
SATISFIABILITY MODULO THEORIES
MOTIVATION, PROCESS, SOLVERS

Yu-Yun Dai

Automatic Verification, Spring 2012

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

EXAMPLES FOR SMT PROBLEMS(1)

 Planning with Resources

 Straightforward to encode into SMT(LA(Q))

Example:

 (Deliver)

∧ (MaxLoad)

∧ (MaxFuel)

∧ (Move MinFuel)

∧ (Move Deliver)

∧ (GoodTrip Deliver)

∧ (GoodTrip AllLoaded)

∧ (MaxLoad (load 30))

∧ (MaxFuel (fuel 15))

∧ (MinFuel (fuel 7 + 0.5load))

∧ (AllLoaded (load = 45))

// goal

// load constraint

// fuel constraint

// move requires fuel

// move implies delivery

// a good trip requires

// a full delivery

// load limit

// fuel limit

// fuel constraint

// more than MaxLoad......

EXAMPLES FOR SMT PROBLEMS(2)

 Verification of HW circuit designs & microcode

 Control paths handled by Boolean reasoning

 Data paths information abstracted into theory-specific
terms

 words (bit-vectors, integers, EUF vars, ...): a[31 : 0], a

 word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators)

 x[15 : 0] = (y[15 : 8] :: z[7 : 0]) << w[3 : 0],

 (a = aL + 216aH), (m1 = store(m0, l0, v0)), ...

 SMT on BV, EUF, AR, modulo-LA(Z) required

INTRODUCTION – WHY SMT?

 SAT solvers are developed very well.

 SAT has benefited many areas: AI, formal methods

 However……

 applications in these fields require determining the
satisfiability of formulas in more expressive logics
such as first-order logic

 Bit-level encoding (bit-blasting) usually exploit
problem-specific structures makes hardware verification
not scalable
 (the example for bit-blasting is in Eager approach)

 General first-order satisfiability is Undecidable.

 It is only semi-decidable.

 general-purpose first-order theorem provers are
typically not able to solve such formulas directly

INTRODUCTION – WHY SMT? (CONT.)

 In most applications…

 Not require general first-order satisfiability

 fixed interpretations of certain predicate and function

symbols

 Can we solve the simpler formulae directly?

 Can we adopt the wisdom of SAT solvers?

 DPLL, non-chronological backtracking, conflict-driven

learning, two-literal watch scheme, VSIDS

 Can we make SAT solvers structure-aware?

 So……here comes SMT !

INTRODUCTION- FIRST ORDER LOGIC (1)

 Syntax : First-Order Languages consist of

 Logical symbols
 variables : 𝑥, 𝑦, 𝑧, …

 logic operators and quantifiers : ¬ ∨ ∧ →, ∃∀

 equality symbol: = (optional)

 Parameters
 constant symbols : 𝑐1, 𝑐2, … (countable)

 function symbols : 𝑓, 𝑔, … (possibly empty)

 predicate symbols : 𝑝, 𝑞, … (possibly empty)

 Ex. Σℕ = { {0}, {𝑆,+}, {=} }

To specify a language, we need to specify

 Presence of “=”

 Symbols

INTRODUCTION- FIRST ORDER LOGIC(2)

 Terms
 Every constant 𝑐1 or variable 𝑥 is a term.

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑓 is a 𝑘-ary function symbol, 𝑓(𝑡1, … , 𝑡𝑘) is
a term.

 Ex: SS0

 Formula
 True and False are atomic formulas.

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑃 is a 𝑘-ary predicate symbol, 𝑃(𝑡1, … , 𝑡𝑘)
is an atomic formula.

 Ex: < x y (define < as predicate sumbol)

 Well Form Formulae:
 expression built up from atomic formulas by applying these

operations: ¬ ∨ ∧ →, ∃∀

 Ex: (x < y) ∨ (x = y)

 Free variable:
 variables in a formula are those not bound by a quantifier

 Sentence :
 Formula without free variable

INTRODUCTION- FIRST ORDER LOGIC(3)

 Sematic : Structure 𝒜 consists of
 Universe (or domain) of 𝒜

 Interpretation for each parameter
 (constant, function, predicate)

 Ex. A Σℕ-structure
 { {0}, {𝑆𝒜:=succ, +𝒜:=plus, =𝒜 :=equal} }

Define a structure 𝒜 satisfies a wff ϕ with
assignment s
 The translation of ϕ determined by A is true,

where variable x is translated as s(x)
wherever it occurs free.

