Satisfiability Solving and Tools [original created by Chun-Nan Chou]

Ko-Lung Yuan

Graduate Institute of Electronics Engineering National Taiwan University

June 9, 2012

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

Boolean Satisfiability Problem(SAT Problem)

- Given a Boolean formula (propositional logic formula), find a variable assignment such that the function evaluates to 1 , or prove that no such assignment exists.
e EX. $F=(a \vee b) \wedge(\bar{a} \vee \bar{b} \vee c)$
This function is SAT when $a=1, b=1, c=1$
- For n variables, there are 2^{n} possible truth assignments to be checked.

- First proofed NP-Complete problem.
- S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the Theory of Computing, 1971.

Boolean Formula

- There are many ways for representing Boolean function like truth table, Boolean formula, BDD...etc.
- We use Boolean formula when solve SAT problems.
- Boolean variable
- Boolean variable has two possible value: 0 and 1.
e. If a is a Boolean variable, a is also a Boolean formula.

Boolean formula is constructed by several Boolean formulae with logic connective symbol \vee, \wedge, and negation. If g and h are Boolean formulae, then so are:

- $(g \vee h)$
- $(g \wedge h)$
- \bar{g}

Satisfiable and Unsatisfiable

- Given a Boolean formula F
e Unsatisfiable (UNSAT): All assignments let $F=0$.
- Satisfiable (SAT): there exits one assignment such that $F=1$.

Ex1: $F=a$ is satisfiable when $a=1$.
Ex2: $F=a \wedge b \wedge(\bar{a} \vee \bar{b})$ is unsatisfiable.

Boolean Satisfiability Solvers

- Boolean SAT solvers have been very successful recent years in the verification area.
- Cooperate with BDDs
- Applications: equivalence checking and model checking
- Applicable even for million-gate designs in EDA
- Popular SAT Solvers
- MiniSat (2008 winner, the most popular one)
- CryptoMiniSat (2011 winner)

Types of Boolean Satisfiability Solvers

- Conjunctive Normal Form (CNF) Based
- A Boolean formula is represented as a CNF (i.e. Product of Sum).
- For example:
$(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{a} \vee b \vee \bar{c})$
- To be satisfied, all the clauses should be 1 .
- Circuit-Based
- A Boolean formula is represented as a circuit netlist.
- The SAT algorithm is directly operated on the netlist.

CNF (Conjunction Normal Form)

- Literal is a variable or its negation.
- CNF formula is a conjunction of clauses, where a clause is a disjunction of literals.
- For example, a CNF formula: $(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c)$
- Variable: a, b, c in this CNF formula.
- Literals: a, b, c are literals in $(a \vee b \vee c)$.
- Literals: \bar{a}, \bar{b}, c are literals in $(\bar{a} \vee \bar{b} \vee c)$.
- Clauses: $(a \vee b \vee c),(\bar{a} \vee \bar{b} \vee c)$ are clauses in this CNF formula.

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

CNF-Based SAT Algorithms

- Davis-Putnam (DP), 1960.
* Explicit resolution based
. May explode in memory
Davis-Putnam-Logemann-Loveland (DPLL), 1962.
- Search based
- Most successful, basis for almost all modern SAT solvers
- GRASP, 1996
- Conflict driven learning and non-chronological backtracking
- zChaff, 2001.

Boolean constraint propagation (BCP) algorithm (two watched literals)

Davis-Putnam Algorithm

- M. Davis, H. Putnam, "A computing procedure for quantification theory", J. of ACM, 1960. (New York Univ.)
- Three satisfiability-preserving (\approx) transformations in DP:
- Unit propagation rule
- Pure literal rule
- Resolution rule
- By repeatedly applying these rules, eventually obtain:
- a formula containing an empty clause indicates unsatisfiability
- a formula with no clauses indicates satisfiability.

No rule can be used and no empty clause existing indicates satisfiability.

