Satisfiability Modulo Theories

 Motivation, Process, Solvers
Yu-Yun Dai

Automatic Verification, Spring 2012

OUTLINE

- Introduction
- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
- Algorithm and Solving procedure
- Solvers: boolector, Yices 1.0
- Lazy approach
- DPLL(T)
- Solvers: MATHSAT5, Z3

EXAMPLES FOR SMT PROBLEMS(1)

- Planning with Resources
- Straightforward to encode into SMT(LA(Q))

Example:

(Deliver)
\wedge (MaxLoad)
\wedge (MaxFuel)
\wedge (Move \rightarrow MinFuel)
\wedge (Move \rightarrow Deliver)
\wedge (GoodTrip \rightarrow Deliver)
\wedge (GoodTrip \rightarrow AllLoaded)
\wedge (MaxLoad \rightarrow (load 30))
$\wedge($ MaxFuel \rightarrow (fuel 15))
\wedge (MinFuel \rightarrow (fuel $7+0.5 l o a d)$)
$\wedge($ AllLoaded $\rightarrow(\operatorname{load}=45))$
// goal
// load constraint
// fuel constraint
// move requires fuel
// move implies delivery
// a good trip requires
// a full delivery
// load limit
// fuel limit
// fuel constraint
// more than MaxLoad......

EXAMPLES FOR SMT PROBLEMS(2)

- Verification of HW circuit designs \& microcode

- Control paths handled by Boolean reasoning
- Data paths information abstracted into theory-specific terms
- words (bit-vectors, integers, EUF vars, ...): a[31:0], a
- word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators)

$$
\begin{aligned}
& x[15: 0]=(y[15: 8]:: z[7: 0]) \ll w[3: 0], \\
& \left(a=a_{L}+2^{16} a_{H}\right),\left(m_{1}=\operatorname{store}\left(m_{0}, l_{0}, v_{0}\right)\right), \ldots
\end{aligned}
$$

- SMT on BV, EUF, AR, modulo-LA(Z) required

INTRODUCTION - WHY SMT?

- SAT solvers are developed very well.
- SAT has benefited many areas: AI, formal methods
- However
- applications in these fields require determining the satisfiability of formulas in more expressive logics such as first-order logic
- Bit-level encoding (bit-blasting) usually exploit problem-specific structures makes hardware verification not scalable
- (the example for bit-blasting is in Eager approach)
- General first-order satisfiability is Undecidable.
- It is only semi-decidable.
- general-purpose first-order theorem provers are typically not able to solve such formulas directly

INTRODUCTION - WHY SMT? (CONT.)

- In most applications...
- Not require general first-order satisfiability
- fixed interpretations of certain predicate and function symbols
- Can we solve the simpler formulae directly?
- Can we adopt the wisdom of SAT solvers?
- DPLL, non-chronological backtracking, conflict-driven learning, two-literal watch scheme, VSIDS
- Can we make SAT solvers structure-aware?
- So......here comes SMT !

Introduction- First Order Logic (1)

- Syntax : First-Order Languages consist of
- Logical symbols
- variables : x, y, z, \ldots
\circ logic operators and quantifiers : $\neg \vee \wedge \rightarrow, \exists \forall$
- equality symbol: = (optional)
- Parameters
- constant symbols : c_{1}, c_{2}, \ldots (countable)
- function symbols : $f, g, \ldots \quad$ (possibly empty)
- predicate symbols : p, q, \ldots (possibly empty)
- Ex. $\Sigma_{\mathbb{N}}=\{\{0\},\{S,+\},\{=\}\}$
- To specify a language, we need to specify
- Presence of "="
- Symbols

Introduction- First Order Logic(2)

- Terms
- Every constant c_{1} or variable x is a term.
- If t_{1}, \ldots, t_{k} are terms and f is a k-ary function symbol, $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
- Ex: SSO
- Formula
- True and False are atomic formulas.
- If t_{1}, \ldots, t_{k} are terms and P is a k-ary predicate symbol, $P\left(t_{1}, \ldots, t_{k}\right)$ is an atomic formula.
- Ex: $<x y$ (define $<$ as predicate sumbol)
- Well Form Formulae:
- expression built up from atomic formulas by applying these operations: $\neg \vee \wedge \rightarrow, \exists \forall$
- Ex: $(x<y) \vee(x=y)$
- Free variable:
- variables in a formula are those not bound by a quantifier
- Sentence:
- Formula without free variable

Introduction- First Order Logic(3)