𝒜 satisfies ϕ with every s :
 ϕ is true in 𝒜

 𝒜 is a model of ϕ

INTRODUCTION- FIRST ORDER LOGIC(4)

A theory 𝒯(over a structure)

 a set of first-order sentences closed under

logical implication.

𝒜 is a model for the theory 𝒯

 if all sentences of 𝒯are true in 𝒜.

 So far, that is the definition from the book

 “A Mathematical Introduction to Logic”

SATISFIABILITY OF SAT AND SMT

 Satisfiability is the problem of determining if a

formula has a model

 Model :structure with variable assignment.

 In purely Boolean cases

 a model is a truth assignment to the Boolean variables.

 In first-order cases

 a model assigns values from a domain to variables and

interpretations over the domain to the function and

predicate symbols.

 A formula F is satisfiable if there is an interpretation

(model)M such that

 M ⊨F.

 Otherwise, the formula F is unsatisfiable.

OUTLINE

 Introduction
 Motivation of SMT

 First Order Logic

 Theories of Interest
 Theory of equality TE

 Theory of Reals TR

 Theory of Integers TZ

 Theory of Arrays AR

 Theory of Bitvectors BV
 SMT Competition

 Eager approach
 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach
 DPLL(T)

 Solvers: MATHSAT5, Z3

THEORY OF EQUALITY 𝒯𝔼

 Theory of equality and uninterpreted functions.

 Σ𝔼 = { {𝑐1, …}, {𝑓1, …}, {=} }

 Ex. 𝑓 𝑓 a = a ∧ 𝑓 𝑓 𝑓 a = a ∧ [𝑓(𝑎) ≠ 𝑎]

 𝒯𝔼-unsatisfiable

 Axiom schema

 ∀𝑥. (𝑥 = 𝑥) (reflexivity)

 ∀𝑥, 𝑦. (𝑥 = 𝑦 → 𝑦 = 𝑥) (symmetry)

 ∀𝑥, 𝑦, 𝑧. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧) (transitivity)

 ∀𝑥 , 𝑦 . (𝑥𝑖 = 𝑦𝑖 → 𝑓 𝑥 = 𝑓(𝑦)) (congruence)

 The satisfiability problem for conjunction of literals in

𝒯𝔼 is decidable in polynomial time using congruence

closure.

CONGRUENCE CLOSURE (1)

 Given binary relation R over S.

 The equivalence closure of R

 The unique minimal extension R′ of R, that is closed
under equivalence relation
 reflexivity, symmetry, transitivity.

 congruence closure of R

 The unique minimal extension R′ of R, that is closed
under congruence relation.

 We use the directed acyclic graph (DAG) to
represent terms:

 A term corresponds to exactly one node in DAG.

 Equalities are represented as dot lines.

 Ex: f (f (a, b), b) = a a b

f

f

CONGRUENCE CLOSURE (2)

 Computing congruence closure:

 Pick arbitrary representatives for all equivalence

classes (nodes connected by dotted edges)

 Construct congruence closure for these edges.

 Ex: f(a, b) = a f(f(a, b) , b) = f(a, b)

a b

f

f

a b

f

f

REAL LINEAR ARITHMETIC 𝒯ℚ

Σℚ = { {ℤ}, {, }, {<, =} } ,

 𝐴ℚ = the set of rational numbers

 Ex. (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℚ-satisfiable)

 no need to consider irrational under linear real
arithmetic.

SAT(𝒯ℚ) can be solved by polynomial time
algorithm.
 Fourier-Motzkin variable elimination

algorithm.

 Simplex algorithm
 exponential methods

 tend to perform best in practice.

QUANTIFIER ELIMINATION

 If a formula with no free and no quantifiers, then

it is easy to determine its truth value

 10 > 11 ∨ 3 + 4 < 5 × 3 − 6

 Quantifier elimination

 take input P with n quantifiers

 turn it into equivalent formula P′ with m quantifiers,

where m < n.

 Eventually P ≡ P′ ≡ · · · ≡ Q and Q has no

quantifiers.

