SATISFIABILITY MODULO THEORIES MOTIVATION, PROCESS, SOLVERS Yu-Yun Dai Automatic Verification, Spring 2012

OUTLINE

Introduction

- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
 - Algorithm and Solving procedure
 - Solvers: boolector, Yices 1.0
- Lazy approach
 - DPLL(T)
 - Solvers: MATHSAT5, Z3

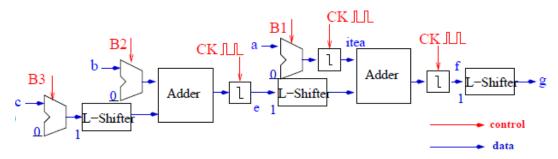
EXAMPLES FOR SMT PROBLEMS(1)

- Planning with Resources
- Straightforward to encode into SMT(LA(Q))

Example:	
(Deliver)	// goal
\land (MaxLoad)	// load constraint
∧ (MaxFuel)	// fuel constraint
$\land \text{ (Move } \rightarrow \text{MinFuel)}$	// move requires fuel
$\land \text{ (Move } \rightarrow \text{Deliver)}$	// move implies delivery
$\land (\text{GoodTrip} \rightarrow \text{Deliver})$	// a good trip requires
$\land (GoodTrip \rightarrow AllLoaded)$	// a full delivery
$\land (MaxLoad \rightarrow (load 30))$	// load limit
\land (MaxFuel \rightarrow (fuel 15))	// fuel limit
∧ (MinFuel \rightarrow (fuel 7 + 0.5load))	// fuel constraint
∧ (AllLoaded \rightarrow (load = 45))	// more than MaxLoad

EXAMPLES FOR SMT PROBLEMS(2)

• Verification of HW circuit designs & microcode



- Control paths handled by Boolean reasoning
- *Data paths* information abstracted into theory-specific terms
 - words (bit-vectors, integers, EUF vars, ...): a[31:0], a
 - word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators) x[15:0] = (y[15:8] :: z[7:0]) << w[3:0], $(a = a_L + 2^{16}a_H), (m_1 = store(m_0, l_0, v_0)), ...$
- SMT on BV, EUF, AR, modulo-LA(Z) required

INTRODUCTION – WHY SMT?

• SAT solvers are developed very well.

- SAT has benefited many areas: AI, formal methods
- However.....
 - applications in these fields require determining the satisfiability of formulas in more expressive logics such as first-order logic
 - Bit-level encoding (bit-blasting) usually exploit problem-specific structures makes hardware verification not scalable

• (the example for bit-blasting is in Eager approach)

- General first-order satisfiability is Undecidable.
 - It is only semi-decidable.
 - general-purpose first-order theorem provers are typically not able to solve such formulas directly

INTRODUCTION – WHY SMT? (CONT.)

• In most applications...

- Not require general first-order satisfiability
- fixed interpretations of certain predicate and function symbols
- Can we solve the simpler formulae directly?
- Can we adopt the wisdom of SAT solvers?
 - DPLL, non-chronological backtracking, conflict-driven learning, two-literal watch scheme, VSIDS
- Can we make SAT solvers structure-aware?
- So.....here comes SMT !

INTRODUCTION- FIRST ORDER LOGIC (1)

• Syntax : First-Order Languages consist of

• Logical symbols

- variables : *x*, *y*, *z*, ...
- logic operators and quantifiers : $\neg \lor \land \rightarrow$, $\exists \forall$
- equality symbol: = (optional)
- Parameters
 - constant symbols : c_1, c_2, \dots
 - function symbols : *f* , *g* , ...

(countable) (possibly empty)

• predicate symbols : *p*, *q*, ... (possibly empty)

- Ex. $\Sigma_{\mathbb{N}} = \{ \{0\}, \{S,+\}, \{=\} \}$
- To specify a language, we need to specify
 - Presence of "="
 - Symbols

INTRODUCTION- FIRST ORDER LOGIC(2)

• Terms

- Every constant c_1 or variable x is a <u>term</u>.
- If $t_1, ..., t_k$ are terms and f is a k-ary function symbol, $f(t_1, ..., t_k)$ is a term.
- Ex: *SS0*
- Formula
 - *True* and *False* are <u>atomic formulas</u>.
 - If $t_1, ..., t_k$ are terms and *P* is a *k*-ary predicate symbol, $P(t_1, ..., t_k)$ is an <u>atomic formula</u>.
 - Ex: < *x y* (define < as predicate sumbol)
- Well Form Formulae:
 - expression built up from atomic formulas by applying these operations: $\neg \lor \land \rightarrow, \exists \forall$
 - Ex: $(x < y) \lor (x = y)$
- Free variable:
 - variables in a formula are those not bound by a quantifier
- Sentence :
 - Formula without free variable

INTRODUCTION- FIRST ORDER LOGIC(3)