Unit Propagation Rule

- Suppose (a) is a unit clause, i.e. a clause contains only one literal.
- Remove any instances of \bar{a} from the formula.
- Remove all clauses containing a.
- Example:
$(a) \wedge(\bar{a} \vee b \vee c) \wedge(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c} \vee d)$
$\approx(b \vee c) \wedge(\bar{c} \vee d)$
- $(a) \wedge(a \vee b) \approx$ satisfiable
- $(a) \wedge(\bar{a}) \approx()$ unsatisfiable

Pure Literal Rule

- If a literal appears only positively or only negatively, delete all clauses containing that literal.
- Example:
$(\bar{a} \vee b \vee c) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{b} \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d})$ $\approx(\bar{b} \vee c \vee d)$

Resolution Rule

For a single pair of clauses, $\left(a \vee I_{1} \vee \cdots \vee I_{m}\right)$ and ($\left.\bar{a} \vee k_{1} \vee \cdots \vee k_{n}\right)$, resolution on a forms the new clause $\left(I_{1} \vee \cdots \vee I_{m} \vee k_{1} \vee \cdots \vee k_{n}\right)$.

- Example:
$(a \vee b) \wedge(\bar{a} \vee c) \approx(b \vee c)$
- If a is true, then for the formula to be true, c must be true.
- If a is false, then for the formula to be true, b must be true.
. So regardless of a, for the formula to be true, $b \vee c$ must be true.

Resolution Rule (cont.)

- Choose a propositional variable p which occurs positively in at least one clause and negatively in at least one other clause.
- Let P be the set of all clauses in which p occurs positively.

Let N be the set of all clauses in which p occurs negatively.
Replace the clauses in P and N with those obtained by resolving each clause in P with each clause in N.

Example 1

$$
\left.\begin{array}{rl}
(a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{c}) \wedge(d) \\
& \wedge \text { Unit Propagation Rule } \\
(a \vee b) \wedge(a \vee \bar{b}) & \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c}) \\
\text { Resolution Rule }
\end{array}\right)
$$

Potential memory explosion problembecauseofresolutionrule

Example 2

- Solve $(a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c})$
- Wrong resolution:
$(a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c}) \quad$ Use resolution rule $\approx(b \vee c) \wedge(\bar{b} \vee \bar{c}) \quad$ Use resolution rule
$\approx(c \vee \bar{c})$ No rule can be used and no clause is empty!
\approx SAT \rightarrow Wrong result!
- We have to resolve each clause in P with each clause in N .
- Correct resolution:
- Choose a to do resolution
- $P=\{(a \vee b),(a \vee \bar{b})\}$
- $N=\{(\bar{a} \vee c),(\bar{a} \vee \bar{c})\}$
- $R=\{(b \vee c),(b \vee \bar{c}),(\bar{b} \vee c),(\bar{b} \vee \bar{c})\}$
- $(a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee c) \wedge(\bar{a} \vee \bar{c})$
$\approx(b \vee c) \wedge(b \vee \bar{c}) \wedge(\bar{b} \vee c) \wedge(\bar{b} \vee \bar{c}) \quad$ Replace P, N with R!
$\approx \ldots$

DPLL Algorithm

- M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", Communications of ACM, 1962. (New York Univ.)
- The basic framework for many modern SAT solvers.
- Main strategy
© Decision Making
- Unit Clause Rule

Implication
. Conflict Detection

* Backtracking

DPLL Algorithm

```
DPLL Pseudo Code
Function DPLL(\Phi, A)
    A}\leftarrow\mathrm{ Unit - Propagation(Ф, A);
    if A is inconsistent then
        return UNSAT;
    if A assigns a value to every variable then
        return SAT;
    v \leftarrow a variable not assigned a value by A;
    if DPLL(\Phi, A \cup { v= false }) = SAT
    return SAT;
else
        return DPLL(\Phi, A \cup { v=true });
```


Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

```
(\overline{a}\veeb\veec)
(a\veec\veed)
(a\veec\vee\overline{d})
(a\vee\overline{c}\veed)
(a\vee\overline{c}\vee\overline{d})
(\overline{b}\vee\overline{c}\veed)
(\overline{a}\veeb\vee\overline{c})
(\overline{a}\vee\overline{b}\veec)
```


Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& (\bar{a} \vee b \vee c) \\
& (a \vee c \vee d) \\
& (a \vee c \vee \bar{d}) \\
& (a \vee \bar{c} \vee d) \\
& (a \vee \bar{c} \vee \bar{d}) \\
& (\bar{b} \vee \bar{c} \vee d) \\
& (\bar{a} \vee b \vee \bar{c}) \\
& (\bar{a} \vee \bar{b} \vee c)
\end{aligned}
$$

Implications and Unit Clause Rule

- Implication
- A variable is forced to be True or False based on previous assignments.
- Unit clause rule
- A rule for elimination of one-literal clauses
. An unsatisfied clause is a unit clause if it has exactly one unassigned literal.

$$
\begin{gathered}
\qquad(a \vee \bar{b} \vee c) \wedge(b \vee \bar{c}) \wedge(\bar{a} \vee \bar{c}) \\
a=T, b=T, c \text { is unassigned } \\
\text { Satisfied Literal, Unsatisfied Literal, } \\
\text { Unassigned Literal }
\end{gathered}
$$

- The unassigned literal is implied because of the unit clause.

Boolean Constraint Propagation

- Boolean Constraint Propagation (BCP)
* Iteratively apply the unit clause rule until there is no unit clause available.
* a.k.a. Unit Propagation
- Workhorse of DPLL based algorithms.

Features of DPLL

- Eliminate the exponential memory requirements of DP
- Exponential time is still a problem
- Limited practical applicability - largest use seen in automatic theorem proving
- Very limited size of problems are allowed
- 32K word memory
- Problem size limited by total size of clauses (about 1300 clauses)

GRASP

- Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)
e J. P. Marques-Silva and K. A. Sakallah, "GRASP - A New Search Algorithm for Satisfiability", Proc.ICCAD, 1996.
- J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, 1999.
- Incorporate conflict driven learning and non-chronological backtracking.
- Practical SAT problem instances can be solved in reasonable time.

SAT Improvements

- Conflict driven learning
- Once we encounter a conflict, figure out the cause(s) of this conflict and prevent to see this conflict again.
Add learned clause (conflict clause) which is the negative proposition of the conflict source.
- Non-chronological backtracking
- After getting a learned clause from the conflict analysis, we backtrack to the "next-to-the-last" variable in the learned clause.
- Instead of backtracking one decision at a time.

Conflict Driven Learning

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$

Conflict Driven Learning

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$

$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$ Learned clause

Non-Chronological Backtracking

- ' a ' is the next-to-the-last variable in the (current) learned clause.
e c is the last (assigned) variable in this learned clause so a is called the next-to-the-last variable
- Because of this learned clause, when a is assigned 0 then c will be implied and we don't have to make decision for c
- After doing non-chronological backtracking, we will not forgive the path $a=0, b=0 \ldots$ if needed.

Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$

Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$
(a) Learned clause

- Since there is only one variable in the learned clause, no one is the next-to-the-last variable.
- Backtrack all decisions

Non-Chronological Backtracking

$(\bar{a} \vee b \vee c)$
$(a \vee c \vee d)$
$(a \vee c \vee \bar{d})$
$(a \vee \bar{c} \vee d)$
$(a \vee \bar{c} \vee \bar{d})$
$(\bar{b} \vee \bar{c} \vee d)$
$(\bar{a} \vee b \vee \bar{c})$
$(\bar{a} \vee \bar{b} \vee c)$
$(a \vee c)$
(a)

Non-Chronological Backtracking

What's the big deal?

Significantly prune the search space because learned clause is useful forever!

- Useful in generating future conflict clauses.