 Q will be trivially true or false, and that is the

decision.

FOURIER-MOTZKIN THEOREMS

 The following simple facts are the basis for a very
simple quantifier elimination procedure.

 transitivity.
 (x < y ∧ y ≤ z) ⇒ x < z.

 Over R, with a, b > 0:
 ∃x.(c ≤ ax ∧ bx ≤ d) ≡ (bc ≤ ad)

 ∃x.(c < ax ∧ bx ≤ d) ≡ ∃x.(c ≤ ax ∧ bx < d)

 ≡ ∃x.(c < ax ∧ bx < d) ≡ (bc < ad)

 Proof:
 For bc < ad ⇒ (∃x.c < ax ∧ bx ≤ d)

 take x to be d/b c < a(d/b) and b(d/b) ≤ d.

 Combining Many Constraints
 ∃x.(c ≤ ax ∧ b1x ≤ d1 ∧ b2x ≤ d2)

 ≡ b1c ≤ ad1 ∧ b2c ≤ ad2

DIFFERENCE LOGIC

 Difference logic is a fragment of linear arithmetic.

 Atoms have the form:

 x − y ≤ c.

 Most linear arithmetic atoms found in hardware

and software verification are in this fragment.

 The quantifier free satisfiability problem is

solvable in O(VE).

 V: number of variables

 E: number of Atoms

 (solve by Bellman-Ford algorithm)

DIFFERENCE LOGIC (2)

 Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7},

 construct weighted graph G(M)

 M is T-inconsistent iff G(M) has a negative cycle

 Any negative cycle a1
𝑘1

a2
𝑘2
 a3 →. . . → an

𝑘𝑛
 a1

 corresponds to a set of literals:

 a1 − a2 ≤ k1

 a2 − a3 ≤ k2

 . . .

 an − a1 ≤ kn

 If we add them all, we get 0 ≤ k1 + k2 + . . . + kn

 negative cycle implies k1 + k2 + . . . + kn < 0
inconsistent

a

c

b
2

3 -7

INTEGER LINEAR ARITHMETIC 𝒯ℤ

Σℤ = { {ℤ}, {, }, {<, =} }

 𝐴ℤ= the set of integers

 Ex: (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℤ-unsatisfiable)

SAT(𝒯ℤ) is NP-complete.

 Fourier-Motzkin algorithm doesn’t work well.

 However, it becomes undecidable if

multiplication is introduced in 𝒯ℤ.

 Ex: x y<5

THEORY OF ARRAYS 𝒯𝐴𝑅

 The theory of arrays (𝒯𝐴𝑅) aims at modeling the

behavior of arrays/memories.

 write(a, i , v) ; read(a, i)

 a: array, i: index, v: element

Axiom schema

 McCarthy’s axioms
 ∀𝑎, 𝑖, 𝑣. 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑣

 ∀𝑎, 𝑖, 𝑗, 𝑣. 𝑖 ≠ 𝑗 → [𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑟𝑒𝑎𝑑 𝑎, 𝑗)]

 Extensionality axioms
 ∀𝑎, 𝑏. (∀𝑖. (𝑟𝑒𝑎𝑑 𝑎, 𝑖 = 𝑟𝑒𝑎𝑑 𝑏, 𝑖)) → (𝑎 = 𝑏)

SAT(𝒯𝔸) is NP-complete modulo 𝒯elem.

THEORY OF BITVECTORS 𝒯𝑏𝑣

 Domains : vectors of bits.

 a[7:0]

 Like hardware design

 Operators:

 read, write: like array

 extraction, concatenation:

 a[7:0]; b[3:0] = a[3:0]; c = { a, b}

 bit-wise operations

 &, |, ^

 arithmetic operations

 +, -, *, /, %

 SAT(𝒯𝑏𝑣) is NP-complete.

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

SMT competition
 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

HISTORY OF SMT COMPETITION

 Since 2005

 2005&2006: Only several quantifier free linear

arithmetic categories

 Outperform solvers: Yices 0.1, MathSAT3

 2007: BV problems added

 Z3 0.1, Yices 1.0, MathSAT4

 2008:

 Z3.2 dominated most categories,

 Boolector won in BV categories

 Poor MathSAT4.2 and Yices2……

THEORIES IN SMT COMPETITION

 QF_UF : equality and uniterpreted functions.