• Sematic : Structure \mathcal{A} consists of

- Universe (or domain) of \mathcal{A}
- Interpretation for each parameter
 - (constant, function, predicate)
- Ex. A $\Sigma_{\mathbb{N}}$ -structure
- { {0}, { $S^{\mathcal{A}}$:=succ, + $^{\mathcal{A}}$:=plus, = $^{\mathcal{A}}$:=equal} }
- \circ Define a structure $\mathcal A$ satisfies a wff ϕ with assignment $\mathbf s$
 - The translation of *\phi* determined by A is true, where variable x is translated as s(x) wherever it occurs free.
- \mathcal{A} satisfies ϕ with every \mathbf{s} :
 - ϕ is true in \mathcal{A}
 - \mathcal{A} is a model of ϕ

INTRODUCTION- FIRST ORDER LOGIC(4)

• A **theory** $\mathcal{T}(\text{over a structure})$

- a set of first-order sentences closed under logical implication.
- $\circ \mathcal{A}$ is a **model** for the theory \mathcal{T}
 - if all sentences of \mathcal{T} are true in \mathcal{A} .
- So far, that is the definition from the book
 - "A Mathematical Introduction to Logic"

SATISFIABILITY OF SAT AND SMT

- Satisfiability is the problem of determining if a formula has a *model*
 - *Model* :structure with variable assignment.
- In purely Boolean cases
 - a model is a truth assignment to the Boolean variables.
- In first-order cases
 - a model assigns values from a domain to variables and interpretations over the domain to the function and predicate symbols.
- A formula F is satisfiable if there is an interpretation (model)M such that
 - M ⊨F.
 - Otherwise, the formula F is unsatisfiable.

OUTLINE

• Introduction

- Motivation of SMT
- First Order Logic

• Theories of Interest

- Theory of equality $T_{\rm E}$
- Theory of Reals $T_{\rm R}$
- Theory of Integers T_Z
- Theory of Arrays *AR*
- Theory of Bitvectors BV
- SMT Competition
- Eager approach
 - Algorithm and Solving procedure
 - Solvers: boolector, Yices 1.0
- Lazy approach
 - DPLL(T)
 - Solvers: MATHSAT5, Z3

Theory of equality $\mathcal{T}_{\mathbb{E}}$

• Theory of equality and uninterpreted functions.

- $\Sigma_{\mathbb{E}} = \{ \{c_1, ...\}, \{f_1, ...\}, \{=\} \}$
 - Ex. $[f(f(a)) = a] \wedge [f(f(a))) = a] \wedge [f(a) \neq a]$

• $\mathcal{T}_{\mathbb{E}}$ -unsatisfiable

- Axiom schema
 - $\forall x. (x = x)$ (reflexivity)
 - $\forall x, y. (x = y \rightarrow y = x)$ (symmetry)
 - $\forall x, y, z. (x = y \land y = z \rightarrow x = z)$ (transitivity)
 - $\forall \vec{x}, \vec{y}. (\land x_i = y_i \rightarrow f(\vec{x}) = f(\vec{y}))$ (congruence)
- The satisfiability problem for conjunction of literals in $\mathcal{T}_{\mathbb{E}}$ is decidable in polynomial time using <u>congruence</u> <u>closure</u>.

CONGRUENCE CLOSURE (1)

- Given binary relation R over S.
- The equivalence closure of R
 - The unique minimal extension R^\prime of R, that is closed under equivalence relation
 - reflexivity, symmetry, transitivity.
- congruence closure of R
 - The unique minimal extension R' of R, that is closed under congruence relation.

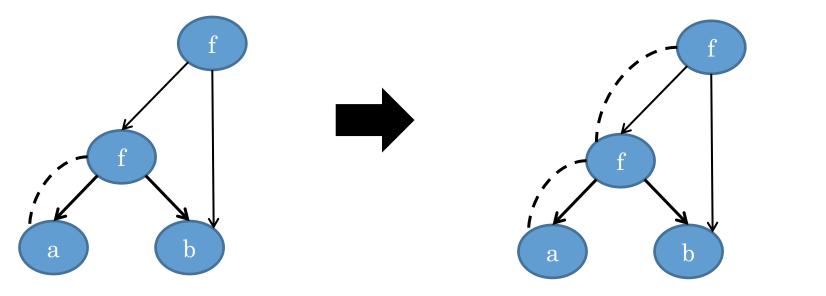
b

- We use the directed acyclic graph (DAG) to represent terms:
 - A term corresponds to exactly one node in DAG.
 - Equalities are represented as dot lines.
- Ex: f(f(a, b), b) = a

CONGRUENCE CLOSURE (2)

• Computing congruence closure:

- Pick arbitrary representatives for all equivalence classes (nodes connected by dotted edges)
- Construct congruence closure for these edges.
- Ex: $f(a, b) = a \rightarrow f(f(a, b), b) = f(a, b)$



Real Linear Arithmetic $\mathcal{T}_{\mathbb{Q}}$

•
$$\Sigma_{\mathbb{Q}} = \{ \{\mathbb{Z}\}, \{+, -\}, \{<, =\} \} \},$$

 $A_{\mathbb{Q}}$ = the set of rational numbers

- Ex. $(2x < 4) \land (2x > 2)$ ($\mathcal{T}_{\mathbb{Q}}$ -satisfiable)
- no need to consider irrational under linear real arithmetic.
- SAT($\mathcal{T}_{\mathbb{Q}}$) can be solved by polynomial time algorithm.
 - Fourier-Motzkin variable elimination algorithm.
 - Simplex algorithm
 - exponential methods
 - tend to perform best in practice.