- Sematic : Structure \mathcal{A} consists of
- Universe (or domain) of \mathcal{A}
- Interpretation for each parameter - (constant, function, predicate)
- Ex. A $\Sigma_{\mathbb{N}}$-structure
- $\left\{\{0\},\left\{S^{\mathcal{A}}:=\right.\right.$ succ $,+^{\mathcal{A}}:=$ plus $,={ }^{\mathcal{A}}:=$ equal $\left.\}\right\}$
- Define a structure \mathcal{A} satisfies a wff ϕ with assignment s
- The translation of ϕ determined by A is true, where variable x is translated as $\mathrm{s}(\mathrm{x})$ wherever it occurs free.
- \mathcal{A} satisfies ϕ with every \mathbf{s} :
- ϕ is true in \mathcal{A}
- \mathcal{A} is a model of ϕ

Introduction- First Order Logic(4)

- A theory \mathcal{T} (over a structure)
- a set of first-order sentences closed under logical implication.
$\circ \mathcal{A}$ is a model for the theory \mathcal{T}
- if all sentences of \mathcal{T} are true in \mathcal{A}.
- So far, that is the definition from the book
- "A Mathematical Introduction to Logic"

SATISFIABILITY OF SAT AND SMT

- Satisfiability is the problem of determining if a formula has a model
- Model:structure with variable assignment.
- In purely Boolean cases
- a model is a truth assignment to the Boolean variables.
- In first-order cases
- a model assigns values from a domain to variables and interpretations over the domain to the function and predicate symbols.
- A formula F is satisfiable if there is an interpretation (model)M such that
- $\mathrm{M} \vDash \mathrm{F}$.
- Otherwise, the formula F is unsatisfiable.

OUTLINE

- Introduction
- Motivation of SMT
- First Order Logic
- Theories of Interest
- Theory of equality T_{E}
- Theory of Reals T_{R}
- Theory of Integers T_{Z}
- Theory of Arrays $A R$
- Theory of Bitvectors BV
- SMT Competition
- Eager approach
- Algorithm and Solving procedure
- Solvers: boolector, Yices 1.0
- Lazy approach
- DPLL(T)
- Solvers: MATHSAT5, Z3

THEORY OF EQUALITY $\mathcal{T}_{\mathbb{E}}$

- Theory of equality and uninterpreted functions.

○ $\Sigma_{\mathbb{E}}=\left\{\left\{c_{1}, \ldots\right\},\left\{f_{1}, \ldots\right\},\{=\}\right\}$

- Ex. $[f(f(\mathrm{a}))=\mathrm{a}] \wedge[f(f(f(\mathrm{a})))=\mathrm{a}] \wedge[f(a) \neq a]$
- $\mathcal{J}_{\mathbb{E}}$-unsatisfiable
- Axiom schema
- $\forall x .(x=x)$
- $\forall x, y \cdot(x=y \rightarrow y=x)$
(reflexivity)
- $\forall x, y, z .(x=y \wedge y=z \rightarrow x=z)$ (transitivity)
- $\forall \vec{x}, \vec{y} \cdot\left(\wedge x_{i}=y_{i} \rightarrow f(\vec{x})=f(\vec{y})\right)$ (congruence)
- The satisfiability problem for conjunction of literals in $\mathcal{J}_{\mathbb{E}}$ is decidable in polynomial time using congruence closure.

Congruence closure (1)

- Given binary relation R over S .
- The equivalence closure of R
- The unique minimal extension R^{\prime} of R, that is closed under equivalence relation
- reflexivity, symmetry, transitivity.
- congruence closure of R
- The unique minimal extension R^{\prime} of R , that is closed under congruence relation.
- We use the directed acyclic graph (DAG) to represent terms:
- A term corresponds to exactly one node in DAG!
- Equalities are represented as dot lines.
- Ex: f(f (a, b), b) = a

Congruence closure (2)

- Computing congruence closure:
- Pick arbitrary representatives for all equivalence classes (nodes connected by dotted edges)
- Construct congruence closure for these edges.
- Ex: $f(a, b)=a \rightarrow f(f(a, b), b)=f(a, b)$

Real Linear Arithmetic $\mathcal{T}_{\mathbb{Q}}$

$\circ \Sigma_{\mathbb{Q}}=\{\{\mathbb{\mathbb { C }}\},\{+,-\},\{<,=\}\}$,
$A_{\mathbb{Q}}=$ the set of rational numbers

- Ex. $(2 x<4) \wedge(2 x>2)$
($\mathcal{T}_{\mathbb{Q}}$-satisfiable)
- no need to consider irrational under linear real arithmetic.
$\circ \operatorname{SAT}\left(\mathcal{T}_{\mathbb{Q}}\right)$ can be solved by polynomial time algorithm.
- Fourier-Motzkin variable elimination algorithm.
- Simplex algorithm
- exponential methods
- tend to perform best in practice.

Quantifier Elimination

- If a formula with no free and no quantifiers, then it is easy to determine its truth value
- $10>11 \vee 3+4<5 \times 3-6$
- Quantifier elimination
- take input P with n quantifiers
- turn it into equivalent formula P^{\prime} with m quantifiers, where $\mathrm{m}<\mathrm{n}$.
- Eventually $\mathrm{P} \equiv \mathrm{P}^{\prime} \equiv \cdots \equiv \mathrm{Q}$ and Q has no quantifiers.
- Q will be trivially true or false, and that is the decision.