Search Completeness

- With conflict driven learning, SAT search is still guaranteed to be complete.
- SAT search becomes a decision stack instead of a binary decision tree.
- When encountering a conflict, the conflict analysis does the following tasks:
- Learned clause
- Indicate where to backtrack
- Learned implication

SAT Becomes Practical

- Conflict driven learning greatly increases the capacity of SAT solvers (several thousand variables) for structured problems.
- Realistic applications became plausible.
e Usually thousands and even millions of variables
- Typical EDA applications can make use of SAT including circuit verification, FPGA routing and many other applications
- Research direction changes towards more efficient implementations.

zChaff

- M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik," Chaff: Engineering an Efficient SAT Solver" Proc. DAC 2001. (UC Berkeley, MIT and Princeton Univ.)
- Make the core operations fast.
- After profiling, the most time-consuming parts are Boolean Constraint Propagation (BCP) and Decision.
- As always, good search space pruning (i.e. conflict driven learning) is important.

BCP Algorithm

- When can BCP occur?
* All literals in a clause but one are assigned to False.

> The implied cases of $(v 1 \vee v 2 \vee v 3):$ $(0 \vee 0 \vee v 3)$ or $(0 \vee v 2 \vee 0)$ or $(v 1 \vee 0 \vee 0)$

- For an N-literal clause, this can only occur after $N-1$ literals have been assigned to False.
- So, (theoretically) we could completely ignore the first $N-2$ assignments to this clause.
- Two watched Literals: In reality, we pick two literals in each clause to "watch" and thus can ignore any assignments to the other literals in the clause.

BCP Algorithm

- Heuristically start with watching two unassigned literals in each clause.
- When one of the two watched literals is assigned True, this clause becomes True.
- When one of the two watched literals is assigned False, we send the clause into an Update-Watch queue to do one of the followings:
- 1. Updating (there exists another unassigned literal)

2. BCP (only one watched literal unassigned)

- 3. Conflict handling (all literals are False)

BCP Algorithm

- Let's illustrate this with an example:

* Green: watched literal

- Initially, we identify any two literals in each clause as the watched ones.
- Clauses of size one are a special case.

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4 \\
& \frac{v 1}{\leftarrow} \\
& \hline \text { Detect unit clause }
\end{aligned}
$$

BCP Algorithm

We begin by processing the assignment $v 1=F$ (which is implied by the size one clause)

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

$$
\text { State : }(v 1=F)
$$

Pending :

BCP Algorithm

Examine each clause where the assignment being processed has set a watched literal to F.

$$
\begin{array}{ll}
& \quad v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
\Rightarrow & v 1 \vee v 2 \vee \overline{v 3} \\
\Rightarrow & \frac{v 1 \vee \overline{v 2}}{} \overline{v 1} \vee v 4
\end{array}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

- We need not process clauses where a watched literal has been set to T, because the clause is now satisfied and so can not become unit.

$$
\begin{aligned}
& \quad v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& \\
& \quad v 1 \vee v 2 \vee \overline{v 3} \\
& \Rightarrow \quad \\
& \quad \overline{v 1} \vee \overline{v 2} \\
& \\
& v 1 \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

- We certainly need not process any clauses where neither watched literal changes state (in this example, where $v 1$ is not watched).

$$
\begin{aligned}
\Rightarrow \quad & v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

Now let's actually process the second and third clauses:

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

- For the second clause, we replace $v 1$ with $\overline{v 3}$ as a new watched literal because $\overline{v 3}$ is not assigned to F.

$$
\begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned} \Longrightarrow \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F)$
Pending :

BCP Algorithm

- The third clause is unit. We record the new implication of $\overline{v 2}$, and add it to the queue of assignments to process.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee \vee 2 \vee v 3 \\
v 1 \vee \overline{v 2} & \Longrightarrow \\
v 1 \vee v 4
\end{array} \quad \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& \\
& \text { State }:(v 1=F) \\
& \text { Pending }:
\end{aligned}
$$

BCP Algorithm

- Next, we process $\overline{v 2}$. We only examine the first two clauses.
- For the first clause, we replace $v 2$ with $v 4$ as a new watched literal since $v 4$ is not assigned to F.
- The second clause is unit. We record the new implication of $\overline{v 3}$, and add it to the queue of assignments to process.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee v 3 \\
v 1 \vee \overline{v 2} \\
\overline{v 1} \vee v 4
\end{array} \Longrightarrow \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& \text { State }:(v 1=F, v 2=F) \\
& \text { Pending : }
\end{aligned}
$$