QUANTIFIER ELIMINATION

• If a formula with no free and no quantifiers, then it is easy to determine its truth value

- $10 > 11 \lor 3 + 4 < 5 \times 3 6$
- Quantifier elimination
 - take input P with n quantifiers
 - turn it into equivalent formula P' with m quantifiers, where m < n.
- Eventually $P \equiv P' \equiv \cdots \equiv Q$ and Q has no quantifiers.
- Q will be trivially true or false, and that is the decision.

FOURIER-MOTZKIN THEOREMS

- The following simple facts are the basis for a very simple quantifier elimination procedure.
- transitivity.
 - $(x < y \land y \le z) \Rightarrow x < z.$
- Over \mathbf{R} , with a, b > 0:
 - $\exists x.(c \le ax \land bx \le d) \equiv (bc \le ad)$
 - $\exists x.(c < ax \land bx \le d) \equiv \exists x.(c \le ax \land bx < d)$ $\equiv \exists x.(c < ax \land bx < d) \equiv (bc < ad)$

• Proof:

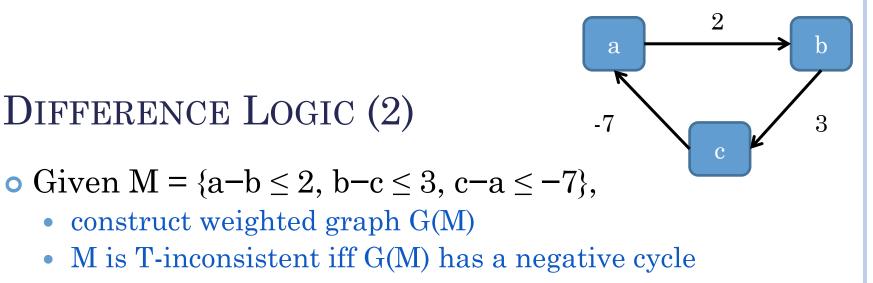
- For $bc < ad \Rightarrow (\exists x.c < ax \land bx \le d)$
 - take x to be d/b \rightarrow c < a(d/b) and b(d/b) \leq d.
- Combining Many Constraints
 - $\exists x.(c \le ax \land b_1x \le d_1 \land b_2x \le d_2)$
 - $\equiv b_1 c \leq a d_1 \land b_2 c \leq a d_2$

DIFFERENCE LOGIC

- Difference logic is a fragment of linear arithmetic.
- Atoms have the form:

• $\mathbf{x} - \mathbf{y} \leq \mathbf{c}$.

- Most linear arithmetic atoms found in hardware and software verification are in this fragment.
- The quantifier free satisfiability problem is solvable in O(VE).
 - V: number of variables
 - E: number of Atoms
- (solve by Bellman-Ford algorithm)



- Any negative cycle $a1 \xrightarrow{k_1} a2 \xrightarrow{k_2} a3 \rightarrow \ldots \rightarrow an \xrightarrow{k_n} a1$ corresponds to a set of literals:
 - $a1 a2 \le k1$
 - $a2 a3 \le k2$
 - •

• an $-a1 \leq kn$

• If we add them all, we get $0 \le k1 + k2 + \ldots + kn$

• negative cycle implies $k1 + k2 + \ldots + kn < 0 \rightarrow$ inconsistent

INTEGER LINEAR ARITHMETIC $\mathcal{T}_{\mathbb{Z}}$

- $\Sigma_{\mathbb{Z}} = \{ \{\mathbb{Z}\}, \{+, -\}, \{<, =\} \}$
 - $A_{\mathbb{Z}}$ = the set of integers
 - Ex: $(2x < 4) \land (2x > 2) (\mathcal{T}_{\mathbb{Z}}$ -unsatisfiable)
- SAT($\mathcal{T}_{\mathbb{Z}}$) is NP-complete.
 - Fourier-Motzkin algorithm doesn't work well.
- However, it becomes undecidable if multiplication is introduced in $T_{\mathbb{Z}}$.
 - Ex: $x \times y < 5$

Theory of Arrays \mathcal{T}_{AR}

• The theory of arrays (\mathcal{T}_{AR}) aims at modeling the behavior of arrays/memories.