 QF_RDL/QF_IDL : real/integer difference logic.

 QF_LIA/QF_LRA : linear real/integer arithmetic

 QF_NIA : nonlinear integer arithmetic

 QF_AX : arrays with extensionality.

 QF_BV : bit-vectors.

 AUFLIRA : arrays, UF, LIA, LRA

 AUFNIRA : arrays, UF, NIA, NRA

 All of the above are decidable!

HISTORY OF SMT COMPETITION

 2009: more and more categories…….

 MathSAT 4.3, Yices2.0 outperformed others in most

categories

 Boolector only took BV domain(still worked well)

 Z3 was in summer vacation?

 2010: first year of parallel track

 Many new solvers appeared

 Z3 and Boolector took summer vacation again…..

 MathSAT5, CVC3, openSMT

 2011

 Z3 kicked other solvers…….

 MathSAT5, CVC3, openSMT

WHAT WE KNOW FROM THE HISTORY?

 If we focus on BV problems:

 Why boolector works so well?

 What’s going on with Yices?

 How can MathSAT and Z3 outperform others?

 Case-dependent? Luck?

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

GENERAL IDEA OF EAGER APPROACH

 Translate the original formula to an satisfiability-
equivalent Boolean formula in a single step.

 Boolector, BV part in Yices

 The performance is related to the size of SAT instance.

 Bit-blasting example:

 x[3:0] + y[3:0] = z[3:0]

 it might introduce other variables

 z[0] = x[0]⨁y[0], c[0] = x[0]y[0], z[1] = x[1] ⨁y[1] ⨁c[0]…..

 Smaller domain encoding

 Convert 𝐹𝑜𝑟𝑖𝑔 to 𝐹𝑎𝑟𝑖𝑡ℎ

 Replace each constraint in 𝐹𝑎𝑟𝑖𝑡ℎ with a fresh
Boolean variables to get a Boolean formula𝐹𝑣𝑎𝑟

 Convert 𝐹𝑎𝑟𝑖𝑡ℎ to Boolean formula 𝐹𝑏𝑜𝑜𝑙.

 Ex: (x[3:0] + y[3:0] = z[3:0]) ∨ (w[3:0] = 7) = > A ∨ B

EXAMPLE FOR SMALL ENCODING

 over Integer Linear Arithmetic 𝒯ℤ

𝐹𝑎𝑟𝑖𝑡ℎ Φ =

 ((x+y < 5) ∨ ¬(x+y > 10))

∧((x+y < 5) ∨ ¬(x-y=3))

∧((x+y > 10) ∨ (x-y=3))

∧ (¬(x+y < 5))

 𝐹𝑣𝑎𝑟 Φ’ =

 (A ∨ ¬B)

∧(A∨ ¬C)

∧(B∨ C)

∧ (¬𝐴)

AFTER SMALLER DOMAIN ENCODING

 If UNSAT, we can return the answer.

 However, we might miss some conflicts under

smaller encoding

 Ex: [¬(x + y = 3)∨(x + y<2)] ∧ [(x + y = 3)]

 After smaller encoding: [¬A ∨ B] ∧ [A]

 Assign A = 1, B = 1 SAT!

 However……(x + y = 3) ∧ (x + y < 2) UNSAT!

 Worse case, we still need bit-blasting!

 Why Boolector is so powerful?

THE SECRET OF BOOLECTOR-REWRITE

 Example can not be handled by small encoding

 (x+y =p) ∧(p+x = q) ∧(2x = r) ∧(r+y =s) ∧ ¬ (q=s)

 Boolector contains crazy, rule-based rewrite!

 Commutative property

 Associativity

 Symmetry

 Better encoding for special operators:

 Ex: Shift operator

 c[3:0] = a[3:0] << b[1:0]

 b[1] c[3:0] ≥ a[3:0]*2

RESOURCE OF BOOLECTOR

 Institute for Formal Models and Verification, Johannes
Kepler University, Linz, Austria.