Fourier-Motzkin Theorems

- The following simple facts are the basis for a very simple quantifier elimination procedure.
- transitivity.
- $(x<y \wedge y \leq z) \Rightarrow x<z$.
- Over R, with a, b>0:
- $\exists \mathrm{x}$.(c $\leq \mathrm{ax} \wedge \mathrm{bx} \leq \mathrm{d}) \equiv(\mathrm{bc} \leq \mathrm{ad})$
- ヨx. $(c<a x \wedge b x \leq d) \equiv \exists x .(c \leq a x \wedge b x<d)$
$\equiv \exists \mathrm{x} .(\mathrm{c}<\mathrm{ax} \wedge \mathrm{bx}<\mathrm{d}) \equiv(\mathrm{bc}<\mathrm{ad})$
- Proof:
- For bc $<\mathrm{ad} \Rightarrow(\exists \mathrm{x} . \mathrm{c}<\mathrm{ax} \wedge \mathrm{bx} \leq \mathrm{d})$
- take x to be $\mathrm{d} / \mathrm{b} \rightarrow \mathrm{c}<\mathrm{a}(\mathrm{d} / \mathrm{b})$ and $\mathrm{b}(\mathrm{d} / \mathrm{b}) \leq \mathrm{d}$.
- Combining Many Constraints

$$
\begin{aligned}
& \exists \mathrm{x} .\left(\mathrm{c} \leq a \mathrm{ax} \wedge \mathrm{~b}_{1} \mathrm{x} \leq \mathrm{d}_{1} \wedge \mathrm{~b}_{2} \mathrm{x} \leq \mathrm{d}_{2}\right) \\
& \equiv \mathrm{b}_{1} \mathrm{c} \leq \mathrm{ad}_{1} \wedge \mathrm{~b}_{2} \mathrm{c} \leq \mathrm{ad}_{2}
\end{aligned}
$$

Difference Logic

- Difference logic is a fragment of linear arithmetic.
- Atoms have the form:
- $x-y \leq c$.
- Most linear arithmetic atoms found in hardware and software verification are in this fragment.
- The quantifier free satisfiability problem is solvable in $\mathrm{O}(\mathrm{VE})$.
- V: number of variables
- E: number of Atoms
- (solve by Bellman-Ford algorithm)

Difference Logic (2)

- Given $\mathrm{M}=\{\mathrm{a}-\mathrm{b} \leq 2, \mathrm{~b}-\mathrm{c} \leq 3, \mathrm{c}-\mathrm{a} \leq-7\}$,
- construct weighted graph G(M)
- M is T-inconsistent iff $\mathrm{G}(\mathrm{M})$ has a negative cycle
- Any negative cycle a1 $\xrightarrow[\rightarrow]{\mathrm{k} 1} \mathrm{a} 2 \xrightarrow{k 2} \mathrm{a} 3 \rightarrow \ldots \rightarrow$ an $\xrightarrow{k n} \mathrm{a} 1$ corresponds to a set of literals:
- a1-a2 k 1
- a2-a3 $\leq \mathrm{k} 2$
- an - a $1 \leq \mathrm{kn}$
- If we add them all, we get $0 \leq \mathrm{k} 1+\mathrm{k} 2+\ldots+\mathrm{kn}$
- negative cycle implies $\mathrm{k} 1+\mathrm{k} 2+\ldots+\mathrm{kn}<0 \rightarrow$ inconsistent

Integer Linear Arithmetic $\mathcal{T}_{\mathbb{Z}}$

- $\Sigma_{\mathbb{Z}}=\{\{\mathbb{Z}\},\{+,-\},\{<,=\}\}$
$A_{\mathbb{Z}}=$ the set of integers
- Ex: $(2 x<4) \wedge(2 x>2)\left(\mathcal{T}_{\mathbb{Z}}\right.$-unsatisfiable)
$\circ \operatorname{SAT}\left(\mathcal{T}_{\mathbb{Z}}\right)$ is NP-complete.
- Fourier-Motzkin algorithm doesn't work well.
- However, it becomes undecidable if multiplication is introduced in $\mathcal{T}_{\mathbb{Z}}$.
- Ex: $x \times y<5$

Theory of ARRAys $\mathcal{T}_{A R}$

- The theory of arrays ($\mathcal{T}_{A R}$) aims at modeling the behavior of arrays/memories.
- write(a, i, v) ; read(a, i)
- a: array, i: index, v: element
- Axiom schema
- McCarthy's axioms
- $\forall a, i, v \cdot \operatorname{read}(w r i t e(a, i, v), i)=v$
- $\forall a, i, j, v .(i \neq j) \rightarrow[\operatorname{read}(\operatorname{write}(a, i, v), i)=\operatorname{read}(a, j))]$
- Extensionality axioms
- $\forall a, b .(\forall i .(\operatorname{read}(a, i)=\operatorname{read}(b, i))) \rightarrow(a=b)$
$\circ \operatorname{SAT}\left(\mathcal{T}_{\mathrm{A}}\right)$ is NP-complete modulo $\mathcal{T}_{\text {elem }}$.