- write(a, i , v) ; read(a, i)
- a: array, i: index, v: element

• Axiom schema

- McCarthy's axioms
 - $\forall a, i, v. read(write(a, i, v), i) = v$
 - $\forall a, i, j, v. (i \neq j) \rightarrow [read(write(a, i, v), i) = read(a, j))]$
- Extensionality axioms

• $\forall a, b. (\forall i. (read(a, i) = read(b, i))) \rightarrow (a = b)$

• SAT($\mathcal{T}_{\mathbb{A}}$) is NP-complete modulo $\mathcal{T}_{\text{elem}}$.

Theory of Bitvectors \mathcal{T}_{bv}

- Domains : vectors of bits.
 - a[7:0]
- Like hardware design
- Operators:
 - read, write: like array
 - extraction, concatenation:
 a[7:0]; b[3:0] = a[3:0]; c = { a, b }
 - bit-wise operations

• &, |, ^

• arithmetic operations

• +, -, *, /, %

• SAT(\mathcal{T}_{bv}) is NP-complete.

OUTLINE

• Introduction

- Motivation of SMT
- First Order Logic
- Theories of Interest

•SMT competition

- Eager approach
 - Algorithm and Solving procedure
 - Solvers: boolector, Yices 1.0
- Lazy approach
 - DPLL(T)
 - Solvers: MATHSAT5, Z3

HISTORY OF SMT COMPETITION

- Since 2005
- 2005&2006: Only several quantifier free linear arithmetic categories
 - Outperform solvers: Yices 0.1, MathSAT3
- 2007: BV problems added
 - Z3 0.1, Yices 1.0, MathSAT4
- **o** 2008:
 - Z3.2 dominated most categories,
 - Boolector won in BV categories
 - Poor MathSAT4.2 and Yices2.....

THEORIES IN SMT COMPETITION

- QF_UF : equality and uniterpreted functions.
- QF_RDL/QF_IDL : real/integer difference logic.
- QF_LIA/QF_LRA : linear real/integer arithmetic
- QF_NIA : nonlinear integer arithmetic
- QF_AX : arrays with extensionality.
- QF_BV : bit-vectors.
- AUFLIRA : arrays, UF, LIA, LRA
- AUFNIRA : arrays, UF, NIA, NRA
- All of the above are decidable!

HISTORY OF SMT COMPETITION

• 2009: more and more categories......

- MathSAT 4.3, Yices2.0 outperformed others in most categories
- Boolector only took BV domain(still worked well)
- Z3 was in summer vacation?
- 2010: first year of parallel track
 - Many new solvers appeared
 - Z3 and Boolector took summer vacation again.....
 - MathSAT5, CVC3, openSMT

o 2011

- Z3 kicked other solvers.....
- MathSAT5, CVC3, openSMT

WHAT WE KNOW FROM THE HISTORY?

• If we focus on BV problems:

- Why boolector works so well?
- What's going on with Yices?
- How can MathSAT and Z3 outperform others?

• Case-dependent? Luck?

OUTLINE

• Introduction

- Motivation of SMT
- First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
 - Algorithm and Solving procedure
 - Solvers: boolector, Yices 1.0
- Lazy approach
 - DPLL(T)
 - Solvers: MATHSAT5, Z3

GENERAL IDEA OF EAGER APPROACH

- Translate the original formula to an satisfiabilityequivalent Boolean formula in a single step.
 - Boolector, BV part in Yices
 - The performance is related to the size of SAT instance.
- Bit-blasting example:
 - x[3:0] + y[3:0] = z[3:0]
 - it might introduce other variables
 - $\Rightarrow z[0] = x[0] \oplus y[0], c[0] = x[0]y[0], z[1] = x[1] \oplus y[1] \oplus c[0].....$
- Smaller domain encoding
 - Convert *F*orig to *F*arith
 - Replace each constraint in F_{arith} with a fresh Boolean variables to get a Boolean formula F_{var}
 - Convert F_{arith} to Boolean formula F_{bool} .
 - Ex: $(x[3:0] + y[3:0] = z[3:0]) \vee (w[3:0] = 7) = > A \vee B$

EXAMPLE FOR SMALL ENCODING

• over Integer Linear Arithmetic $\mathcal{T}_{\mathbb{Z}}$ $F_{arith} \Phi =$ $((x+y < 5) \lor \neg (x+y > 10))$ $\land ((x+y < 5) \lor \neg (x-y=3))$ $\land ((x+y > 10) \lor (x-y=3))$ $\land (\neg (x+y < 5))$

•
$$F_{var} \Phi' =$$

(A $\vee \neg B$)
 $\wedge (A \vee \neg C)$
 $\wedge (B \vee C)$
 $\wedge (\neg A)$

AFTER SMALLER DOMAIN ENCODING

- If UNSAT, we can return the answer.
- However, we might miss some conflicts under smaller encoding
- Ex: $[\neg(x + y = 3)\lor(x + y < 2)] \land [(x + y = 3)]$
 - After smaller encoding: $[\neg A \lor B] \land [A]$
 - Assign A = 1, $B = 1 \rightarrow SAT!$
 - However.....(x + y = 3) \land (x + y < 2) \rightarrow UNSAT!
- Worse case, we still need bit-blasting!
- Why Boolector is so powerful?

THE SECRET OF BOOLECTOR-REWRITE

• Example can not be handled by small encoding

• $(x+y=p) \land (p+x=q) \land (2x=r) \land (r+y=s) \land \neg (q=s)$

• Boolector contains crazy, rule-based rewrite!

- Commutative property
- Associativity
- Symmetry

• Better encoding for special operators:

- Ex: Shift operator
 - c[3:0] = a[3:0] << b[1:0]
 b[1] →c[3:0] ≥ a[3:0]*2

RESOURCE OF BOOLECTOR

- Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria.
- Open source: <u>http://fmv.jku.at/boolector/</u>
 - Picosat needed
 - <u>http://fmv.jku.at/boolector/README</u>
 - The version for smtlib2 does not be uploaded
- We can use the simpler format BTOR to write input cases 🕮
 - BTOR example
 - $1 \operatorname{var} 6$
 - 2 var 6
 - 3 var 6
 - $4 \ \mathrm{add} \ 6 \ 1 \ 2$
 - 5 add 6 4 3
 - 6 add 6 2 3
 - 7 add 6 6 1
 - 8 eq 1 5 7
 - 9 root 1 8

RESOURCE OF YICES

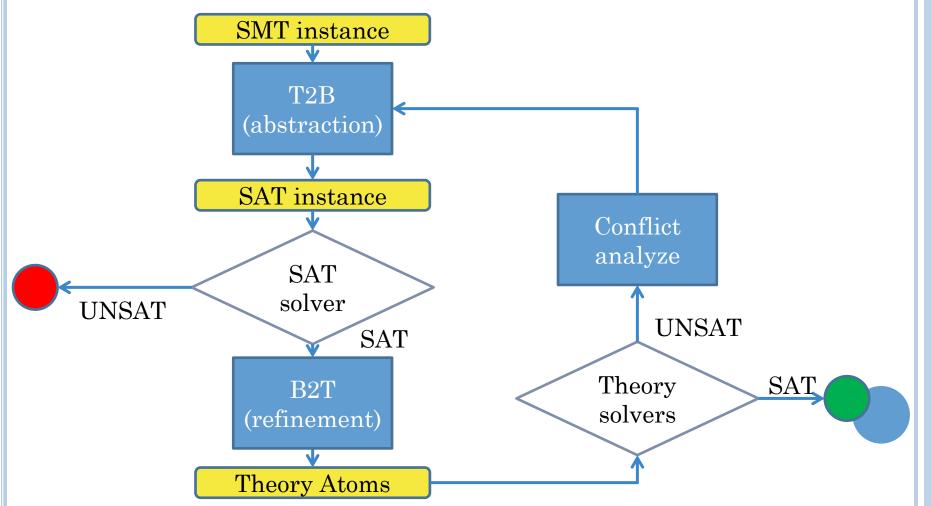
- Computer Science Laboratory, SRI International Menlo Park, CA
- <u>http://yices.csl.sri.com/</u>
- <u>http://yices-wiki.csl.sri.com/index.php/Main_Page</u>
- For BV, only some simplification rule, and bitblasting!
- For other theories, apply lazy approach
- No source code
- Read SMT-LIB format and its own format

OUTLINE

- Introduction
 - Motivation of SMT
 - First Order Logic
- Theories of Interest
- SMT competition
- Eager approach
 - Algorithm and Solving procedure
 - Solvers: boolector, Yices 1.0
- Lazy approach
 - DPLL(T)
 - Solvers: MATHSAT5, Z3

OVERVIEW OF LAZY APPROACH

• Combine SAT and Theory Solvers



DPLL(\mathcal{T}): T2B (THEORY-TO-BOOLEAN)

• T 2B (Theory-to-Boolean)

- a bijective function,
- maps Boolean atoms into themselves
- non-Boolean \mathcal{T} -atoms into fresh Boolean atoms
- Two atom instances are mapped into the same Boolean atom iff they are syntactically identical.

• $B2T := T2B^{-1}$ (Boolean-to-Theory)

• T2B and B2T are also called Boolean abstraction and Boolean refinement respectively.

Example of T2B

•
$$\phi := \{ \neg (2x_2 - x_3 > 2) \lor A_1 \}$$

 $\land \{ \neg A_2 \lor (x_1 - x_5 \le 1) \}$
 $\land \{ (3x_1 - 2x_2 \le 3) \lor A_2 \}$
 $\land \{ \neg (2x_3 + x_4 \ge 5) \lor \neg (3x_1 - x_3 \le 6) \lor \neg A_1 \}$
 $\land \{ A_1 \lor (3x_1 - 2x_2 \le 3) \}$
 $\land \{ A_1 \lor (3x_1 - 2x_2 \le 3) \}$
 $\land \{ (x_2 - x_4 \le 6) \lor (x_5 = 5 - 3x_4) \lor \neg A_1 \}$
 $\land \{ A_1 \lor (x_3 = 3x_5 + 4) \lor A_2 \}$
• T 2B(ϕ) := { $\neg B_1 \lor A_1$ }
 $\land \{ A_1 \lor (x_3 = 3x_5 + 4) \lor A_2 \}$
• $T 2B(\phi) := \{ \neg B_1 \lor A_1 \}$
 $\land \{ B_3 \lor A_2 \}$
 $\land \{ B_3 \lor A_2 \}$
 $\land \{ B_3 \lor A_2 \}$
 $\land \{ B_6 \lor B_7 \lor \neg A_1 \}$
 $\land \{ A_1 \lor B_8 \lor A_2 \}$

INTEGRATION BETWEEN SAT SOLVER AND THEORY SOLVERS

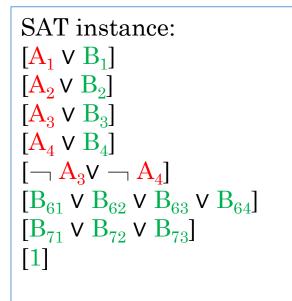
• Lazy Integration

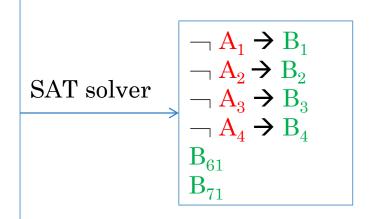
- Theory solvers are triggered only after SAT solver determines all variables
- Return learning clauses after conflicts occur
- Easier to implement
- Eager Integration
 - theory solver participates in early stages
 - value propagation (implications)
 - conflict analysis
 - Find the conflict sources earlier
 - Require much more implementation works

EXAMPLE FOR INTEGRATION

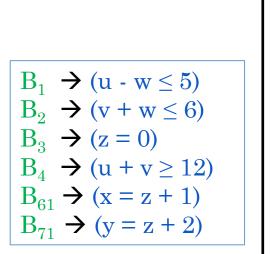
• Input instance:

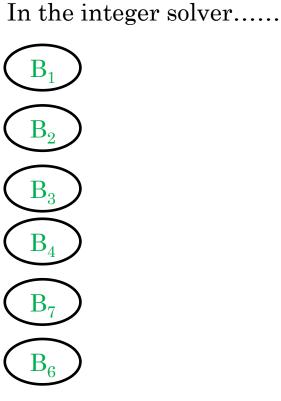
```
• [A_1 \lor (u - w \le 5)]
       \wedge [\mathbf{A}_2 \vee (\mathbf{v} + \mathbf{w} \leq 6)]
       \Lambda[A<sub>3</sub> V (z = 0)]
       \Lambda[\mathbf{A}_{\mathbf{A}} \vee (\mathbf{u} + \mathbf{v} \geq 12)]
       \wedge [\neg A_3 \lor \neg A_4]
       \Lambda[ (x = z + 1) V (x = z + 3) V (x = z + 5) V (x = z + 7) ]
       \Lambda[ (y = z + 2) V (y = z + 4) V (y = z + 6) ]
       \Lambda[ (u + v - 4x - 4y = 0) ]
• After T2B
       • [\mathbf{A}_1 \vee \mathbf{B}_1]
       \Lambda[A_9 \vee B_9]
       \Lambda[A<sub>3</sub> \vee B<sub>3</sub>]
       \Lambda[A_4 \vee B_4]
       \wedge [\neg A_3 \lor \neg A_4]
       \Lambda[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]
       \Lambda[B_{71} \vee B_{72} \vee B_{73}]
       \Lambda[1]
```