 Open source: http://fmv.jku.at/boolector/
 Picosat needed

 http://fmv.jku.at/boolector/README

 The version for smtlib2 does not be uploaded

 We can use the simpler format BTOR to write input cases
 BTOR example

1 var 6

2 var 6

3 var 6

4 add 6 1 2

5 add 6 4 3

6 add 6 2 3

7 add 6 6 1

8 eq 1 5 7

9 root 1 8

http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/README
http://fmv.jku.at/boolector/README

RESOURCE OF YICES

 Computer Science Laboratory, SRI International

Menlo Park, CA

 http://yices.csl.sri.com/

 http://yices-wiki.csl.sri.com/index.php/Main_Page

 For BV, only some simplification rule, and bit-

blasting!

 For other theories, apply lazy approach

 No source code

 Read SMT-LIB format and its own format

http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

OVERVIEW OF LAZY APPROACH

 Combine SAT and Theory Solvers

T2B

(abstraction)

Conflict

analyze
SAT

solver

Theory

solvers

SMT instance

SAT instance

Theory Atoms

UNSAT

SAT
UNSAT

SAT B2T

(refinement)

DPLL(𝒯): T2B (THEORY-TO-BOOLEAN)

 T 2B (Theory-to-Boolean)

 a bijective function,

 maps Boolean atoms into themselves

 non-Boolean 𝒯-atoms into fresh Boolean atoms

 Two atom instances are mapped into the same

Boolean atom iff they are syntactically identical.

 B2T := T2B-1 (Boolean-to-Theory)

 T2B and B2T are also called Boolean abstraction and

Boolean refinement respectively.

EXAMPLE OF T2B

 ϕ := { ￢(2x2 − x3 > 2) ∨ A1}

 ∧ { ￢A2 ∨ (x1 − x5 ≤ 1) }

 ∧ { (3x1 − 2x2 ≤ 3) ∨ A2}

 ∧ { ￢(2x3 + x4 ≥ 5) ∨ ￢(3x1 − x3 ≤ 6) ∨ ￢A1}

 ∧ { A1 ∨ (3x1 − 2x2 ≤ 3) }

 ∧ { (x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ￢A1}

 ∧ { A1 ∨ (x3 = 3x5 + 4) ∨ A2}

 T 2B(ϕ) := {￢B1 ∨ A1}

 ∧ {￢A2 ∨ B2}

 ∧ {B3 ∨ A2}

 ∧ {￢B4 ∨ ￢B5 ∨ ￢A1}

 ∧ {A1 ∨ B3}

 ∧ {B6 ∨ B7 ∨ ￢A1}

 ∧ {A1 ∨ B8 ∨ A2}

INTEGRATION BETWEEN SAT SOLVER AND

THEORY SOLVERS

 Lazy Integration

 Theory solvers are triggered only after SAT solver

determines all variables

 Return learning clauses after conflicts occur

 Easier to implement

 Eager Integration

 theory solver participates in early stages

 value propagation (implications)

 conflict analysis

 Find the conflict sources earlier

 Require much more implementation works

EXAMPLE FOR INTEGRATION

 Input instance:
 [A1 ∨ (u - w ≤5)]

∧[A2 ∨ (v + w ≤ 6)]

∧[A3 ∨ (z = 0)]

∧[A4 ∨ (u + v ≥12)]

∧[￢ A3 ∨ ￢ A4]

∧[(x = z + 1) ∨ (x = z + 3) ∨ (x = z + 5) ∨ (x = z + 7)]

∧[(y = z + 2) ∨ (y = z + 4) ∨ (y = z + 6)]

∧[(u + v - 4x - 4y = 0)]

 After T2B
 [A1 ∨ B1]

∧[A2 ∨ B2]

∧[A3 ∨ B3]

∧[A4 ∨ B4]

∧[￢ A3∨ ￢ A4]

∧[B61 ∨ B62 ∨ B63 ∨ B64]

∧[B71 ∨ B72 ∨ B73]

∧[1]

LAZY INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[1]

￢ A1 B1

￢ A2 B2

￢ A3 B3

￢ A4 B4

B61

B71

SAT solver

SAT!! Go to theory solver!

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)
(u + v ≤ 11)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)
(u + v ≤ 11)

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(0 ≤ -1)

Conflict!

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1 (u - w ≤ 5)

B2 (v + w ≤ 6)

B3 (z = 0)

B4 (u + v ≥ 12)

B61 (x = z + 1)

B71 (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(0 ≤ -1)

Conflict!

(z = 0)

In the integer solver……

Add

learning

clause

 ￢ B1 ∨ ￢ B2 ∨ ￢ B4

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1 B1 (u - w ≤ 5)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A3

 B1

 B2

B3

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A4

￢ A3

 B1

 B2

B3

B4

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A4

￢ A3

 B1

 B2

B3

B4

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≥ 12)

Conflict!

(u + v ≤ 11)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 A4

 B1

 B2

￢ B4

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1 (u - w ≤ 5)]

[B2 (v + w ≤ 6)]

[B3 (z = 0)]

[B4 (u + v ≥ 12)]

[B61 (x = z + 1)]

[B71 (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 A4

￢ A3

 B1

 B2

B3

￢ B4

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

(z = 0)

COMPARISON

 Lazy Integration

 SAT solver can work as an enumerator.

 Easier to implement

 Can not find out the conflicts earlier

 Eager Integration

 Requires a tighter integration of the source codes of

the SAT solver and 𝒯−solver.

 Able to detect conflict earlier

 terrible implementation

 The choice relies on the trade-off between

efficiency and implementation effort.

RESOURCE OF MATHSAT5

 Italy, University of Trento

 http://mathsat.fbk.eu/

 3 Ph.D. thesis and many papers…

 Only execution file and libraries(C API)…

 Provide some API to use the

 Read problem in smt2 format

 (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5)))

http://mathsat.fbk.eu/
http://mathsat.fbk.eu/

SPECIALTY OF MATHSAT

 Layered theory solvers

 Sometimes a fully general solver for 𝒯 is not

always needed.

 For example, difference constraints are special

case of linear constraints, and are easier to be

solved.

 Thus, a 𝒯-solver may be organized in a layered

hierarchy of solvers of increasing solving

capabilities.

Ex: Difference UTVPI Linear
 UTVPI: two integer variables per inequality constraint

 a*x+b*y < c

RESOURCE OF Z3

 Create by MicroSoft

 http://research.microsoft.com/en-
us/um/redmond/projects/z3/

 Only execution file and libraries…

 Has been used in several program analysis,
verification, test case generation projects at Microsoft

 Support Several input formats

 SMT-LIB, Z3, Dimacs

 Main features

 Linear real and integer arithmetic.

 Fixed-size bit-vectors

 Uninterpreted functions

 Extensional arrays

 Quantifiers

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

COMBINATION OF THEORIES

 Example:

 x+ 2 = y ⇒ f(read(write(a, x, 3), y −2)) = f(y −x+ 1)

 Given

 Σ = Σ1 ∪ Σ2

 𝒯1,𝒯2 : theories over Σ1, Σ2

 𝒯= 𝒯1 ∪𝒯2

 Is 𝒯 consistent?

 Given satisfiability procedures for conjunction of

literals of 𝒯1 and 𝒯2, how to decide the

satisfiability of𝒯?

 Nelson-Oppen Combination

COMBINATION OF THEORIES(2)

 Nelson-Oppen Combination

 Essential concept:

 Purification
 For a conjunction of (Σ1 ∪ Σ2)-literals 𝜑, transform it into a

equisatisfiable 𝜙1 ∧ 𝜙2 such that 𝜙𝑖 contains only Σ𝑖-literals.

 Stably-Infinite Theories

 A theory is stably infinite if every satisfiable sentence is
satisfiable in an infinite model.

 Example: Theories with only finite models are not stably
infinite. (only two elements in the domain)

 T = (∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)).

 The union of two consistent, disjoint, stably infinite theories is
consistent.

 Convex Theories.

 for all finite sets Γ of literals and for all non-empty disjunctions
 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼 of variables

 Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼 iff Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖for some i ∈ 𝐼

NELSON-OPPEN COMBINATION

 Let 𝒯1 and𝒯2 be consistent, stably infinite

theories over disjoint (countable) signatures.

 Assume satisfiability of conjunction of literals can

decided in O(T1(n)) and O(T2(n)) time respectively.

Then,

 1. The combined theory T is consistent and stably

infinite.

 2. Satisfiability of quantifier free conjunction of

literals in 𝒯 can be decided in O(2𝑛
2
× (T1(n) + T2(n)).

 3. If 𝒯1 and𝒯2 are convex, then so is 𝒯 and

satisfiability in 𝒯 is in O(n3 × (T1(n) + T2(n))).

NELSON-OPPEN COMBINATION

PROCEDURE

 Initial State:
 φ is a conjunction of literals over Σ1 ∪ Σ2.

 Purification:
 Preserving satisfiability transform φ into φ1 ∧ φ2, such that,

φi ∈ Σi

 Interaction:
 Guess a partition of V(φ1) ∩ V(φ2) into disjoint subsets.

Express it as conjunction of literals ψ.

 Example. The partition {x1}, {x2, x3}, {x4} is represented as
 x1 ≠ x2, x1 ≠ x4, x2 ≠ x4, x2 = x3.

 Component Procedures :
 Use individual procedures to decide whether φi ∧ ψ is

satisfiable

 Return:
 If both return yes, return yes. No, otherwise.

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯𝐿A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯𝐿A

𝒯AR

f(u3) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(u3) ≠ f(u4)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Finish

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Solving 𝒯LA

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u2 = x

x + 2 = y

u1 = 3

u2 = x

u3 = read(write(a, x, u1), u2)

u4 = 3

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Solve 𝒯AR

x + 2 = y

u1 = 3

u2 = x

u3 = read(write(a, x, u1), u2)

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u3 = u1

x + 2 = y

u1 = 3

u2 = x

u3 = u1

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u4 = u1

x + 2 = y

u1 = 3

u2 = x

u3 = u1

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

u3 = u1

u3 = u1

u1 = 3 ∧ u4 = 3 ⇒ u4 = u1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

x + 2 = y

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

u1 = 3

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

u2 = y - 2

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

u3 = read(write(a, x, u1), u2)

f(u3) ≠ f(y − x + 1)

u4 = y – x + 1

f(u3) ≠ f(u4)

f(u3) ≠ f(u4)

Solve

x + 2 = y

u2 = y - 2

u4 = y – x + 1

 u2 = x

 u4 = 3

 u2 = x

x + 2 = y

 u2 = x
 u2 = x

u3 = read(write(a, x, u1), u2) u3 = u1 u3 = u1

 u3 = u1

 u3 = u1

 u4 = u1

u1 = 3

u4 = 3

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4)

f(u3) = f(u4)

 u4 = u1

 u4 = u1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

x + 2 = y

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

u1 = 3

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

u2 = y - 2

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

u3 = read(write(a, x, u1), u2)

f(u3) ≠ f(y − x + 1)

u4 = y – x + 1

f(u3) ≠ f(u4)

f(u3) ≠ f(u4)

Solve

x + 2 = y

u2 = y - 2

u4 = y – x + 1

 u2 = x

 u4 = 3

 u2 = x

x + 2 = y

 u2 = x
 u2 = x

u3 = read(write(a, x, u1), u2) u3 = u1 u3 = u1

 u3 = u1

 u3 = u1

 u4 = u1

u1 = 3

u4 = 3

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4) UNSAT!

f(u3) = f(u4)

 u4 = u1

 u4 = u1

CONCLUSION

We go through

 some theories of interest

 eager approaches to SMT

 lazy approaches to SMT

 Some theories and algorithms are simply

discussed

 More details: see reference slides.

REFERENCE

 A Mathematical Introduction to Logic
 by Herbert B. Enderton

 SMT-COMP
 The Satisfiability Modulo Theories Competition

 http://smtcomp.sourceforge.net/2012/

 SMT-LIB
 The Satisfiability Modulo Theories Library

 http://goedel.cs.uiowa.edu/smtlib/

 Satisfiability Modulo Theories slides
 Roberto Sebastiani for IJCAI 11

 Solvers’ websites:
 Boolector, Yices, Z3, MathSAT5

 Many papers from MathSAT team

 Tutorial slides from Z3

 Previous slides from Yi-Wen Chang and Chih-Chun Lee

 Congruence closure
 http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf

 Difference Logic
 http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf

http://www.math.ucla.edu/~hbe
http://www.math.ucla.edu/~hbe
http://smtcomp.sourceforge.net/2012/
http://goedel.cs.uiowa.edu/smtlib/
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf

