses where neither watched literal changes state (in this example, where v1 is not watched).

```
\Rightarrow v2 \lor v3 \lor v1 \lor v4 \lor v5
v1 \lor v2 \lor \overline{v3}
v1 \lor \overline{v2}
\overline{v1} \lor \overline{v2}
\overline{v1} \lor v4
State: (v1 = F)
Pending:
```

Now let's actually process the second and third clauses:

$$v2 \lor v3 \lor v1 \lor v4 \lor v5$$

$$v1 \lor v2 \lor \overline{v3}$$

$$v1 \lor \overline{v2}$$

$$\overline{v1} \lor v4$$

$$c_1 \lor c_2 \lor c_3 \lor c_4 \lor c_5 \lor c_5 \lor c_6 \lor c$$

State: (v1 = F)

Pending:

For the second clause, we replace v1 with $\overline{v3}$ as a new watched literal because $\overline{v3}$ is not assigned to F.

$$\begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor \overline{v2} \\ \hline \overline{v1} \lor v4 \end{array} \implies \begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ \hline v1 \lor \overline{v2} \\ \hline \overline{v1} \lor v4 \end{array} \\ \hline State: (v1 = F) \\ Pending: \end{array}$$

$$\begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ \hline v1 \lor \overline{v2} \\ \hline \overline{v1} \lor v4 \end{array}$$

The third clause is unit. We record the new implication of $\overline{v2}$, and add it to the queue of assignments to process.

$$\begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor \overline{v2} \\ \hline \overline{v1} \lor v4 \end{array} \implies \begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ \hline v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor \overline{v2} \\ \hline \overline{v1} \lor v4 \end{array}$$

$$State: (v1 = F)$$

$$Pending: \qquad State: (v1 = F)$$

$$Pending: (v2 = F)$$

- \bullet Next, we process $\overline{v2}$. We only examine the first two clauses.
 - For the first clause, we replace v2 with v4 as a new watched literal since v4 is not assigned to F.
 - * The second clause is unit. We record the new implication of $\overline{v3}$, and add it to the queue of assignments to process.

$$\begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor \overline{v2} \\ \hline v1 \lor v4 \end{array} \Longrightarrow \begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ \hline v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor \overline{v2} \\ \hline v1 \lor v4 \end{array} \\ State: (v1 = F, v2 = F) \\ Pending: \end{array} \qquad \begin{array}{c} v2 \lor v3 \lor v1 \lor v4 \lor v5 \\ \hline v1 \lor v2 \lor \overline{v3} \\ \hline v1 \lor v2 \\ \hline v1 \lor v4 \end{array}$$

- \bullet Next, we process $\overline{v3}$. We only examine the first clause.
 - For the first clause, we replace v3 with v5 as a new watched literal since v5 is not assigned to F.
 - Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Both v4 and v5 are unassigned. Let's say we decide to assign v4 = T and proceed.

$$\begin{array}{cccc}
v2 \lor v3 \lor v1 \lor v4 \lor v5 \\
v1 \lor v2 \lor \overline{v3} \\
v1 \lor \overline{v2} \\
\hline
v1 \lor v4
\end{array}$$

$$\begin{array}{c}
v2 \lor v3 \lor v1 \lor v4 \lor v5 \\
\hline
v1 \lor v2 \lor \overline{v3} \\
\hline
v1 \lor \overline{v2} \\
\hline
v1 \lor v4
\end{array}$$

State :
$$(v1 = F, v2 = F, v3 = F)$$
 State : $(v1 = F, v2 = F, v3 = F)$ Pending : $v3 = F$

 \odot Next, we process v4. We do nothing at all.

 $v2 \lor v3 \lor v1 \lor v4 \lor v5$

* Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Only v5 is unassigned. Let's say we decide to assign v5 = F and proceed.

$$\begin{array}{ccc}
v1 \lor v2 \lor \overline{v3} \\
v1 \lor \overline{v2} \\
\overline{v1} \lor v4
\end{array}
\Longrightarrow
\begin{array}{c}
v1 \lor v2 \lor \overline{v3} \\
v1 \lor \overline{v2} \\
\overline{v1} \lor v4
\end{array}$$

$$\begin{array}{c}
v1 \lor v2 \lor \overline{v3} \\
v1 \lor \overline{v2} \\
\overline{v1} \lor v4
\end{array}$$

$$\begin{array}{c}
\text{State} : (v1 = F, v2 = F, v3 = F, v4 = T)
\end{array}$$

 $v2 \lor v3 \lor v1 \lor v4 \lor v5$

- \odot Next, we process v5 = F. We examine the first clause.
 - The first clause is already satisfied by v4 so we ignore it.
 - Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. No variables are unassigned, so the instance is SAT, and we are done.

$$\begin{array}{c}
v2 \lor v3 \lor v1 \lor v4 \lor v5 \\
v1 \lor v2 \lor \overline{v3} \\
\underline{v1} \lor \overline{v2} \\
\overline{v1} \lor v4
\end{array}$$

State:
$$(v1 = F, v2 = F, v3 = F, v4 = T, v5 = F)$$

$$v2 \lor v3 \lor v1 \lor v4 \lor v5$$

$$v1 \lor v2 \lor \overline{v3}$$

$$v1 \lor \overline{v2}$$

$$\overline{v1} \lor v4$$

State:
$$(v1 = F, v2 = F, v3 = F, v4 = T, v5 = F)$$

BCP Algorithm Summary

- During forward progress: Decisions and Implications
 - Only need to examine clauses where watched literal is set to F
 - Can ignore any assignments of literals to T
 - Can ignore any assignments of non-watched literals
- During backtrack: Unwind Assignment Stack
 - No action is required at all to unassigned variables
 - But it is computation-intensive part in SATO (SATO: an Efficient Propositional Prover. Hantao Zhang*. Department of Computer Science. The University of Iowa. Iowa City, IA 52242-1419, USA)
- Overall minimize clause access

The Timeline of the SAT Solver

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

Make Decision

- Because we want to prove that the target Boolean formula is satisfiable or not, we should start with guessing the state (true or false) of a variable until the proof is done.
- Some strategy:
 - Random
 - Dynamic largest individual sum (DLIS)
 - Variable State Independent Decaying Sum (VSIDS)

RAND and DLIS

- Random
 - Simply select the next decision randomly from among the unassigned variables and its value.
- Dynamic largest individual sum (DLIS)
 - * Simple and intuitive: At each decision simply choose the assignment that satisfies the most unsatisfied clauses.
 - However, considerable work is required to maintain the statistics necessary for this heuristic.
 - The total effort required for this and similar decision heuristics is much more than for the BCP algorithm in zChaff.

VSIDS

- Variable State Independent Decaying Sum (VSIDS)
 - Each variable in each polarity has a counter which is initialized to zero.
 - When a new clause is added to the database, the counter associated with each literal in this clause is incremented.
 - The (unassigned) variable and polarity with the highest counter is chosen at each decision.
 - Ties are broken randomly by default configuration.
 - Periodically, all the counters are divided by a constant.

VSIDS (cont.)

- VSIDS attempts to satisfy the conflict clauses but particularly attempts to satisfy recent learned clauses.
- Difficult problems generate many conflicts (and therefore many conflict clauses), the conflict clauses dominate the problem in terms of literal count.
- Since it is independent of the variable state, it has very low overhead.
- The average rum time overhead in zChaff:
 - BCP: about 80%
 - Decision: about 10%
 - Conflict analysis: about 10%

BerkMin

- E. Goldberg, and Y. Novikov, "BerkMin: A Fast and Robust Sat-Solver", Proc. DATE 2002. (Cadence Berkeley Labs and Academy of Sciences in Belarus)
- BerkMin tries to satisfy the most recent clause.
- The clause database is organized as a stack.
- The clauses of the original Boolean formula are located at the bottom of the stack and each new conflict clause is added to the top of the stack.
- The current top clause is the an unsatisfied clause which is the closest to the top of the stack.
- When making decision, choose the most active unassigned variable in the current top clause by using VSIDS.

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

Restart Motivation

Best time to restart: when algorithm spends too much time under a wrong branch

Restart

- Motivation: avoid spending too much time in "bad" branches.
 - no easy-to-find satisfying assignment
 - no opportunity for fast learning of strong clauses.
- All modern SAT solvers use a restart policy.
 - Following various criteria, the solver is forced to backtrack to level 0.
 - * Abandon the current search tree and reconstruct a new one.
 - The clauses learned prior to the restart are still there after the restart and can help pruning the search space.
- Restarts have crucial impact on performance.
 - Helps reduce variance adds to robustness in the solver.

The Basic Measure for Restarts

- All existing techniques use the number of conflicts learned as of the previous restart.
- The difference is only in the method of calculating the threshold.

Restarts strategies

- Arithmetic (or fixed) series.
 - Parameters: x, y
 - t: threshold, when conflict number reaches the threshold, restart!
 - Init(t) = x
 - \bullet Next(t) = t + y

- Used in (solver name(x, y)):
 - Berkmin (550, 0)
 - Eureka (2000, 0)
 - zChaff 2004 (700, 0)
 - Siege (16000, 0)

Restart Strategies

- Geometric series.
 - Parameters: x, y
 - t: threshold, when conflict number reaches the threshold, restart!
 - \bullet Init(t) = x
 - Next(t) = t * y

- Used in (solver name(x, y)):
 - Minisat 2007 (100, 1.5)

Restart Strategies

- Inner-Outer Geometric series.
 - Parameters: x, y, z
 - * t: threshold, when conflict number reaches the threshold, restart!
 - Init(t) = x
 - if (t * y < z) Next(t) = t * y

else

$$Next(t) = x$$

 $Next(z) = z * y$

- Used in (solver name(x, y, z)):
 - Picosat (100, 1.1, 1000)

Other Issues

- Incremental SAT
 - Take apart the clause database.
 - Solve the first part and record the learned information.
 - If it is UNSAT, then stop.
 - If it is SAT, then add the next part to solve.
 - And so on...
- Refutation proof (Ex.Resolution Proof)
- Parallel computation
- Memory manager
- etc...