BCP Algorithm

- Next, we process $\overline{v 3}$. We only examine the first clause.
* For the first clause, we replace $v 3$ with $v 5$ as a new watched literal since $v 5$ is not assigned to F.
- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Both $v 4$ and $v 5$ are unassigned. Let's say we decide to assign $v 4=T$ and proceed.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} \\
\overline{v 1} \vee v 4
\end{array} \Longrightarrow \quad \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& v 1 \vee v 2 \vee \overline{v 3} \\
& v 1 \vee \overline{v 2} \\
& \overline{v 1} \vee v 4
\end{aligned}
$$

State: $(v 1=F, v 2=F, v 3=F)$
State: $(v 1=F, v 2=F$,
Pending :
Pending :

BCP Algorithm

- Next, we process v4. We do nothing at all.
- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Only $v 5$ is unassigned. Let's say we decide to assign $v 5=F$ and proceed.

\[

\]

BCP Algorithm

- Next, we process $v 5=F$. We examine the first clause.
e The first clause is already satisfied by $v 4$ so we ignore it.
- Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. No variables are unassigned, so the instance is SAT, and we are done.

$$
\begin{array}{ll}
v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
v 1 \vee v 2 \vee \overline{v 3} \\
v 1 \vee \overline{v 2} \\
\overline{v 1} \vee v 4
\end{array} \quad \begin{aligned}
& v 2 \vee v 3 \vee v 1 \vee v 4 \vee v 5 \\
& \\
& \text { State }:(v 1=F, v 2=F, v 3=F, \\
& v 4=T, v 5=F) \\
& \\
& \frac{v 1 \vee \frac{v 2}{v 1} \vee v 4}{v 3}
\end{aligned} \quad \begin{aligned}
& \text { State }:(v 1=F, v 2=F, \\
& \\
& v 3=F, v 4=T, v 5=F
\end{aligned}
$$

BCP Algorithm Summary

During forward progress: Decisions and Implications

- Only need to examine clauses where watched literal is set to F
. Can ignore any assignments of literals to T
- Can ignore any assignments of non-watched literals

During backtrack: Unwind Assignment Stack

- No action is required at all to unassigned variables
- But it is computation-intensive part in SATO (SATO: an Efficient Propositional Prover. Hantao Zhang*. Department of Computer Science. The University of lowa. Iowa City, IA 52242-1419, USA)
- Overall minimize clause access

The Timeline of the SAT Solver

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

Make Decision

- Because we want to prove that the target Boolean formula is satisfiable or not, we should start with guessing the state (true or false) of a variable until the proof is done.
- Some strategy:
- Random
- Dynamic largest individual sum (DLIS)
- Variable State Independent Decaying Sum (VSIDS)

RAND and DLIS

- Random
. Simply select the next decision randomly from among the unassigned variables and its value.
- Dynamic largest individual sum (DLIS)
- Simple and intuitive: At each decision simply choose the assignment that satisfies the most unsatisfied clauses.
- However, considerable work is required to maintain the statistics necessary for this heuristic.
- The total effort required for this and similar decision heuristics is much more than for the BCP algorithm in zChaff.

VSIDS

- Variable State Independent Decaying Sum (VSIDS)
e Each variable in each polarity has a counter which is initialized to zero.
When a new clause is added to the database, the counter associated with each literal in this clause is incremented.
- The (unassigned) variable and polarity with the highest counter is chosen at each decision.
- Ties are broken randomly by default configuration.

Periodically, all the counters are divided by a constant.

VSIDS (cont.)

- VSIDS attempts to satisfy the conflict clauses but particularly attempts to satisfy recent learned clauses.
- Difficult problems generate many conflicts (and therefore many conflict clauses), the conflict clauses dominate the problem in terms of literal count.
- Since it is independent of the variable state, it has very low overhead.
- The average rum time overhead in zChaff:
- BCP: about 80\%
- Decision: about 10\%
- Conflict analysis: about 10\%

BerkMin

E. Goldberg, and Y. Novikov, "BerkMin: A Fast and Robust Sat-Solver", Proc. DATE 2002. (Cadence Berkeley Labs and Academy of Sciences in Belarus)

- BerkMin tries to satisfy the most recent clause.
- The clause database is organized as a stack.
- The clauses of the original Boolean formula are located at the bottom of the stack and each new conflict clause is added to the top of the stack.
The current top clause is the an unsatisfied clause which is the closest to the top of the stack.
- When making decision, choose the most active unassigned variable in the current top clause by using VSIDS.

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

Restart Motivation

- Best time to restart: when algorithm spends too much time under a wrong branch

Restart

- Motivation: avoid spending too much time in "bad" branches.
e no easy-to-find satisfying assignment
e no opportunity for fast learning of strong clauses.
- All modern SAT solvers use a restart policy.
- Following various criteria, the solver is forced to backtrack to level 0.
- Abandon the current search tree and reconstruct a new one.
- The clauses learned prior to the restart are still there after the restart and can help pruning the search space.
- Restarts have crucial impact on performance.
e Helps reduce variance - adds to robustness in the solver.

The Basic Measure for Restarts

- All existing techniques use the number of conflicts learned as of the previous restart.
The difference is only in the method of calculating the threshold.

Restarts strategies

- Arithmetic (or fixed) series.
- Parameters: x, y
. t : threshold, when conflict number reaches the threshold, restart!
e $\operatorname{Init}(t)=x$
- $\operatorname{Next}(t)=t+y$

- Used in (solver name(x, y)):
- Berkmin $(550,0)$
- Eureka $(2000,0)$
- zChaff $2004(700,0)$
- Siege $(16000,0)$

Restart Strategies

- Geometric series.
e Parameters: x, y
e t: threshold, when conflict number reaches the threshold, restart!
- $\operatorname{Init}(t)=x$
- $\operatorname{Next}(t)=t * y$

- Used in (solver name(x, y)):
- Minisat 2007 (100, 1.5)

Restart Strategies

- Inner-Outer Geometric series.

Parameters: x, y, z

* t: threshold, when conflict number reaches the threshold, restart!
* $\operatorname{Init}(t)=x$
. if $(t * y<z)$
$\operatorname{Next}(t)=t * y$
else
$\operatorname{Next}(t)=x$
$\operatorname{Next}(z)=z * y$

- Used in (solver name(x, y, z)):
- Picosat (100, 1.1, 1000)

Other Issues

- Incremental SAT

Take apart the clause database.
8 Solve the first part and record the learned information.
If it is UNSAT, then stop.
. If it is SAT, then add the next part to solve.

* And so on...
- Refutation proof (Ex.Resolution Proof)
- Parallel computation
- Memory manager
- etc...

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

SAT competitions

- From March to June
- The international SAT Competitions http://www.satcompetition.org/
- SAT Race $(2010,2008,2006)$ http://baldur.iti.uka.de/sat-race-2010/

SAT Solvers

- SAT competitions 2005
- Gold: SatELiteGTI
- Silver: Minisat 1.13 (latest version: 2.2)
- SAT race 2006
e Gold: MiniSAT 2.0 (latest version: 2.2)
- SAT competitions 2007
- RSAT
- PicoSAT

SAT Solvers

- SAT competitions 2009
- precoSAT
- glucose
- SAT race 2010
- CryptoMiniSat
- SAT competition 2012 (on-going)

Outline

- Fundamental concepts
- Core algorithms of satisfiability problems
- Heuristics
- Decision heuristics
- Restart mechanism
- SAT competitions
- Application

The usage of the MiniSat

- MiniSat Page: http://minisat.se/
- The newest version: 2.2.0
- Use MiniSat to find a solution of $F=\left(x_{0} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$.
- Go to MiniSat Page to download it.
. Tar the .gz file tar -zxvf minisat-2.2.0.tar.gz
- Change to directory "core" cd core
- Modify path export MROOT=../
- Make and compile in directory "core" make
- Build DIMACS CNF file for problem you want to solve http://www.satcompetition.org/2009/format-benchmarks2009.html
- Run the minisat to solve problem ./minisat CnfFileName

DIMACS CNF Format

- It is a standard format for the input files (CNF files) of SAT solvers.
- Use c to write comments
- Start with p cnf VarialbeNumber ClauseNumber
- Write the clause with integer(with/without "-") for representing the literals
- Use " 0 " to mark the end of a clause
- Example: $\left(x_{0} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$
c this is a simple DIMACS cnf, use $1,2,3$ for $\times 0, x 1, x 2$ respectively
p cnf 32
1230
-2 30

Hamiltonian Cycle

- Hamiltonian cycle, also called a Hamiltonian circuit, is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once.

(Wiki: http://en.wikipedia.org/wiki/File:Hamiltonian_path.svg)

Encoding

- Encode the Hamiltonian cycle problem into SAT problem by the following way:
. Assume that there is a path of length n which is the number of nodes.
- And each Boolean variables $x_{i, j}$ represent the $i_{t h}$ node in the $j_{t h}$ position of this path.
- So there are n^{2} Boolean variables in SAT problem by this encoding method.

Add Constraint Clauses

- First constraints: Each node only exist one position of this path.
- Second constraints: Each position of this path contains only one node.
- Third constraints: Two consecutive nodes are connected by an edge.

First Constraints

- Each node only exist one position of this path
* Each node is in the path:

$$
\left(x_{i, 0} \vee x_{i, 1} \vee \cdots \vee x_{i, n-1}\right), \text { where } 0 \leq i \leq n-1
$$

* Each node has only position (one hot):

$$
\begin{aligned}
& \left(\overline{x_{i, 0}} \vee \overline{x_{i, 1}}\right) \wedge\left(\overline{x_{i, 0}} \vee \overline{x_{i, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, 0}} \vee \overline{x_{i, n-1}}\right) \wedge\left(\overline{x_{i, 1}} \vee \overline{x_{i, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, j}} \vee \overline{x_{i, k}}\right) \wedge \ldots \\
& \text { where } 0 \leq i \leq n-1,0 \leq j \leq n-2, j+1 \leq k \leq n+1
\end{aligned}
$$

Second Constraints

- Each position of this path contains only one node
- Each position contains nodes:

$$
\left(x_{0, i} \vee x_{1, i} \vee \cdots \vee x_{n-1, i}\right), \text { where } 0 \leq i \leq n-1
$$

- Each position contains only one node (one hot):

$$
\begin{aligned}
& \left(\overline{x_{0, i}} \vee \overline{x_{1, i}}\right) \wedge\left(\overline{x_{0, i}} \vee \overline{x_{2, i}}\right) \wedge \ldots \\
& \left(\overline{x_{0, i}} \vee \overline{x_{n-1, i}}\right) \wedge\left(\overline{x_{1, i}} \vee \overline{x_{2, i}}\right) \wedge \ldots \\
& \left(\overline{x_{j, i}} \vee \overline{x_{k, i}}\right) \wedge \ldots \\
& \text { where } 0 \leq i \leq n-1,0 \leq j \leq n-2, j+1 \leq k \leq n+1
\end{aligned}
$$

Third Constraints

- Two consecutive nodes are connected by an edge
* There is an edge between the $i_{t h}$ node and the $j_{t h}$ node:
Don't add constraint clauses into solver.
- There is no connection between the $i_{t h}$ node and the $j_{t h}$ node:

$$
\begin{aligned}
& \left(\overline{x_{i, 0}} \vee \overline{x_{j, 1}}\right) \wedge\left(\overline{x_{i, 1}} \vee \overline{x_{j, 2}}\right) \wedge \ldots \\
& \left(\overline{x_{i, n-2}} \vee \overline{x_{j, n-1}}\right) \\
& \text { where } 0 \leq i \leq n-1, \quad 0 \leq j \leq n-1, \text { and } i \neq j
\end{aligned}
$$