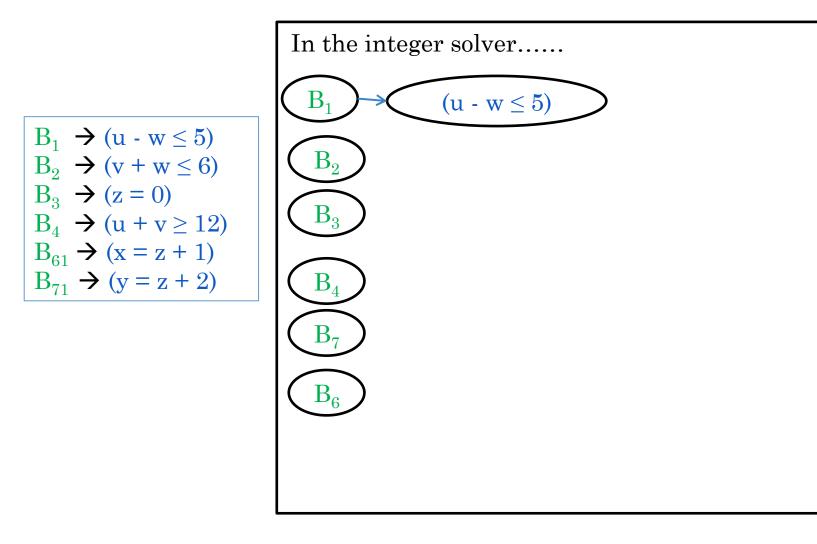


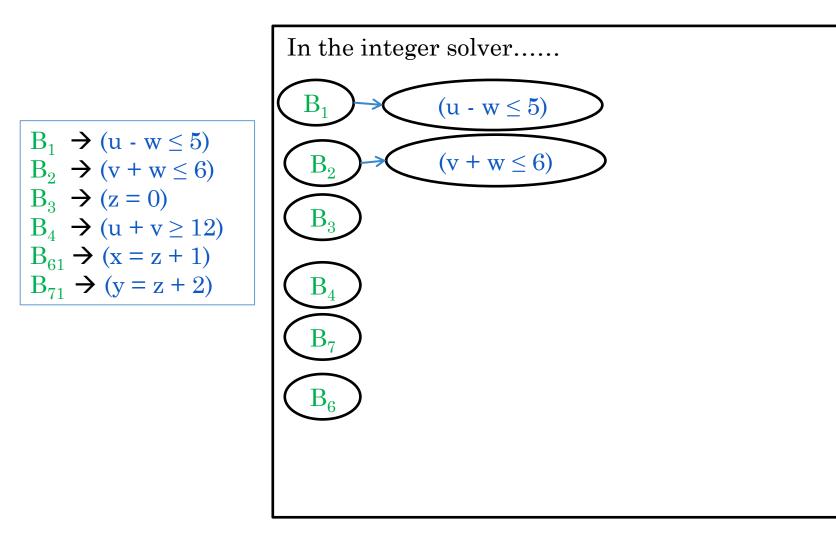


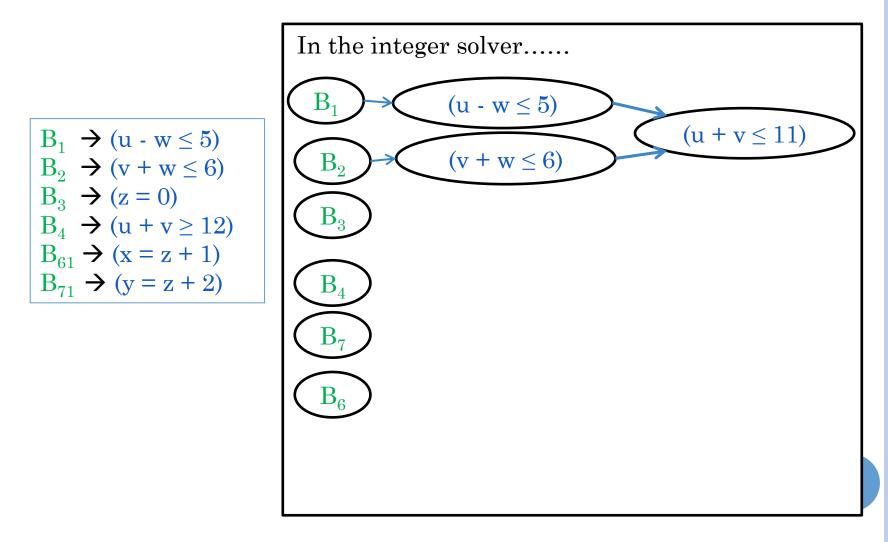
SAT!! Go to theory solver!