Theory of Bitvectors $\mathcal{T}_{b v}$

- Domains : vectors of bits.
- a[7:0]
- Like hardware design
- Operators:
- read, write: like array
- extraction, concatenation: - a[7:0]; b[3:0] = a[3:0]; c = \{a, b\}
- bit-wise operations
$\circ \&, 1, \wedge$
- arithmetic operations
○+, -, *, /, \%
- $\operatorname{SAT}\left(\mathcal{T}_{b v}\right)$ is NP-complete.

OUTLINE

- Introduction
- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
- Algorithm and Solving procedure
- Solvers: boolector, Yices 1.0
- Lazy approach
- DPLL(T)
- Solvers: MATHSAT5, Z3

History of SMT competition

- Since 2005
- 2005\&2006: Only several quantifier free linear arithmetic categories
- Outperform solvers: Yices 0.1, MathSAT3
- 2007: BV problems added
- Z3 0.1, Yices 1.0, MathSAT4
- 2008:
- Z3.2 dominated most categories,
- Boolector won in BV categories
- Poor MathSAT4.2 and Yices2......

Theories in SMT Competition

- QF_UF : equality and uniterpreted functions.
- QF_RDL/QF_IDL : real/integer difference logic.
- QF_LIA/QF_LRA : linear real/integer arithmetic
- QF_NIA : nonlinear integer arithmetic
- QF_AX : arrays with extensionality.
- QF_BV : bit-vectors.
- AUFLIRA : arrays, UF, LIA, LRA
- AUFNIRA : arrays, UF, NIA, NRA
- All of the above are decidable!

History of SMT COMPETITION

- 2009: more and more categories.......
- MathSAT 4.3, Yices2.0 outperformed others in most categories
- Boolector only took BV domain(still worked well)
- Z3 was in summer vacation?
- 2010: first year of parallel track
- Many new solvers appeared
- Z3 and Boolector took summer vacation again.....
- MathSAT5, CVC3, openSMT
- 2011
- Z3 kicked other solvers.......
- MathSAT5, CVC3, openSMT

What we know from the history?

- If we focus on BV problems:
- Why boolector works so well?
- What's going on with Yices?
- How can MathSAT and Z3 outperform others?
- Case-dependent? Luck?

OUTLINE

- Introduction
- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
- Algorithm and Solving procedure
- Solvers: boolector, Yices 1.0
- Lazy approach
- DPLL(T)
- Solvers: MATHSAT5, Z3

GEnERAL IDEA OF EAGER Approach

- Translate the original formula to an satisfiabilityequivalent Boolean formula in a single step.
- Boolector, BV part in Yices
- The performance is related to the size of SAT instance.
- Bit-blasting example:
- $\mathrm{x}[3: 0]+\mathrm{y}[3: 0]=\mathrm{z}[3: 0]$
- it might introduce other variables
- $\rightarrow \mathrm{z}[0]=\mathrm{x}[0] \oplus \mathrm{y}[0], \mathrm{c}[0]=\mathrm{x}[0] \mathrm{y}[0], \mathrm{z}[1]=\mathrm{x}[1] \oplus \mathrm{y}[1] \oplus \mathrm{c}[0] \ldots .$.
- Smaller domain encoding
- Convert $F_{\text {orig }}$ to $F_{\text {arith }}$
- Replace each constraint in $F_{\text {arith }}$ with a fresh Boolean variables to get a Boolean formula $F_{v a r}$
- Convert $F_{\text {arith }}$ to Boolean formula $F_{\text {bool }}$.
- Ex: $(x[3: 0]+y[3: 0]=z[3: 0]) \vee(w[3: 0]=7)=>A \vee B$

EXAMPLE FOR SMALL ENCODING

- over Integer Linear Arithmetic $\mathcal{T}_{\mathbb{Z}}$
$F_{\text {arith }} \Phi=$
$((x+y<5) \vee \neg(x+y>10))$
$\wedge((x+y<5) \vee \neg(x-y=3))$
$\wedge((x+y>10) \vee \quad(x-y=3))$
$\wedge(\neg(x+y<5))$
- $F_{v a r} \Phi^{\prime}=$
$(\mathrm{A} \vee \neg \mathrm{B})$
$\wedge(\mathrm{A} \vee \neg \mathrm{C})$
$\wedge(B \vee C)$
$\wedge(\neg A)$

AFTER SMALLER DOMAIN ENCODING

- If UNSAT, we can return the answer.
- However, we might miss some conflicts under smaller encoding
- Ex: $[\neg(x+y=3) \vee(x+y<2)] \wedge[(x+y=3)]$
- After smaller encoding: $[\neg \mathrm{A} \vee \mathrm{B}] \wedge[\mathrm{A}]$
- Assign A = 1, B = $1 \rightarrow$ SAT!
- However...... $(\mathrm{x}+\mathrm{y}=3) \wedge(\mathrm{x}+\mathrm{y}<2) \rightarrow$ UNSAT!
- Worse case, we still need bit-blasting!
- Why Boolector is so powerful?

