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EXAMPLES FOR SMT PROBLEMS(1) 

 Planning with Resources 

 Straightforward to encode into SMT(LA(Q)) 

Example:  

    (Deliver )  

∧  (MaxLoad) 

∧  (MaxFuel) 

∧  (Move  MinFuel) 

∧  (Move  Deliver ) 

∧  (GoodTrip Deliver ) 

∧  (GoodTrip  AllLoaded) 

∧  (MaxLoad  (load  30)) 

∧  (MaxFuel  (fuel  15)) 

∧  (MinFuel  (fuel  7 + 0.5load)) 

∧  (AllLoaded  (load = 45)) 

// goal 

// load constraint 

// fuel constraint 

// move requires fuel 

// move implies delivery 

// a good trip requires 

// a full delivery 

// load limit 

// fuel limit 

// fuel constraint 

// more than MaxLoad...... 



EXAMPLES FOR SMT PROBLEMS(2) 

 Verification of HW circuit designs & microcode 

 

 

 

 

 Control paths handled by Boolean reasoning 

 Data paths information abstracted into theory-specific 
terms 

 words (bit-vectors, integers, EUF vars, ... ): a[31 : 0], a 

 word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators) 

    x[15 : 0] = (y[15 : 8] :: z[7 : 0]) << w[3 : 0], 

    (a = aL + 216aH), (m1 = store(m0, l0, v0)), ... 

 SMT on BV, EUF, AR, modulo-LA(Z) required 



INTRODUCTION – WHY SMT? 

 SAT solvers are developed very well. 

 SAT has benefited many areas: AI, formal methods 

 However…… 

 applications in these fields require determining the 
satisfiability of formulas in more expressive logics 
such as first-order logic 

 Bit-level encoding (bit-blasting) usually exploit 
problem-specific structures makes hardware verification 
not scalable  
 (the example for bit-blasting is in Eager approach) 

 General first-order satisfiability is Undecidable. 

 It is only semi-decidable. 

 general-purpose first-order theorem provers are 
typically not able to solve such formulas directly  



INTRODUCTION – WHY SMT? (CONT.) 

 In most applications… 

 Not require general first-order satisfiability 

 fixed interpretations of certain predicate and function 

symbols 

 Can we solve the simpler formulae directly? 

 

 Can we adopt the wisdom of SAT solvers? 

 DPLL, non-chronological backtracking, conflict-driven 

learning, two-literal watch scheme, VSIDS 

 Can we make SAT solvers structure-aware? 

 So……here comes SMT ! 

 

 



INTRODUCTION- FIRST ORDER LOGIC (1) 

 Syntax : First-Order Languages consist of 

 Logical symbols 
 variables : 𝑥, 𝑦, 𝑧, …  

 logic operators and quantifiers : ¬ ∨ ∧ →, ∃∀ 

 equality symbol: = (optional) 

 Parameters 
 constant symbols : 𝑐1, 𝑐2, … (countable) 

 function symbols : 𝑓, 𝑔, …    (possibly empty) 

 predicate symbols : 𝑝, 𝑞, … (possibly empty) 

 Ex. Σℕ = { {0}, {𝑆,+}, {=} } 

To specify a language, we need to specify 

 Presence of “=” 

 Symbols 



INTRODUCTION- FIRST ORDER LOGIC(2) 

 Terms 
 Every constant 𝑐1 or variable 𝑥 is a term. 

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑓 is a 𝑘-ary function symbol, 𝑓(𝑡1, … , 𝑡𝑘) is 
a term. 

 Ex: SS0 

 Formula 
 True and False are atomic formulas. 

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑃 is a 𝑘-ary predicate symbol, 𝑃(𝑡1, … , 𝑡𝑘) 
is an atomic formula. 

 Ex: < x y (define < as predicate sumbol)  

 Well Form Formulae: 
 expression built up from atomic formulas by applying these 

operations: ¬ ∨ ∧ →, ∃∀ 

 Ex: (x < y) ∨ (x = y) 

 Free variable: 
 variables in a formula are those not bound by a quantifier 

 Sentence :  
 Formula without free variable 

 



INTRODUCTION- FIRST ORDER LOGIC(3) 

 Sematic : Structure 𝒜 consists of 
 Universe (or domain) of 𝒜 

 Interpretation for each parameter  
 (constant, function, predicate) 

 Ex. A Σℕ-structure  
  { {0}, {𝑆𝒜:=succ, +𝒜:=plus, =𝒜  :=equal} } 

Define a structure 𝒜 satisfies a wff ϕ with 
assignment s 
 The translation of ϕ determined by A is true, 

where variable x is translated as s(x) 
wherever it occurs free. 

𝒜 satisfies ϕ with every s : 
 ϕ is true in 𝒜  

 𝒜 is a model of ϕ 



INTRODUCTION- FIRST ORDER LOGIC(4) 

A theory 𝒯(over a structure)  

 a set of first-order sentences closed under 

logical implication. 

𝒜 is a model for the theory 𝒯  

 if all sentences of  𝒯are true in 𝒜. 

 So far, that is the definition from the book  

 “A Mathematical Introduction to Logic” 

 



SATISFIABILITY OF SAT AND SMT 

 Satisfiability is the problem of determining if a 

formula has a model 

 Model :structure with variable assignment. 

 In purely Boolean cases 

  a model is a truth assignment to the Boolean variables. 

 In first-order cases 

 a model assigns values from a domain to variables and 

interpretations over the domain to the function and 

predicate symbols. 

 A formula F is satisfiable if there is an interpretation 

(model )M such that 

 M ⊨F. 

 Otherwise, the formula F is unsatisfiable. 
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THEORY OF EQUALITY 𝒯𝔼 

 Theory of equality and uninterpreted functions. 

 Σ𝔼 = { {𝑐1, …}, {𝑓1, …}, {=} } 

 Ex. 𝑓 𝑓 a = a ∧ 𝑓 𝑓 𝑓 a = a ∧ [𝑓(𝑎) ≠ 𝑎] 

 𝒯𝔼-unsatisfiable 

 Axiom schema 

 ∀𝑥. (𝑥 = 𝑥)                                   (reflexivity) 

 ∀𝑥, 𝑦. (𝑥 = 𝑦 → 𝑦 = 𝑥)                  (symmetry) 

 ∀𝑥, 𝑦, 𝑧. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧) (transitivity) 

 ∀𝑥 , 𝑦 . ( 𝑥𝑖 = 𝑦𝑖 → 𝑓 𝑥 = 𝑓(𝑦 ))  (congruence) 

 The satisfiability problem for conjunction of literals in 

𝒯𝔼 is decidable in polynomial time using congruence 

closure. 

 

 



CONGRUENCE CLOSURE (1) 

 Given binary relation R over S. 

 The equivalence closure of R  

 The unique minimal extension R′ of R, that is closed 
under equivalence relation 
 reflexivity, symmetry, transitivity. 

 congruence closure of R  

 The unique minimal extension R′ of R, that is closed 
under congruence relation. 

 We use the directed acyclic graph (DAG) to 
represent terms: 

 A term corresponds to exactly one node in DAG. 

 Equalities are represented as dot lines. 

 Ex: f (f (a, b), b) = a a b 

f 

f 



CONGRUENCE CLOSURE (2) 

 Computing congruence closure: 

 Pick arbitrary representatives for all equivalence 

classes (nodes connected by dotted edges)  

 Construct congruence closure for these edges. 

 

 Ex: f(a, b) = a  f(f(a, b) , b)  = f(a, b) 

a b 

f 

f 

a b 

f 

f 



REAL LINEAR ARITHMETIC 𝒯ℚ 

Σℚ = { {ℤ}, {, }, {<, =} } ,  

    𝐴ℚ = the set of rational numbers 

 Ex. (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℚ-satisfiable) 

 no need to consider irrational under linear real 
arithmetic. 

SAT(𝒯ℚ) can be solved by polynomial time 
algorithm. 
 Fourier-Motzkin variable elimination 

algorithm. 

 Simplex algorithm 
 exponential methods  

 tend to perform best in practice. 

 



QUANTIFIER ELIMINATION 

 If a formula with no free and no quantifiers, then 

it is easy to determine its truth value 

 10 > 11 ∨ 3 + 4 < 5 × 3 − 6 

 Quantifier elimination  

 take input P with n quantifiers  

 turn it into equivalent formula P′ with m quantifiers, 

where m < n. 

 Eventually P ≡ P′ ≡ · · · ≡ Q and Q has no 

quantifiers. 

 Q will be trivially true or false, and that is the 

decision. 



FOURIER-MOTZKIN THEOREMS 

 The following simple facts are the basis for a very 
simple quantifier elimination procedure. 

 transitivity. 
 (x < y ∧ y ≤ z) ⇒ x < z. 

 Over R, with a, b > 0: 
 ∃x.(c ≤ ax ∧ bx ≤ d) ≡ (bc ≤ ad) 

 ∃x.(c < ax ∧ bx ≤ d) ≡ ∃x.(c ≤ ax ∧ bx < d)  

    ≡ ∃x.(c < ax ∧ bx < d) ≡ (bc < ad) 

 Proof: 
 For bc < ad ⇒ (∃x.c < ax ∧ bx ≤ d) 

 take x to be d/b  c < a(d/b) and b(d/b) ≤ d. 

 Combining Many Constraints 
 ∃x.(c ≤ ax ∧ b1x ≤ d1 ∧ b2x ≤ d2)  

 ≡ b1c ≤ ad1 ∧ b2c ≤ ad2 



DIFFERENCE LOGIC 

 Difference logic is a fragment of linear arithmetic. 

 Atoms have the form:  

 x − y ≤ c. 

 Most linear arithmetic atoms found in hardware 

and software verification are in this fragment. 

 The quantifier free satisfiability problem is 

solvable in O(VE).  

 V: number of variables 

 E: number of Atoms 

 (solve by Bellman-Ford algorithm) 

 



DIFFERENCE LOGIC (2) 

 Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7}, 

 construct weighted graph G(M) 

 M is T-inconsistent iff G(M) has a negative cycle 

 Any negative cycle a1
𝑘1

a2 
𝑘2
 a3 →. . . → an 

𝑘𝑛
 a1 

    corresponds to a set of literals: 

 a1 − a2 ≤ k1 

 a2 − a3 ≤ k2 

 . . . 

 an − a1 ≤ kn 

 If we add them all, we get 0 ≤ k1 + k2 + . . . + kn 

 negative cycle implies k1 + k2 + . . . + kn < 0  
inconsistent 

a 

c 

b 
2 

3 -7 



INTEGER LINEAR ARITHMETIC 𝒯ℤ 

Σℤ = { {ℤ}, {, }, {<, =} }  

    𝐴ℤ= the set of integers 

 Ex: (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℤ-unsatisfiable) 

SAT(𝒯ℤ) is NP-complete. 

 Fourier-Motzkin algorithm doesn’t work well. 

 However, it becomes undecidable if 

multiplication is introduced in 𝒯ℤ. 

  Ex: x  y<5 



THEORY OF ARRAYS 𝒯𝐴𝑅  

 The theory of arrays (𝒯𝐴𝑅) aims at modeling the 

behavior of arrays/memories. 

 write(a, i , v) ; read(a, i ) 

 a: array, i: index, v: element 

Axiom schema 

 McCarthy’s axioms 
 ∀𝑎, 𝑖, 𝑣. 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑣 

 ∀𝑎, 𝑖, 𝑗, 𝑣. 𝑖 ≠ 𝑗 → [𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑟𝑒𝑎𝑑 𝑎, 𝑗 )] 

 Extensionality axioms 
 ∀𝑎, 𝑏. (∀𝑖. (𝑟𝑒𝑎𝑑 𝑎, 𝑖 = 𝑟𝑒𝑎𝑑 𝑏, 𝑖 )) → (𝑎 = 𝑏) 

SAT(𝒯𝔸) is NP-complete modulo 𝒯elem. 

 



THEORY OF BITVECTORS 𝒯𝑏𝑣 

 Domains : vectors of bits. 

 a[7:0] 

 Like hardware design 

 Operators: 

 read, write: like array 

 extraction, concatenation: 

 a[7:0];  b[3:0] = a[3:0]; c = { a, b} 

 bit-wise operations 

 &, |, ^ 

 arithmetic operations 

 +, -, *, /, % 

 SAT(𝒯𝑏𝑣) is NP-complete. 
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HISTORY OF SMT COMPETITION 

 Since 2005 

 2005&2006: Only several quantifier free linear 

arithmetic categories  

 Outperform solvers: Yices 0.1, MathSAT3 

 2007: BV problems added 

  Z3 0.1, Yices 1.0, MathSAT4  

 2008:  

 Z3.2 dominated most categories,  

 Boolector won in BV categories 

 Poor MathSAT4.2 and Yices2…… 

 



THEORIES IN SMT COMPETITION 

 QF_UF : equality and uniterpreted functions. 

 QF_RDL/QF_IDL : real/integer difference logic. 

 QF_LIA/QF_LRA : linear real/integer arithmetic  

 QF_NIA : nonlinear integer arithmetic 

 QF_AX : arrays with extensionality. 

 QF_BV : bit-vectors. 

 AUFLIRA : arrays, UF, LIA, LRA  

 AUFNIRA : arrays, UF, NIA, NRA 

 All of the above are decidable! 



HISTORY OF SMT COMPETITION 

 2009: more and more categories……. 

 MathSAT 4.3, Yices2.0 outperformed others in most 

categories 

 Boolector only took BV domain(still worked well) 

 Z3 was in summer vacation? 

 2010: first year of parallel track 

 Many new solvers appeared 

 Z3 and Boolector took summer vacation again….. 

 MathSAT5, CVC3, openSMT 

 2011 

 Z3 kicked other solvers……. 

 MathSAT5, CVC3, openSMT  



WHAT WE KNOW FROM THE HISTORY? 

 If we focus on BV problems: 

 Why boolector works so well? 

 What’s going on with Yices? 

 How can MathSAT and Z3 outperform others? 

 

 Case-dependent? Luck? 
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GENERAL IDEA OF EAGER APPROACH 

 Translate the original formula to an satisfiability-
equivalent Boolean formula in a single step. 

 Boolector, BV part in Yices 

 The performance is related to the size of SAT instance. 

 Bit-blasting example: 

 x[3:0] + y[3:0] = z[3:0]  

 it might introduce other variables 

 z[0] = x[0]⨁y[0], c[0] = x[0]y[0], z[1] = x[1] ⨁y[1] ⨁c[0]….. 

 Smaller domain encoding 

 Convert 𝐹𝑜𝑟𝑖𝑔 to 𝐹𝑎𝑟𝑖𝑡ℎ  

 Replace each constraint in 𝐹𝑎𝑟𝑖𝑡ℎ with a fresh 
Boolean variables to get a Boolean formula𝐹𝑣𝑎𝑟 

 Convert 𝐹𝑎𝑟𝑖𝑡ℎ to Boolean formula 𝐹𝑏𝑜𝑜𝑙.  

 Ex: (x[3:0] + y[3:0] = z[3:0] ) ∨ (w[3:0] = 7) = > A ∨ B 

 

 



EXAMPLE FOR SMALL ENCODING 

 over Integer Linear Arithmetic 𝒯ℤ 

𝐹𝑎𝑟𝑖𝑡ℎ  Φ =  

  ( (x+y < 5)   ∨ ¬(x+y > 10) ) 

∧( (x+y < 5)   ∨ ¬(x-y=3) )  

∧( (x+y > 10) ∨   (x-y=3) ) 

∧ ( ¬(x+y < 5)) 

 

 𝐹𝑣𝑎𝑟 Φ’ = 

  (A ∨ ¬B)  

∧(A∨ ¬C) 

∧(B∨   C) 

∧ (¬𝐴) 

 



AFTER SMALLER DOMAIN ENCODING 

 If UNSAT, we can return the answer. 

 However, we might miss some conflicts under 

smaller encoding 

 Ex: [ ¬(x + y = 3)∨(x + y<2) ] ∧ [ (x + y = 3) ] 

 After smaller encoding: [¬A ∨ B] ∧ [ A] 

 Assign A = 1, B = 1  SAT! 

 However……(x + y = 3) ∧ (x + y < 2)  UNSAT! 

 Worse case, we still need bit-blasting! 

 Why Boolector is so powerful? 



THE SECRET OF BOOLECTOR-REWRITE 

 Example can not be handled by small encoding  

 (x+y =p) ∧(p+x = q) ∧(2x = r) ∧(r+y =s) ∧ ¬ (q=s) 

 Boolector contains crazy, rule-based rewrite! 

 Commutative property 

 Associativity 

 Symmetry 

 Better encoding for special operators: 

 Ex: Shift operator 

 c[3:0] = a[3:0] << b[1:0] 

 b[1] c[3:0] ≥ a[3:0]*2 

 

 



RESOURCE OF BOOLECTOR 

 Institute for Formal Models and Verification, Johannes 
Kepler University, Linz, Austria. 

 Open source: http://fmv.jku.at/boolector/ 
 Picosat needed 

 http://fmv.jku.at/boolector/README 

 The version for smtlib2 does not be uploaded 

 We can use the simpler format BTOR to write input cases 
 BTOR example 

1 var 6 

2 var 6 

3 var 6 

4 add 6 1 2 

5 add 6 4 3 

6 add 6 2 3 

7 add 6 6 1 

8 eq 1 5 7 

9 root 1 8 

 

http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/README
http://fmv.jku.at/boolector/README


RESOURCE OF YICES 

 Computer Science Laboratory, SRI International 

Menlo Park, CA 

 http://yices.csl.sri.com/ 

 http://yices-wiki.csl.sri.com/index.php/Main_Page 

 For BV, only some simplification rule, and bit-

blasting! 

 For other theories, apply lazy approach 

 No source code 

 Read SMT-LIB format and its own format 

http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
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OVERVIEW OF LAZY APPROACH 

 Combine SAT and Theory Solvers 

T2B 

(abstraction)  

Conflict 

analyze 
SAT 

solver 

Theory 

solvers 

SMT instance 

SAT instance 

Theory Atoms 

UNSAT 

SAT 
UNSAT 

SAT B2T 

(refinement)  



DPLL(𝒯): T2B (THEORY-TO-BOOLEAN)  

 T 2B (Theory-to-Boolean)  

 a bijective function,  

 maps Boolean atoms into themselves 

 non-Boolean 𝒯-atoms into fresh Boolean atoms 

 Two atom instances are mapped into the same 

Boolean atom iff they are syntactically identical. 

 B2T := T2B-1 ( Boolean-to-Theory ) 

 T2B and B2T are also called Boolean abstraction and 

Boolean refinement respectively. 

 



EXAMPLE OF T2B  

 ϕ := { ￢(2x2 − x3 > 2) ∨ A1} 

       ∧ { ￢A2 ∨ (x1 − x5 ≤ 1) } 

       ∧ { (3x1 − 2x2 ≤ 3) ∨ A2} 

       ∧ { ￢(2x3 + x4 ≥ 5) ∨ ￢(3x1 − x3 ≤ 6) ∨ ￢A1} 

       ∧ { A1 ∨ (3x1 − 2x2 ≤ 3) } 

       ∧ { (x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ￢A1} 

       ∧ { A1 ∨ (x3 = 3x5 + 4) ∨ A2} 

 T 2B(ϕ) := {￢B1 ∨ A1} 

                  ∧ {￢A2 ∨ B2} 

                  ∧ {B3 ∨ A2} 

                  ∧ {￢B4 ∨ ￢B5 ∨ ￢A1} 

                  ∧ {A1 ∨ B3} 

                  ∧ {B6 ∨ B7 ∨ ￢A1} 

                  ∧ {A1 ∨ B8 ∨ A2} 

 



INTEGRATION BETWEEN SAT SOLVER AND 

THEORY SOLVERS 

 Lazy Integration 

 Theory solvers are triggered only after SAT solver 

determines all variables 

 Return learning clauses after conflicts occur 

 Easier to implement 

 Eager Integration 

 theory solver participates in early stages 

 value propagation (implications)  

 conflict analysis 

 Find the conflict sources earlier 

 Require much more implementation works 



EXAMPLE FOR INTEGRATION  

 Input instance: 
 [A1 ∨ (u - w ≤5) ] 

∧[A2 ∨ (v + w ≤ 6) ] 

∧[A3 ∨ (z = 0) ] 

∧[A4 ∨ (u + v ≥12) ] 

∧[￢ A3 ∨ ￢ A4] 

∧[ (x = z + 1) ∨ (x = z + 3) ∨ (x = z + 5) ∨ (x = z + 7) ] 

∧[ (y = z + 2) ∨ (y = z + 4) ∨ (y = z + 6) ] 

∧[ (u + v - 4x - 4y = 0) ] 

 After T2B 
 [A1 ∨ B1] 

∧[A2 ∨ B2] 

∧[A3 ∨ B3] 

∧[A4 ∨ B4] 

∧[￢ A3∨ ￢ A4] 

∧[B61 ∨ B62 ∨ B63 ∨ B64] 

∧[B71 ∨ B72 ∨ B73] 

∧[1] 

 



LAZY INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[1] 

 

￢ A1  B1 

￢ A2  B2 

￢ A3  B3 

￢ A4  B4 

B61  

B71 

SAT solver 

SAT!! Go to theory solver! 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  
(u + v ≤ 11)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  
(u + v ≤ 11)  

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(0 ≤ -1)  

Conflict! 

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(0 ≤ -1)  

Conflict! 

(z = 0)  

In the integer solver…… 

Add 

learning 

clause 

 ￢ B1 ∨ ￢ B2 ∨ ￢ B4 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1  B1 (u - w ≤ 5) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A3 

 B1 

 B2 

B3 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A4 

￢ A3 

 B1 

 B2 

B3 

B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A4 

￢ A3 

 B1 

 B2 

B3 

B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≥ 12 ) 

Conflict! 

(u + v ≤ 11) 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 A4 

 B1 

 B2 

￢ B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 A4 

￢ A3 

 B1 

 B2 

B3 

￢ B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 

( z = 0) 



COMPARISON  

 Lazy Integration 

 SAT solver can work as an enumerator. 

 Easier to implement 

 Can not find out the conflicts earlier 

 Eager Integration 

 Requires a tighter integration of the source codes of 

the SAT solver and 𝒯−solver. 

 Able to detect conflict earlier 

  terrible implementation 

 The choice relies on the trade-off between 

efficiency and implementation effort. 

 



RESOURCE OF MATHSAT5 

 Italy, University of Trento 

 http://mathsat.fbk.eu/ 

 3 Ph.D. thesis and many papers… 

 Only execution file and libraries(C API)… 

 Provide some API to use the  

 Read problem in smt2 format 

 (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5))) 

 

http://mathsat.fbk.eu/
http://mathsat.fbk.eu/


SPECIALTY OF MATHSAT 

 Layered theory solvers 

 Sometimes a fully general solver for 𝒯 is not 

always needed. 

 For example, difference constraints are special 

case of linear constraints, and are easier to be 

solved. 

 Thus, a 𝒯-solver may be organized in a layered 

hierarchy of solvers of increasing solving 

capabilities. 

Ex: Difference  UTVPI  Linear 
 UTVPI: two integer variables per inequality constraint 

 a*x+b*y < c 



RESOURCE OF Z3 

 Create by MicroSoft 

 http://research.microsoft.com/en-
us/um/redmond/projects/z3/ 

 Only execution file and libraries… 

 Has been used in several program analysis, 
verification, test case generation projects at Microsoft 

 Support Several input formats  

 SMT-LIB, Z3, Dimacs 

 Main features 

 Linear real and integer arithmetic. 

 Fixed-size bit-vectors 

 Uninterpreted functions 

 Extensional arrays 

 Quantifiers 

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/


COMBINATION OF THEORIES 

 Example: 

 x+ 2 = y ⇒ f(read(write(a, x, 3), y −2)) = f(y −x+ 1) 

 Given 

 Σ = Σ1 ∪ Σ2 

 𝒯1,𝒯2 : theories over Σ1, Σ2 

 𝒯= 𝒯1 ∪𝒯2 

 Is  𝒯 consistent? 

 Given satisfiability procedures for conjunction of 

literals of 𝒯1 and 𝒯2, how to decide the 

satisfiability of𝒯? 

 Nelson-Oppen Combination 



COMBINATION OF THEORIES(2) 

 Nelson-Oppen Combination 

 Essential concept: 

 Purification 
 For a conjunction of (Σ1 ∪ Σ2)-literals 𝜑, transform it into a 

equisatisfiable 𝜙1 ∧ 𝜙2 such that 𝜙𝑖 contains only Σ𝑖-literals. 

 Stably-Infinite Theories 

 A theory is stably infinite if every satisfiable sentence is 
satisfiable in an infinite model. 

 Example: Theories with only finite models are not stably 
infinite. (only two elements in the domain) 

 T = (∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)). 

 The union of two consistent, disjoint, stably infinite theories is 
consistent. 

 Convex Theories. 

 for all finite sets Γ of literals and for all non-empty disjunctions 
 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼  of variables 

 Γ ⊨Τ  𝑥𝑖 = 𝑦𝑖𝑖∈𝐼  iff Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖for some i ∈ 𝐼 



NELSON-OPPEN COMBINATION 

 Let 𝒯1 and𝒯2 be consistent, stably infinite 

theories over disjoint (countable) signatures. 

 Assume satisfiability of conjunction of literals can 

decided in O(T1(n)) and O(T2(n)) time respectively. 

Then, 

 1. The combined theory T is consistent and stably 

infinite. 

 2. Satisfiability of quantifier free conjunction of 

literals in 𝒯 can be decided in O(2𝑛
2
× (T1(n) + T2(n)). 

 3. If 𝒯1 and𝒯2 are convex, then so is 𝒯 and 

satisfiability in 𝒯 is in O(n3 × (T1(n) + T2(n))). 



NELSON-OPPEN COMBINATION 

PROCEDURE 

 Initial State:  
 φ is a conjunction of literals over Σ1 ∪ Σ2. 

 Purification:  
 Preserving satisfiability transform φ into φ1 ∧ φ2, such that, 

φi ∈ Σi 

 Interaction: 
 Guess a partition of V(φ1) ∩ V(φ2) into disjoint subsets. 

Express it as conjunction of literals ψ. 

 Example. The partition {x1}, {x2, x3}, {x4} is represented as 
  x1 ≠ x2, x1 ≠ x4, x2 ≠ x4, x2 = x3. 

 Component Procedures :  
 Use individual procedures to decide whether φi ∧ ψ is 

satisfiable 

 Return:  
 If both return yes, return yes. No, otherwise. 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯𝐿A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯𝐿A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(u3 ) ≠ f( y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(u3 ) ≠ f(u4) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Finish 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Solving 𝒯LA 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u2 = x 

x + 2 = y 

u1 = 3 

u2 = x 

u3  = read(write(a, x, u1), u2) 

u4 = 3 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Solve 𝒯AR   

x + 2 = y 

u1 = 3 

u2 = x 

u3  = read(write(a, x, u1), u2) 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u3 = u1  

x + 2 = y 

u1 = 3 

u2 = x 

u3  = u1 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u4 = u1  

x + 2 = y 

u1 = 3 

u2 = x 

u3  = u1 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 

u3  = u1 

u3  = u1 

u1 = 3 ∧ u4 = 3 ⇒ u4  = u1    



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

x + 2 = y 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

u1 = 3 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

u2 = y - 2 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

u3  = read(write(a, x, u1), u2) 

f(u3 ) ≠ f( y − x + 1) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 

f(u3 ) ≠ f(u4) 

Solve 

x + 2 = y 

u2 = y - 2 

u4 = y – x + 1 

  u2 =  x      

    u4 = 3         

  u2 =  x      

x + 2 = y 

              u2 =  x      
  u2 =  x      

u3  = read(write(a, x, u1), u2)                u3  = u1                                         u3  = u1                          

      u3  = u1 

      u3  = u1 

      u4  = u1 

u1 = 3 

u4 = 3 

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4) 

f(u3 ) = f(u4) 

      u4  = u1 

      u4  = u1 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

x + 2 = y 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

u1 = 3 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

u2 = y - 2 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

u3  = read(write(a, x, u1), u2) 

f(u3 ) ≠ f( y − x + 1) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 

f(u3 ) ≠ f(u4) 

Solve 

x + 2 = y 

u2 = y - 2 

u4 = y – x + 1 

  u2 =  x      

    u4 = 3         

  u2 =  x      

x + 2 = y 

              u2 =  x      
  u2 =  x      

u3  = read(write(a, x, u1), u2)                u3  = u1                                         u3  = u1                          

      u3  = u1 

      u3  = u1 

      u4  = u1 

u1 = 3 

u4 = 3 

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4)  UNSAT! 

f(u3 ) = f(u4) 

      u4  = u1 

      u4  = u1 



CONCLUSION 

We go through 

 some theories of interest 

 eager approaches to SMT 

 lazy approaches to SMT 

 Some theories and algorithms are simply  

discussed 

 More details: see reference slides. 
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