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

SAT competitions

- From March to June
- The international SAT Competitions http://www.satcompetition.org/
- SAT Race (2010, 2008, 2006) http://baldur.iti.uka.de/sat-race-2010/

SAT Solvers

- SAT competitions 2005
 - Gold: SatELiteGTI
 - Silver: Minisat 1.13 (latest version: 2.2)
- SAT race 2006
 - Gold: MiniSAT 2.0 (latest version: 2.2)
- SAT competitions 2007
 - RSAT
 - PicoSAT

SAT Solvers

- SAT competitions 2009
 - precoSAT
 - glucose
- SAT race 2010
 - CryptoMiniSat
- SAT competition 2012 (on-going)

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
 - Decision heuristics
 - Restart mechanism
- SAT competitions
- Application

The usage of the MiniSat

- MiniSat Page: http://minisat.se/
- The newest version: 2.2.0
- Use MiniSat to find a solution of $F = (x_0 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2)$.
 - Go to MiniSat Page to download it.
 - Tar the .gz file tar -zxvf minisat-2.2.0.tar.gz
 - Change to directory "core" cd core
 - Modify path export MROOT=../
 - Make and compile in directory "core" make
 - Build DIMACS CNF file for problem you want to solve http://www.satcompetition.org/2009/format-benchmarks2009.html
 - Run the minisat to solve problem ./minisat CnfFileName

DIMACS CNF Format

- It is a standard format for the input files (CNF files) of SAT solvers.
 - Use c to write comments
 - Start with p cnf VarialbeNumber ClauseNumber
 - Write the clause with integer(with/without "-") for representing the literals
 - Use "0" to mark the end of a clause
- Example: $(x_0 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2)$ c this is a simple DIMACS cnf, use 1, 2, 3 for x0, x1, x2 respectively p cnf 3 2 1230 -230

Hamiltonian Cycle

Hamiltonian cycle, also called a Hamiltonian circuit, is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once.

(Wiki: http://en.wikipedia.org/wiki/File:Hamiltonian_path.svg)

Encoding

- Encode the Hamiltonian cycle problem into SAT problem by the following way:
 - * Assume that there is a path of length n which is the number of nodes.
 - * And each Boolean variables $x_{i,j}$ represent the i_{th} node in the j_{th} position of this path.
 - So there are n^2 Boolean variables in SAT problem by this encoding method.

Add Constraint Clauses

- First constraints: Each node only exist one position of this path.
- Second constraints: Each position of this path contains only one node.
- Third constraints: Two consecutive nodes are connected by an edge.

First Constraints

- Each node only exist one position of this path
 - Each node is in the path:

$$(x_{i,0} \lor x_{i,1} \lor \cdots \lor x_{i,n-1})$$
, where $0 \le i \le n-1$

Each node has only position (one hot):

$$\begin{split} &\left(\overline{x_{i,0}} \vee \overline{x_{i,1}}\right) \wedge \left(\overline{x_{i,0}} \vee \overline{x_{i,2}}\right) \wedge \dots \\ &\left(\overline{x_{i,0}} \vee \overline{x_{i,n-1}}\right) \wedge \left(\overline{x_{i,1}} \vee \overline{x_{i,2}}\right) \wedge \dots \\ &\left(\overline{x_{i,j}} \vee \overline{x_{i,k}}\right) \wedge \dots \\ &\text{where } 0 \leq i \leq n-1, \ 0 \leq j \leq n-2, \ j+1 \leq k \leq n+1 \end{split}$$

Second Constraints

- Each position of this path contains only one node
 - Each position contains nodes:

$$(x_{0,i} \lor x_{1,i} \lor \cdots \lor x_{n-1,i})$$
, where $0 \le i \le n-1$

Each position contains only one node (one hot):

$$\begin{split} & \big(\overline{x_{0,i}} \vee \overline{x_{1,i}}\big) \wedge \big(\overline{x_{0,i}} \vee \overline{x_{2,i}}\big) \wedge \dots \\ & \big(\overline{x_{0,i}} \vee \overline{x_{n-1,i}}\big) \wedge \big(\overline{x_{1,i}} \vee \overline{x_{2,i}}\big) \wedge \dots \\ & \big(\overline{x_{j,i}} \vee \overline{x_{k,i}}\big) \wedge \dots \\ & \text{where } 0 \leq i \leq n-1, \ 0 \leq j \leq n-2, \ j+1 \leq k \leq n+1 \end{split}$$

Third Constraints

- Two consecutive nodes are connected by an edge
 - * There is an edge between the i_{th} node and the j_{th} node:

Don't add constraint clauses into solver.

* There is no connection between the i_{th} node and the j_{th} node:

$$(\overline{x_{i,0}} \lor \overline{x_{j,1}}) \land (\overline{x_{i,1}} \lor \overline{x_{j,2}}) \land \dots$$

 $(\overline{x_{i,n-2}} \lor \overline{x_{j,n-1}})$
where $0 \le i \le n-1, \ 0 \le j \le n-1,$ and $i \ne j$