The secret of Boolector-Rewrite

- Example can not be handled by small encoding
- $(x+y=p) \wedge(p+x=q) \wedge(2 x=r) \wedge(r+y=s) \wedge \neg(q=s)$
- Boolector contains crazy, rule-based rewrite!
- Commutative property
- Associativity
- Symmetry
- Better encoding for special operators:
- Ex: Shift operator
- c[3:0] $=\mathrm{a}[3: 0] \ll \mathrm{b}[1: 0]$
- $\mathrm{b}[1] \rightarrow \mathrm{c}[3: 0] \geq \mathrm{a}[3: 0] * 2$

Resource of Boolector

- Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria.
- Open source: http://fmv.jku.at/boolector/
- Picosat needed
- http://fmv.jku.at/boolector/README
- The version for smtlib2 does not be uploaded
- We can use the simpler format BTOR to write input cases©
- BTOR example

1 var 6
2 var 6
3 var 6
4 add 612
5 add 643
6 add 623
7 add 661
8 eq 157
9 root 18

Resource of YICES

- Computer Science Laboratory, SRI International Menlo Park, CA
- http://yices.csl.sri.com/
- http://yices-wiki.csl.sri.com/index.php/Main_Page
- For BV, only some simplification rule, and bitblasting!
- For other theories, apply lazy approach
- No source code
- Read SMT-LIB format and its own format

OUTLINE

- Introduction
- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
- Algorithm and Solving procedure
- Solvers: boolector, Yices 1.0
-Lazy approach
- DPLL(T)
- Solvers: MATHSAT5, Z3

Overview of Lazy approach

- Combine SAT and Theory Solvers

DPLL(T): T2B (THEORY-TO-BOOLEAN)

- T 2B (Theory-to-Boolean)
- a bijective function,
- maps Boolean atoms into themselves
- non-Boolean \mathcal{T}-atoms into fresh Boolean atoms
- Two atom instances are mapped into the same Boolean atom iff they are syntactically identical.
- B2T := T2B ${ }^{-1}$ (Boolean-to-Theory)
- T2B and B2T are also called Boolean abstraction and Boolean refinement respectively.

Example of T2B

- $\phi:=\left\{\neg\left(2 \mathrm{x}_{2}-\mathrm{x}_{3}>2\right) \vee \mathrm{A}_{1}\right\}$

$$
\wedge\left\{\neg \mathrm{A}_{2} \vee\left(\mathrm{x}_{1}-\mathrm{x}_{5} \leq 1\right)\right\}
$$

$$
\wedge\left\{\left(3 \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 3\right) \vee \mathrm{A}_{2}\right\}
$$

$$
\wedge\left\{\neg\left(2 \mathrm{x}_{3}+\mathrm{x}_{4} \geq 5\right) \vee \neg\left(3 \mathrm{x}_{1}-\mathrm{x}_{3} \leq 6\right) \vee \neg \mathrm{A}_{1}\right\}
$$

$$
\wedge\left\{\mathrm{A}_{1} \vee\left(3 \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 3\right)\right\}
$$

$$
\wedge\left\{\left(\mathrm{x}_{2}-\mathrm{x}_{4} \leq 6\right) \vee\left(\mathrm{x}_{5}=5-3 \mathrm{x}_{4}\right) \vee \neg \mathrm{A}_{1}\right\}
$$

$$
\wedge\left\{\mathrm{A}_{1} \vee\left(\mathrm{x}_{3}=3 \mathrm{x}_{5}+4\right) \vee \mathrm{A}_{2}\right\}
$$

- T $2 \mathrm{~B}(\phi):=\left\{\neg \mathrm{B}_{1} \vee \mathrm{~A}_{1}\right\}$

$$
\wedge\left\{\neg \mathrm{A}_{2} \vee \mathrm{~B}_{2}\right\}
$$

$$
\wedge\left\{\mathrm{B}_{3} \vee \mathrm{~A}_{2}\right\}
$$

$$
\wedge\left\{\neg \mathrm{B}_{4} \vee \neg \mathrm{~B}_{5} \vee \neg \mathrm{~A}_{1}\right\}
$$

$$
\wedge\left\{\mathrm{A}_{1} \vee \mathrm{~B}_{3}\right\}
$$

$$
\wedge\left\{\mathrm{B}_{6} \vee \mathrm{~B}_{7} \vee \neg \mathrm{~A}_{1}\right\}
$$

$$
\wedge\left\{\mathrm{A}_{1} \vee \mathrm{~B}_{8} \vee \mathrm{~A}_{2}\right\}
$$

Integration between SAT solver and THEORY SOLVERS

- Lazy Integration
- Theory solvers are triggered only after SAT solver determines all variables
- Return learning clauses after conflicts occur
- Easier to implement
- Eager Integration
- theory solver participates in early stages
- value propagation (implications)
- conflict analysis
- Find the conflict sources earlier
- Require much more implementation works

EXAMPLE FOR INTEGRATION

- Input instance:
- $\left[\mathrm{A}_{1} \vee(\mathrm{u}-\mathrm{w} \leq 5)\right]$ $\wedge\left[\mathrm{A}_{2} \vee(\mathrm{v}+\mathrm{w} \leq 6)\right]$
$\wedge\left[\mathrm{A}_{3} \vee(\mathrm{z}=0)\right]$
$\wedge\left[A_{4} \vee(u+v \geq 12)\right]$
$\wedge\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]$
$\wedge[(x=z+1) \vee(x=z+3) \vee(x=z+5) \vee(x=z+7)]$
$\wedge[(y=z+2) \vee(y=z+4) \vee(y=z+6)]$
$\wedge[(u+v-4 x-4 y=0)]$
- After T2B
- $\left[A_{1} \vee B_{1}\right]$
$\wedge\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]$
$\wedge\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]$
$\wedge\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]$
$\wedge\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]$
$\wedge\left[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}\right]$
$\wedge\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]$
$\wedge[1]$

LaZy Integration

```
SAT instance:
[\mp@subsup{A}{1}{}\vee
[A2\vee 政]
[A, \vee 政]
[\mp@subsup{A}{4}{}\vee}\vee\mp@subsup{B}{4}{\prime}
[ }\neg\mp@subsup{\textrm{A}}{3}{}\textrm{v}\neg\mp@subsup{\textrm{A}}{4}{}
```



```
[B
[1]
```


SAT!! Go to theory solver!

LaZy Integration(2)

In the integer solver......

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

In the integer solver......

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

$$
\begin{aligned}
& \mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5) \\
& \mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6) \\
& \mathrm{B}_{3} \rightarrow(\mathrm{z}=0) \\
& \mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12) \\
& \mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1) \\
& \mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)
\end{aligned}
$$

LaZy Integration(2)

LaZy Integration(2)

Eager Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

Eager Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

Eager Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

Eager Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

SAT domain	Theory Domain $(u-w \leq 5)$ $(u+v \leq$ $(\mathrm{v}+\mathrm{w} \leq 6)$

Eager Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

EAgER Integration

$$
\begin{aligned}
& \text { SAT instance: } \\
& {\left[\mathrm{A}_{1} \vee \mathrm{~B}_{1}\right]} \\
& {\left[\mathrm{A}_{2} \vee \mathrm{~B}_{2}\right]} \\
& {\left[\mathrm{A}_{3} \vee \mathrm{~B}_{3}\right]} \\
& {\left[\mathrm{A}_{4} \vee \mathrm{~B}_{4}\right]} \\
& {\left[\neg \mathrm{A}_{3} \vee \neg \mathrm{~A}_{4}\right]} \\
& {\left[\mathrm{B}_{61} \vee \mathrm{~B}_{62} \vee \mathrm{~B}_{63} \vee \mathrm{~B}_{64}\right]} \\
& {\left[\mathrm{B}_{71} \vee \mathrm{~B}_{72} \vee \mathrm{~B}_{73}\right]} \\
& {\left[\mathrm{B}_{1} \rightarrow(\mathrm{u}-\mathrm{w} \leq 5)\right]} \\
& {\left[\mathrm{B}_{2} \rightarrow(\mathrm{v}+\mathrm{w} \leq 6)\right]} \\
& {\left[\mathrm{B}_{3} \rightarrow(\mathrm{z}=0)\right]} \\
& {\left[\mathrm{B}_{4} \rightarrow(\mathrm{u}+\mathrm{v} \geq 12)\right]} \\
& {\left[\mathrm{B}_{61} \rightarrow(\mathrm{x}=\mathrm{z}+1)\right]} \\
& {\left[\mathrm{B}_{71} \rightarrow(\mathrm{y}=\mathrm{z}+2)\right]}
\end{aligned}
$$

Eager Integration(2)

COMPARISON

- Lazy Integration
- SAT solver can work as an enumerator.
- © Easier to implement
- \cdot Can not find out the conflicts earlier
- Eager Integration
- Requires a tighter integration of the source codes of the SAT solver and \mathcal{T}-solver.
- © Able to detect conflict earlier
- : terrible implementation
- The choice relies on the trade-off between efficiency and implementation effort.

Resource of MathSAT5

- Italy, University of Trento
- http://mathsat.fbk.eu/
- 3 Ph.D. thesis and many papers...
- Only execution file and libraries(C API)...
- Provide some API to use the
- Read problem in smt2 format
- (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5)))

Specialty of MathSAT

- Layered theory solvers
- Sometimes a fully general solver for \mathcal{T} is not always needed.
- For example, difference constraints are special case of linear constraints, and are easier to be solved.
- Thus, a \mathcal{T}-solver may be organized in a layered hierarchy of solvers of increasing solving capabilities.
- Ex: Difference \rightarrow UTVPI \rightarrow Linear
- UTVPI: two integer variables per inequality constraint - $a^{*} x+b * y<c$

RESOURCE OF Z3

- Create by MicroSoft
- http://research.microsoft.com/enus/um/redmond/projects/z3/
- Only execution file and libraries...
- Has been used in several program analysis, verification, test case generation projects at Microsoft
- Support Several input formats
- SMT-LIB, Z3, Dimacs
- Main features
- Linear real and integer arithmetic.
- Fixed-size bit-vectors
- Uninterpreted functions
- Extensional arrays
- Quantifiers

COMBINATION OF THEORIES

- Example:
- $x+2=y \Rightarrow f(\operatorname{read}(\operatorname{write}(a, x, 3), y-2))=f(y-x+1)$
- Given
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$
- $\mathcal{T}_{1}, \mathcal{J}_{2}$: theories over Σ_{1}, Σ_{2}
- $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$
- Is \mathcal{T} consistent?
- Given satisfiability procedures for conjunction of literals of $\mathcal{T} 1$ and $\mathcal{T} 2$, how to decide the satisfiability of \mathcal{T} ?
- Nelson-Oppen Combination

Combination of Theories(2)

- Nelson-Oppen Combination
- Essential concept:
- Purification
- For a conjunction of $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-literals φ, transform it into a equisatisfiable $\phi_{1} \wedge \phi_{2}$ such that ϕ_{i} contains only Σ_{i}-literals.
- Stably-Infinite Theories
- A theory is stably infinite if every satisfiable sentence is satisfiable in an infinite model.
- Example: Theories with only finite models are not stably infinite. (only two elements in the domain)

$$
\circ \mathrm{T}=(\forall \mathrm{x}, \mathrm{y}, \mathrm{z} .(\mathrm{x}=\mathrm{y}) \vee(\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z})) .
$$

- The union of two consistent, disjoint, stably infinite theories is consistent.
- Convex Theories.
- for all finite sets Γ of literals and for all non-empty disjunctions $\vee_{i \in I} x_{i}=y_{i}$ of variables
$\circ \Gamma \vDash_{\mathrm{T}} \vee_{i \in I} x_{i}=y_{i}$ iff $\Gamma \vDash_{\mathrm{T}} x_{i}=y i f o r$ some $\mathrm{i} \in I$

Nelson-Oppen Combination

- Let \mathcal{T}_{1} and \mathcal{T}_{2} be consistent, stably infinite theories over disjoint (countable) signatures.
- Assume satisfiability of conjunction of literals can decided in $O\left(T_{1}(n)\right)$ and $O\left(T_{2}(n)\right)$ time respectively. Then,
- 1. The combined theory T is consistent and stably infinite.
- 2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O\left(2^{n^{2}} \times\left(T_{1}(n)+T_{2}(n)\right)\right.$.
- 3. If \mathcal{T}_{1} and \mathcal{J}_{2} are convex, then so is \mathcal{J} and satisfiability in \mathcal{T} is in $O\left(n^{3} \times\left(T_{1}(n)+T_{2}(n)\right)\right)$.

Nelson-Oppen Combination
 Procedure

- Initial State:
- φ is a conjunction of literals over $\Sigma_{1} \cup \Sigma_{2}$.
- Purification:
- Preserving satisfiability transform φ into $\varphi_{1} \wedge \varphi_{2}$, such that, $\varphi_{\mathrm{i}} \in \Sigma_{\mathrm{i}}$
- Interaction:
- Guess a partition of $\mathrm{V}(\varphi 1) \cap \mathrm{V}(\varphi 2)$ into disjoint subsets. Express it as conjunction of literals Ψ.
- Example. The partition $\left\{\mathrm{x}_{1}\right\},\left\{\mathrm{x}_{2}, \mathrm{x}_{3}\right\},\left\{\mathrm{x}_{4}\right\}$ is represented as - $x_{1} \neq x_{2}, x_{1} \neq x_{4}, x_{2} \neq x_{4}, x_{2}=x_{3}$.
- Component Procedures:
- Use individual procedures to decide whether $\varphi \mathrm{i} \wedge \Psi$ is satisfiable
- Return:
- If both return yes, return yes. No, otherwise.

NO PROCEDURE: EXAMPLE

Problem :

$$
(x+2=y) \wedge f(\operatorname{read}(\text { write }(a, x, 3), y-2)) \neq f(y-x+1)
$$

NO PROCEDURE: EXAMPLE

Problem :

$$
(x+2=y) \wedge f(\operatorname{read}(\text { write }(a, x, 3), y-2)) \neq f(y-x+1)
$$

NO PROCEDURE: EXAMPLE

Problem :

$$
f(\operatorname{read}(\operatorname{write}(a, x, 3), y-2)) \neq f(y-x+1)
$$

NO PROCEDURE: EXAMPLE

Problem :

$$
f\left(\operatorname{read}\left(\text { write }\left(a, x, u_{1}\right), y-2\right)\right) \neq f(y-x+1)
$$

$\mathcal{T}_{\mathbb{E}}$
$\mathcal{T}_{\mathrm{LA}}$
$x+2=y$
$u_{1}=3$

Purifying

$f\left(\right.$ read $\left(\right.$ write $\left.\left.\left(a, x, u_{1}\right), y-2\right)\right) \neq f(y-x+1)$

NO PROCEDURE: EXAMPLE

Problem :

$$
f\left(\operatorname{read}\left(\text { write }\left(a, x, u_{1}\right), u_{2}\right)\right) \neq f(y-x+1)
$$

NO PROCEDURE: EXAMPLE

Problem :

Purifying

$f\left(u_{3}\right) \neq f(y-x+1)$

NO PROCEDURE: EXAMPLE

Problem :

Purifying

$f\left(u_{3}\right) \neq f\left(u_{4}\right)$

NO PROCEDURE: EXAMPLE

Problem :

NO PROCEDURE: EXAMPLE

Problem :

Solving $\mathcal{T}_{\text {LA }}$

NO PROCEDURE: EXAMPLE

Problem :

NO PROCEDURE: EXAMPLE

Solve $\mathcal{T}_{\text {AR }}$

Problem :

NO PROCEDURE: EXAMPLE

Problem :

NO PROCEDURE: EXAMPLE
Problem :

$$
u_{1}=3 \wedge u_{4}=3 \Rightarrow u_{4}=u_{1}
$$

$\mathcal{T}_{\mathbb{E}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$
$u_{2}=x$
$u_{3}=u_{1}$
$u_{1}+2=y$
$u_{1}=3$
$u_{2}=x$
$u_{4}=3$
$u_{3}=u_{1}$

$$
\begin{gathered}
\mathcal{T}_{\mathrm{AR}} \\
u_{3}=u_{1} \\
u_{2}=x
\end{gathered}
$$

NO PROCEDURE: EXAMPLE

Solve

Problem :

$$
\text { Congruence } u_{3}=u_{1} \wedge u_{4}=u_{1} \Rightarrow f\left(u_{3}\right)=f\left(u_{4}\right)
$$

$\mathcal{J}_{\mathbb{E}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$
$u_{2}=x$
$u_{3}=u_{1}$
$u_{4}=u_{1}$
$f\left(u_{3}\right)=f\left(u_{4}\right)$
$x+2=y$
$u_{1}=3$
$u_{2}=x$
$u_{4}=3$
$u_{3}=u_{1}$
$u_{4}=u_{1}$

$$
\begin{gathered}
\mathcal{T}_{\mathrm{AR}} \\
u_{3}=u_{1} \\
u_{2}=x \\
u_{4}=u_{1}
\end{gathered}
$$

NO PROCEDURE: EXAMPLE

Solve

Problem :

UNSAT!

$\mathcal{T}_{\mathbb{E}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$
$u_{2}=x$
$u_{3}=u_{1}$
$u_{4}=u_{1}$
$f\left(u_{3}\right)=f\left(u_{4}\right)$
$x+2=y$
$u_{1}=3$
$u_{2}=x$
$u_{4}=3$
$u_{3}=u_{1}$
$u_{4}=u_{1}$

$\mathcal{T}_{\mathrm{AR}}$
$u_{3}=u_{1}$
$u_{2}=x$
$u_{4}=u_{1}$

ConcLusion

- We go through
- some theories of interest
- eager approaches to SMT
- lazy approaches to SMT
- Some theories and algorithms are simply discussed
- More details: see reference slides.

Reference

- A Mathematical Introduction to Logic
- by Herbert B. Enderton
- SMT-COMP
- The Satisfiability Modulo Theories Competition
- http://smtcomp.sourceforge.net/2012/
- SMT-LIB
- The Satisfiability Modulo Theories Library
- http://goedel.cs.uiowa.edu/smtlib/
- Satisfiability Modulo Theories slides
- Roberto Sebastiani for IJCAI 11
- Solvers' websites:
- Boolector, Yices, Z3, MathSAT5
- Many papers from MathSAT team
- Tutorial slides from Z3
- Previous slides from Yi-Wen Chang and Chih-Chun Lee
- Congruence closure
- http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
- Difference Logic
- http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf

