
SATISFIABILITY MODULO THEORIES
MOTIVATION, PROCESS, SOLVERS

Yu-Yun Dai

Automatic Verification, Spring 2012

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

EXAMPLES FOR SMT PROBLEMS(1)

 Planning with Resources

 Straightforward to encode into SMT(LA(Q))

Example:

 (Deliver)

∧ (MaxLoad)

∧ (MaxFuel)

∧ (Move  MinFuel)

∧ (Move  Deliver)

∧ (GoodTrip Deliver)

∧ (GoodTrip  AllLoaded)

∧ (MaxLoad  (load 30))

∧ (MaxFuel  (fuel 15))

∧ (MinFuel  (fuel 7 + 0.5load))

∧ (AllLoaded  (load = 45))

// goal

// load constraint

// fuel constraint

// move requires fuel

// move implies delivery

// a good trip requires

// a full delivery

// load limit

// fuel limit

// fuel constraint

// more than MaxLoad......

EXAMPLES FOR SMT PROBLEMS(2)

 Verification of HW circuit designs & microcode

 Control paths handled by Boolean reasoning

 Data paths information abstracted into theory-specific
terms

 words (bit-vectors, integers, EUF vars, ...): a[31 : 0], a

 word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators)

 x[15 : 0] = (y[15 : 8] :: z[7 : 0]) << w[3 : 0],

 (a = aL + 216aH), (m1 = store(m0, l0, v0)), ...

 SMT on BV, EUF, AR, modulo-LA(Z) required

INTRODUCTION – WHY SMT?

 SAT solvers are developed very well.

 SAT has benefited many areas: AI, formal methods

 However……

 applications in these fields require determining the
satisfiability of formulas in more expressive logics
such as first-order logic

 Bit-level encoding (bit-blasting) usually exploit
problem-specific structures makes hardware verification
not scalable
 (the example for bit-blasting is in Eager approach)

 General first-order satisfiability is Undecidable.

 It is only semi-decidable.

 general-purpose first-order theorem provers are
typically not able to solve such formulas directly

INTRODUCTION – WHY SMT? (CONT.)

 In most applications…

 Not require general first-order satisfiability

 fixed interpretations of certain predicate and function

symbols

 Can we solve the simpler formulae directly?

 Can we adopt the wisdom of SAT solvers?

 DPLL, non-chronological backtracking, conflict-driven

learning, two-literal watch scheme, VSIDS

 Can we make SAT solvers structure-aware?

 So……here comes SMT !

INTRODUCTION- FIRST ORDER LOGIC (1)

 Syntax : First-Order Languages consist of

 Logical symbols
 variables : 𝑥, 𝑦, 𝑧, …

 logic operators and quantifiers : ¬ ∨ ∧ →, ∃∀

 equality symbol: = (optional)

 Parameters
 constant symbols : 𝑐1, 𝑐2, … (countable)

 function symbols : 𝑓, 𝑔, … (possibly empty)

 predicate symbols : 𝑝, 𝑞, … (possibly empty)

 Ex. Σℕ = { {0}, {𝑆,+}, {=} }

To specify a language, we need to specify

 Presence of “=”

 Symbols

INTRODUCTION- FIRST ORDER LOGIC(2)

 Terms
 Every constant 𝑐1 or variable 𝑥 is a term.

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑓 is a 𝑘-ary function symbol, 𝑓(𝑡1, … , 𝑡𝑘) is
a term.

 Ex: SS0

 Formula
 True and False are atomic formulas.

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑃 is a 𝑘-ary predicate symbol, 𝑃(𝑡1, … , 𝑡𝑘)
is an atomic formula.

 Ex: < x y (define < as predicate sumbol)

 Well Form Formulae:
 expression built up from atomic formulas by applying these

operations: ¬ ∨ ∧ →, ∃∀

 Ex: (x < y) ∨ (x = y)

 Free variable:
 variables in a formula are those not bound by a quantifier

 Sentence :
 Formula without free variable

INTRODUCTION- FIRST ORDER LOGIC(3)

 Sematic : Structure 𝒜 consists of
 Universe (or domain) of 𝒜

 Interpretation for each parameter
 (constant, function, predicate)

 Ex. A Σℕ-structure
 { {0}, {𝑆𝒜:=succ, +𝒜:=plus, =𝒜 :=equal} }

Define a structure 𝒜 satisfies a wff ϕ with
assignment s
 The translation of ϕ determined by A is true,

where variable x is translated as s(x)
wherever it occurs free.

𝒜 satisfies ϕ with every s :
 ϕ is true in 𝒜

 𝒜 is a model of ϕ

INTRODUCTION- FIRST ORDER LOGIC(4)

A theory 𝒯(over a structure)

 a set of first-order sentences closed under

logical implication.

𝒜 is a model for the theory 𝒯

 if all sentences of 𝒯are true in 𝒜.

 So far, that is the definition from the book

 “A Mathematical Introduction to Logic”

SATISFIABILITY OF SAT AND SMT

 Satisfiability is the problem of determining if a

formula has a model

 Model :structure with variable assignment.

 In purely Boolean cases

 a model is a truth assignment to the Boolean variables.

 In first-order cases

 a model assigns values from a domain to variables and

interpretations over the domain to the function and

predicate symbols.

 A formula F is satisfiable if there is an interpretation

(model)M such that

 M ⊨F.

 Otherwise, the formula F is unsatisfiable.

OUTLINE

 Introduction
 Motivation of SMT

 First Order Logic

 Theories of Interest
 Theory of equality TE

 Theory of Reals TR

 Theory of Integers TZ

 Theory of Arrays AR

 Theory of Bitvectors BV
 SMT Competition

 Eager approach
 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach
 DPLL(T)

 Solvers: MATHSAT5, Z3

THEORY OF EQUALITY 𝒯𝔼

 Theory of equality and uninterpreted functions.

 Σ𝔼 = { {𝑐1, …}, {𝑓1, …}, {=} }

 Ex. 𝑓 𝑓 a = a ∧ 𝑓 𝑓 𝑓 a = a ∧ [𝑓(𝑎) ≠ 𝑎]

 𝒯𝔼-unsatisfiable

 Axiom schema

 ∀𝑥. (𝑥 = 𝑥) (reflexivity)

 ∀𝑥, 𝑦. (𝑥 = 𝑦 → 𝑦 = 𝑥) (symmetry)

 ∀𝑥, 𝑦, 𝑧. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧) (transitivity)

 ∀𝑥 , 𝑦 . (𝑥𝑖 = 𝑦𝑖 → 𝑓 𝑥 = 𝑓(𝑦)) (congruence)

 The satisfiability problem for conjunction of literals in

𝒯𝔼 is decidable in polynomial time using congruence

closure.

CONGRUENCE CLOSURE (1)

 Given binary relation R over S.

 The equivalence closure of R

 The unique minimal extension R′ of R, that is closed
under equivalence relation
 reflexivity, symmetry, transitivity.

 congruence closure of R

 The unique minimal extension R′ of R, that is closed
under congruence relation.

 We use the directed acyclic graph (DAG) to
represent terms:

 A term corresponds to exactly one node in DAG.

 Equalities are represented as dot lines.

 Ex: f (f (a, b), b) = a a b

f

f

CONGRUENCE CLOSURE (2)

 Computing congruence closure:

 Pick arbitrary representatives for all equivalence

classes (nodes connected by dotted edges)

 Construct congruence closure for these edges.

 Ex: f(a, b) = a  f(f(a, b) , b) = f(a, b)

a b

f

f

a b

f

f

REAL LINEAR ARITHMETIC 𝒯ℚ

Σℚ = { {ℤ}, {, }, {<, =} } ,

 𝐴ℚ = the set of rational numbers

 Ex. (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℚ-satisfiable)

 no need to consider irrational under linear real
arithmetic.

SAT(𝒯ℚ) can be solved by polynomial time
algorithm.
 Fourier-Motzkin variable elimination

algorithm.

 Simplex algorithm
 exponential methods

 tend to perform best in practice.

QUANTIFIER ELIMINATION

 If a formula with no free and no quantifiers, then

it is easy to determine its truth value

 10 > 11 ∨ 3 + 4 < 5 × 3 − 6

 Quantifier elimination

 take input P with n quantifiers

 turn it into equivalent formula P′ with m quantifiers,

where m < n.

 Eventually P ≡ P′ ≡ · · · ≡ Q and Q has no

quantifiers.

 Q will be trivially true or false, and that is the

decision.

FOURIER-MOTZKIN THEOREMS

 The following simple facts are the basis for a very
simple quantifier elimination procedure.

 transitivity.
 (x < y ∧ y ≤ z) ⇒ x < z.

 Over R, with a, b > 0:
 ∃x.(c ≤ ax ∧ bx ≤ d) ≡ (bc ≤ ad)

 ∃x.(c < ax ∧ bx ≤ d) ≡ ∃x.(c ≤ ax ∧ bx < d)

 ≡ ∃x.(c < ax ∧ bx < d) ≡ (bc < ad)

 Proof:
 For bc < ad ⇒ (∃x.c < ax ∧ bx ≤ d)

 take x to be d/b  c < a(d/b) and b(d/b) ≤ d.

 Combining Many Constraints
 ∃x.(c ≤ ax ∧ b1x ≤ d1 ∧ b2x ≤ d2)

 ≡ b1c ≤ ad1 ∧ b2c ≤ ad2

DIFFERENCE LOGIC

 Difference logic is a fragment of linear arithmetic.

 Atoms have the form:

 x − y ≤ c.

 Most linear arithmetic atoms found in hardware

and software verification are in this fragment.

 The quantifier free satisfiability problem is

solvable in O(VE).

 V: number of variables

 E: number of Atoms

 (solve by Bellman-Ford algorithm)

DIFFERENCE LOGIC (2)

 Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7},

 construct weighted graph G(M)

 M is T-inconsistent iff G(M) has a negative cycle

 Any negative cycle a1
𝑘1

a2
𝑘2
 a3 →. . . → an

𝑘𝑛
 a1

 corresponds to a set of literals:

 a1 − a2 ≤ k1

 a2 − a3 ≤ k2

 . . .

 an − a1 ≤ kn

 If we add them all, we get 0 ≤ k1 + k2 + . . . + kn

 negative cycle implies k1 + k2 + . . . + kn < 0 
inconsistent

a

c

b
2

3 -7

INTEGER LINEAR ARITHMETIC 𝒯ℤ

Σℤ = { {ℤ}, {, }, {<, =} }

 𝐴ℤ= the set of integers

 Ex: (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℤ-unsatisfiable)

SAT(𝒯ℤ) is NP-complete.

 Fourier-Motzkin algorithm doesn’t work well.

 However, it becomes undecidable if

multiplication is introduced in 𝒯ℤ.

 Ex: x  y<5

THEORY OF ARRAYS 𝒯𝐴𝑅

 The theory of arrays (𝒯𝐴𝑅) aims at modeling the

behavior of arrays/memories.

 write(a, i , v) ; read(a, i)

 a: array, i: index, v: element

Axiom schema

 McCarthy’s axioms
 ∀𝑎, 𝑖, 𝑣. 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑣

 ∀𝑎, 𝑖, 𝑗, 𝑣. 𝑖 ≠ 𝑗 → [𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑟𝑒𝑎𝑑 𝑎, 𝑗)]

 Extensionality axioms
 ∀𝑎, 𝑏. (∀𝑖. (𝑟𝑒𝑎𝑑 𝑎, 𝑖 = 𝑟𝑒𝑎𝑑 𝑏, 𝑖)) → (𝑎 = 𝑏)

SAT(𝒯𝔸) is NP-complete modulo 𝒯elem.

THEORY OF BITVECTORS 𝒯𝑏𝑣

 Domains : vectors of bits.

 a[7:0]

 Like hardware design

 Operators:

 read, write: like array

 extraction, concatenation:

 a[7:0]; b[3:0] = a[3:0]; c = { a, b}

 bit-wise operations

 &, |, ^

 arithmetic operations

 +, -, *, /, %

 SAT(𝒯𝑏𝑣) is NP-complete.

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

SMT competition
 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

HISTORY OF SMT COMPETITION

 Since 2005

 2005&2006: Only several quantifier free linear

arithmetic categories

 Outperform solvers: Yices 0.1, MathSAT3

 2007: BV problems added

 Z3 0.1, Yices 1.0, MathSAT4

 2008:

 Z3.2 dominated most categories,

 Boolector won in BV categories

 Poor MathSAT4.2 and Yices2……

THEORIES IN SMT COMPETITION

 QF_UF : equality and uniterpreted functions.

 QF_RDL/QF_IDL : real/integer difference logic.

 QF_LIA/QF_LRA : linear real/integer arithmetic

 QF_NIA : nonlinear integer arithmetic

 QF_AX : arrays with extensionality.

 QF_BV : bit-vectors.

 AUFLIRA : arrays, UF, LIA, LRA

 AUFNIRA : arrays, UF, NIA, NRA

 All of the above are decidable!

HISTORY OF SMT COMPETITION

 2009: more and more categories…….

 MathSAT 4.3, Yices2.0 outperformed others in most

categories

 Boolector only took BV domain(still worked well)

 Z3 was in summer vacation?

 2010: first year of parallel track

 Many new solvers appeared

 Z3 and Boolector took summer vacation again…..

 MathSAT5, CVC3, openSMT

 2011

 Z3 kicked other solvers…….

 MathSAT5, CVC3, openSMT

WHAT WE KNOW FROM THE HISTORY?

 If we focus on BV problems:

 Why boolector works so well?

 What’s going on with Yices?

 How can MathSAT and Z3 outperform others?

 Case-dependent? Luck?

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

 Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

GENERAL IDEA OF EAGER APPROACH

 Translate the original formula to an satisfiability-
equivalent Boolean formula in a single step.

 Boolector, BV part in Yices

 The performance is related to the size of SAT instance.

 Bit-blasting example:

 x[3:0] + y[3:0] = z[3:0]

 it might introduce other variables

 z[0] = x[0]⨁y[0], c[0] = x[0]y[0], z[1] = x[1] ⨁y[1] ⨁c[0]…..

 Smaller domain encoding

 Convert 𝐹𝑜𝑟𝑖𝑔 to 𝐹𝑎𝑟𝑖𝑡ℎ

 Replace each constraint in 𝐹𝑎𝑟𝑖𝑡ℎ with a fresh
Boolean variables to get a Boolean formula𝐹𝑣𝑎𝑟

 Convert 𝐹𝑎𝑟𝑖𝑡ℎ to Boolean formula 𝐹𝑏𝑜𝑜𝑙.

 Ex: (x[3:0] + y[3:0] = z[3:0]) ∨ (w[3:0] = 7) = > A ∨ B

EXAMPLE FOR SMALL ENCODING

 over Integer Linear Arithmetic 𝒯ℤ

𝐹𝑎𝑟𝑖𝑡ℎ Φ =

 ((x+y < 5) ∨ ¬(x+y > 10))

∧((x+y < 5) ∨ ¬(x-y=3))

∧((x+y > 10) ∨ (x-y=3))

∧ (¬(x+y < 5))

 𝐹𝑣𝑎𝑟 Φ’ =

 (A ∨ ¬B)

∧(A∨ ¬C)

∧(B∨ C)

∧ (¬𝐴)

AFTER SMALLER DOMAIN ENCODING

 If UNSAT, we can return the answer.

 However, we might miss some conflicts under

smaller encoding

 Ex: [¬(x + y = 3)∨(x + y<2)] ∧ [(x + y = 3)]

 After smaller encoding: [¬A ∨ B] ∧ [A]

 Assign A = 1, B = 1  SAT!

 However……(x + y = 3) ∧ (x + y < 2)  UNSAT!

 Worse case, we still need bit-blasting!

 Why Boolector is so powerful?

THE SECRET OF BOOLECTOR-REWRITE

 Example can not be handled by small encoding

 (x+y =p) ∧(p+x = q) ∧(2x = r) ∧(r+y =s) ∧ ¬ (q=s)

 Boolector contains crazy, rule-based rewrite!

 Commutative property

 Associativity

 Symmetry

 Better encoding for special operators:

 Ex: Shift operator

 c[3:0] = a[3:0] << b[1:0]

 b[1] c[3:0] ≥ a[3:0]*2

RESOURCE OF BOOLECTOR

 Institute for Formal Models and Verification, Johannes
Kepler University, Linz, Austria.

 Open source: http://fmv.jku.at/boolector/
 Picosat needed

 http://fmv.jku.at/boolector/README

 The version for smtlib2 does not be uploaded

 We can use the simpler format BTOR to write input cases
 BTOR example

1 var 6

2 var 6

3 var 6

4 add 6 1 2

5 add 6 4 3

6 add 6 2 3

7 add 6 6 1

8 eq 1 5 7

9 root 1 8

http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/README
http://fmv.jku.at/boolector/README

RESOURCE OF YICES

 Computer Science Laboratory, SRI International

Menlo Park, CA

 http://yices.csl.sri.com/

 http://yices-wiki.csl.sri.com/index.php/Main_Page

 For BV, only some simplification rule, and bit-

blasting!

 For other theories, apply lazy approach

 No source code

 Read SMT-LIB format and its own format

http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page

OUTLINE

 Introduction

 Motivation of SMT

 First Order Logic

 Theories of Interest

 SMT competition

 Eager approach

 Algorithm and Solving procedure

 Solvers: boolector, Yices 1.0

Lazy approach

 DPLL(T)

 Solvers: MATHSAT5, Z3

OVERVIEW OF LAZY APPROACH

 Combine SAT and Theory Solvers

T2B

(abstraction)

Conflict

analyze
SAT

solver

Theory

solvers

SMT instance

SAT instance

Theory Atoms

UNSAT

SAT
UNSAT

SAT B2T

(refinement)

DPLL(𝒯): T2B (THEORY-TO-BOOLEAN)

 T 2B (Theory-to-Boolean)

 a bijective function,

 maps Boolean atoms into themselves

 non-Boolean 𝒯-atoms into fresh Boolean atoms

 Two atom instances are mapped into the same

Boolean atom iff they are syntactically identical.

 B2T := T2B-1 (Boolean-to-Theory)

 T2B and B2T are also called Boolean abstraction and

Boolean refinement respectively.

EXAMPLE OF T2B

 ϕ := { ￢(2x2 − x3 > 2) ∨ A1}

 ∧ { ￢A2 ∨ (x1 − x5 ≤ 1) }

 ∧ { (3x1 − 2x2 ≤ 3) ∨ A2}

 ∧ { ￢(2x3 + x4 ≥ 5) ∨ ￢(3x1 − x3 ≤ 6) ∨ ￢A1}

 ∧ { A1 ∨ (3x1 − 2x2 ≤ 3) }

 ∧ { (x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ￢A1}

 ∧ { A1 ∨ (x3 = 3x5 + 4) ∨ A2}

 T 2B(ϕ) := {￢B1 ∨ A1}

 ∧ {￢A2 ∨ B2}

 ∧ {B3 ∨ A2}

 ∧ {￢B4 ∨ ￢B5 ∨ ￢A1}

 ∧ {A1 ∨ B3}

 ∧ {B6 ∨ B7 ∨ ￢A1}

 ∧ {A1 ∨ B8 ∨ A2}

INTEGRATION BETWEEN SAT SOLVER AND

THEORY SOLVERS

 Lazy Integration

 Theory solvers are triggered only after SAT solver

determines all variables

 Return learning clauses after conflicts occur

 Easier to implement

 Eager Integration

 theory solver participates in early stages

 value propagation (implications)

 conflict analysis

 Find the conflict sources earlier

 Require much more implementation works

EXAMPLE FOR INTEGRATION

 Input instance:
 [A1 ∨ (u - w ≤5)]

∧[A2 ∨ (v + w ≤ 6)]

∧[A3 ∨ (z = 0)]

∧[A4 ∨ (u + v ≥12)]

∧[￢ A3 ∨ ￢ A4]

∧[(x = z + 1) ∨ (x = z + 3) ∨ (x = z + 5) ∨ (x = z + 7)]

∧[(y = z + 2) ∨ (y = z + 4) ∨ (y = z + 6)]

∧[(u + v - 4x - 4y = 0)]

 After T2B
 [A1 ∨ B1]

∧[A2 ∨ B2]

∧[A3 ∨ B3]

∧[A4 ∨ B4]

∧[￢ A3∨ ￢ A4]

∧[B61 ∨ B62 ∨ B63 ∨ B64]

∧[B71 ∨ B72 ∨ B73]

∧[1]

LAZY INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[1]

￢ A1  B1

￢ A2  B2

￢ A3  B3

￢ A4  B4

B61

B71

SAT solver

SAT!! Go to theory solver!

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)
(u + v ≤ 11)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)
(u + v ≤ 11)

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(0 ≤ -1)

Conflict!

(z = 0)

In the integer solver……

LAZY INTEGRATION(2)

B1  (u - w ≤ 5)

B2  (v + w ≤ 6)

B3  (z = 0)

B4  (u + v ≥ 12)

B61  (x = z + 1)

B71  (y = z + 2)

B1

B2

B3

B4

B7

B6

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≥ 12)

(u + v ≤ 11)

(0 ≤ -1)

Conflict!

(z = 0)

In the integer solver……

Add

learning

clause

 ￢ B1 ∨ ￢ B2 ∨ ￢ B4

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1 B1 (u - w ≤ 5)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A3

 B1

 B2

B3

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A4

￢ A3

 B1

 B2

B3

B4

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≤ 11)

EAGER INTEGRATION

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

￢ A4

￢ A3

 B1

 B2

B3

B4

(u - w ≤ 5)

(v + w ≤ 6)

(z = 0)

(u + v ≥ 12)

Conflict!

(u + v ≤ 11)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 B1

 B2

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 A4

 B1

 B2

￢ B4

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

EAGER INTEGRATION(2)

SAT instance:

[A1 ∨ B1]

[A2 ∨ B2]

[A3 ∨ B3]

[A4 ∨ B4]

[￢ A3∨ ￢ A4]

[B61 ∨ B62 ∨ B63 ∨ B64]

[B71 ∨ B72 ∨ B73]

[B1  (u - w ≤ 5)]

[B2  (v + w ≤ 6)]

[B3  (z = 0)]

[B4  (u + v ≥ 12)]

[B61  (x = z + 1)]

[B71  (y = z + 2)]

SAT domain Theory Domain

￢ A1

￢ A2

 A4

￢ A3

 B1

 B2

B3

￢ B4

(u - w ≤ 5)

(v + w ≤ 6)

(u + v ≤ 11)

￢(u + v ≥ 12)

!!!

(z = 0)

COMPARISON

 Lazy Integration

 SAT solver can work as an enumerator.

 Easier to implement

 Can not find out the conflicts earlier

 Eager Integration

 Requires a tighter integration of the source codes of

the SAT solver and 𝒯−solver.

 Able to detect conflict earlier

  terrible implementation

 The choice relies on the trade-off between

efficiency and implementation effort.

RESOURCE OF MATHSAT5

 Italy, University of Trento

 http://mathsat.fbk.eu/

 3 Ph.D. thesis and many papers…

 Only execution file and libraries(C API)…

 Provide some API to use the

 Read problem in smt2 format

 (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5)))

http://mathsat.fbk.eu/
http://mathsat.fbk.eu/

SPECIALTY OF MATHSAT

 Layered theory solvers

 Sometimes a fully general solver for 𝒯 is not

always needed.

 For example, difference constraints are special

case of linear constraints, and are easier to be

solved.

 Thus, a 𝒯-solver may be organized in a layered

hierarchy of solvers of increasing solving

capabilities.

Ex: Difference  UTVPI  Linear
 UTVPI: two integer variables per inequality constraint

 a*x+b*y < c

RESOURCE OF Z3

 Create by MicroSoft

 http://research.microsoft.com/en-
us/um/redmond/projects/z3/

 Only execution file and libraries…

 Has been used in several program analysis,
verification, test case generation projects at Microsoft

 Support Several input formats

 SMT-LIB, Z3, Dimacs

 Main features

 Linear real and integer arithmetic.

 Fixed-size bit-vectors

 Uninterpreted functions

 Extensional arrays

 Quantifiers

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

COMBINATION OF THEORIES

 Example:

 x+ 2 = y ⇒ f(read(write(a, x, 3), y −2)) = f(y −x+ 1)

 Given

 Σ = Σ1 ∪ Σ2

 𝒯1,𝒯2 : theories over Σ1, Σ2

 𝒯= 𝒯1 ∪𝒯2

 Is 𝒯 consistent?

 Given satisfiability procedures for conjunction of

literals of 𝒯1 and 𝒯2, how to decide the

satisfiability of𝒯?

 Nelson-Oppen Combination

COMBINATION OF THEORIES(2)

 Nelson-Oppen Combination

 Essential concept:

 Purification
 For a conjunction of (Σ1 ∪ Σ2)-literals 𝜑, transform it into a

equisatisfiable 𝜙1 ∧ 𝜙2 such that 𝜙𝑖 contains only Σ𝑖-literals.

 Stably-Infinite Theories

 A theory is stably infinite if every satisfiable sentence is
satisfiable in an infinite model.

 Example: Theories with only finite models are not stably
infinite. (only two elements in the domain)

 T = (∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)).

 The union of two consistent, disjoint, stably infinite theories is
consistent.

 Convex Theories.

 for all finite sets Γ of literals and for all non-empty disjunctions
 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼 of variables

 Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼 iff Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖for some i ∈ 𝐼

NELSON-OPPEN COMBINATION

 Let 𝒯1 and𝒯2 be consistent, stably infinite

theories over disjoint (countable) signatures.

 Assume satisfiability of conjunction of literals can

decided in O(T1(n)) and O(T2(n)) time respectively.

Then,

 1. The combined theory T is consistent and stably

infinite.

 2. Satisfiability of quantifier free conjunction of

literals in 𝒯 can be decided in O(2𝑛
2
× (T1(n) + T2(n)).

 3. If 𝒯1 and𝒯2 are convex, then so is 𝒯 and

satisfiability in 𝒯 is in O(n3 × (T1(n) + T2(n))).

NELSON-OPPEN COMBINATION

PROCEDURE

 Initial State:
 φ is a conjunction of literals over Σ1 ∪ Σ2.

 Purification:
 Preserving satisfiability transform φ into φ1 ∧ φ2, such that,

φi ∈ Σi

 Interaction:
 Guess a partition of V(φ1) ∩ V(φ2) into disjoint subsets.

Express it as conjunction of literals ψ.

 Example. The partition {x1}, {x2, x3}, {x4} is represented as
 x1 ≠ x2, x1 ≠ x4, x2 ≠ x4, x2 = x3.

 Component Procedures :
 Use individual procedures to decide whether φi ∧ ψ is

satisfiable

 Return:
 If both return yes, return yes. No, otherwise.

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯𝐿A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯𝐿A

𝒯AR

f(u3) ≠ f(y − x + 1)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

f(u3) ≠ f(u4)

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Finish

Purifying

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Solving 𝒯LA

x + 2 = y

u1 = 3

u2 = y - 2

u3 = read(write(a, x, u1), u2)

u4 = y – x + 1

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u2 = x

x + 2 = y

u1 = 3

u2 = x

u3 = read(write(a, x, u1), u2)

u4 = 3

f(u3) ≠ f(u4)

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Solve 𝒯AR

x + 2 = y

u1 = 3

u2 = x

u3 = read(write(a, x, u1), u2)

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u3 = u1

x + 2 = y

u1 = 3

u2 = x

u3 = u1

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯LA

𝒯AR

Propagate

u4 = u1

x + 2 = y

u1 = 3

u2 = x

u3 = u1

u4 = 3

f(u3) ≠ f(u4)

u2 = x u2 = x

u3 = u1

u3 = u1

u1 = 3 ∧ u4 = 3 ⇒ u4 = u1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

x + 2 = y

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

u1 = 3

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

u2 = y - 2

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

u3 = read(write(a, x, u1), u2)

f(u3) ≠ f(y − x + 1)

u4 = y – x + 1

f(u3) ≠ f(u4)

f(u3) ≠ f(u4)

Solve

x + 2 = y

u2 = y - 2

u4 = y – x + 1

 u2 = x

 u4 = 3

 u2 = x

x + 2 = y

 u2 = x
 u2 = x

u3 = read(write(a, x, u1), u2) u3 = u1 u3 = u1

 u3 = u1

 u3 = u1

 u4 = u1

u1 = 3

u4 = 3

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4)

f(u3) = f(u4)

 u4 = u1

 u4 = u1

NO PROCEDURE: EXAMPLE

Problem :

𝒯𝔼

𝒯A

𝒯AR

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

Purifying

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

x + 2 = y

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1)

u1 = 3

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1)

u2 = y - 2

f(read(write(a, x, u1), u2)) ≠ f(y − x + 1)

u3 = read(write(a, x, u1), u2)

f(u3) ≠ f(y − x + 1)

u4 = y – x + 1

f(u3) ≠ f(u4)

f(u3) ≠ f(u4)

Solve

x + 2 = y

u2 = y - 2

u4 = y – x + 1

 u2 = x

 u4 = 3

 u2 = x

x + 2 = y

 u2 = x
 u2 = x

u3 = read(write(a, x, u1), u2) u3 = u1 u3 = u1

 u3 = u1

 u3 = u1

 u4 = u1

u1 = 3

u4 = 3

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4) UNSAT!

f(u3) = f(u4)

 u4 = u1

 u4 = u1

CONCLUSION

We go through

 some theories of interest

 eager approaches to SMT

 lazy approaches to SMT

 Some theories and algorithms are simply

discussed

 More details: see reference slides.

REFERENCE

 A Mathematical Introduction to Logic
 by Herbert B. Enderton

 SMT-COMP
 The Satisfiability Modulo Theories Competition

 http://smtcomp.sourceforge.net/2012/

 SMT-LIB
 The Satisfiability Modulo Theories Library

 http://goedel.cs.uiowa.edu/smtlib/

 Satisfiability Modulo Theories slides
 Roberto Sebastiani for IJCAI 11

 Solvers’ websites:
 Boolector, Yices, Z3, MathSAT5

 Many papers from MathSAT team

 Tutorial slides from Z3

 Previous slides from Yi-Wen Chang and Chih-Chun Lee

 Congruence closure
 http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf

 Difference Logic
 http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf

http://www.math.ucla.edu/~hbe
http://www.math.ucla.edu/~hbe
http://smtcomp.sourceforge.net/2012/
http://goedel.cs.uiowa.edu/smtlib/
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf