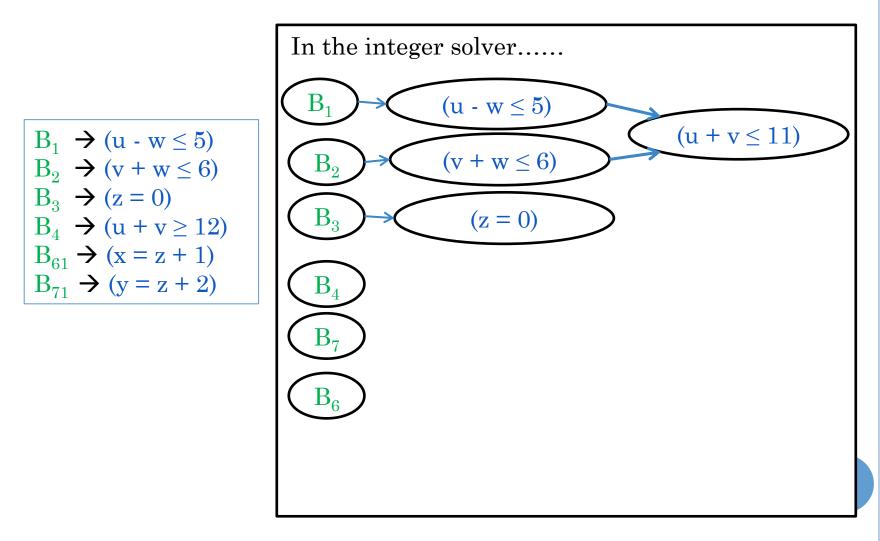


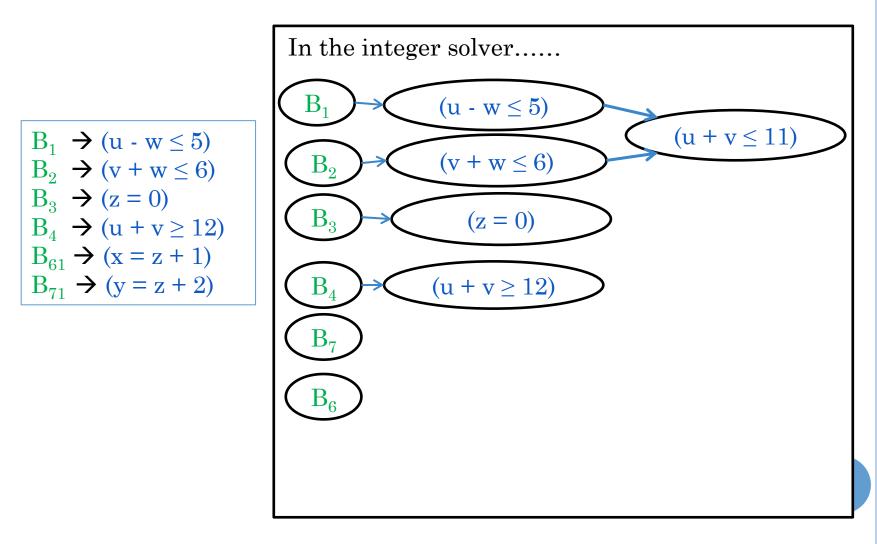


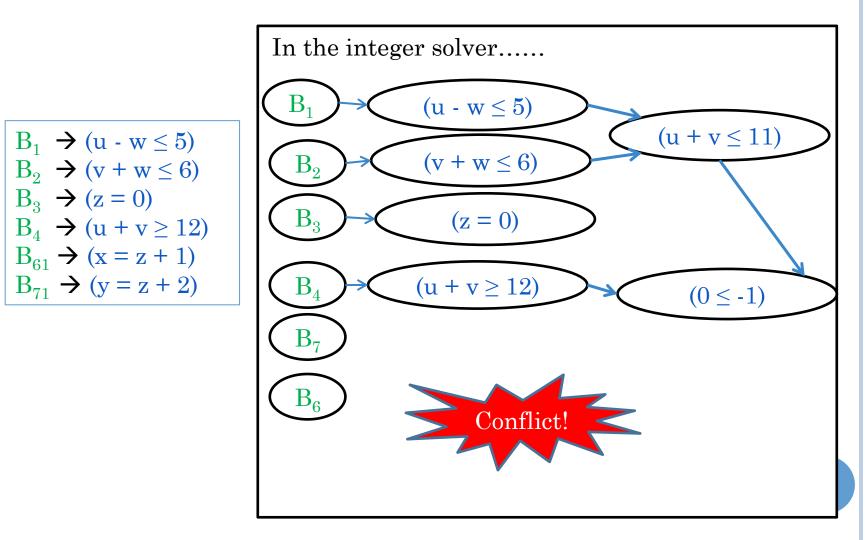


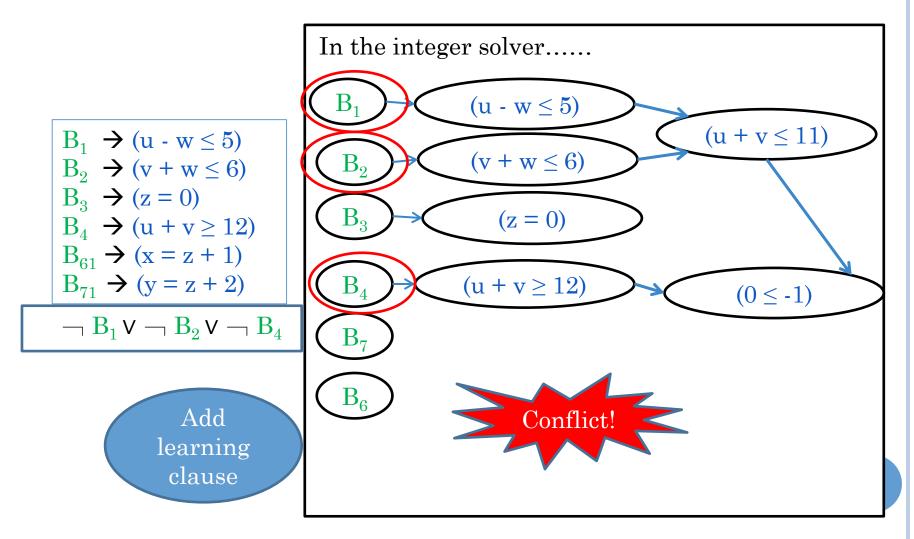




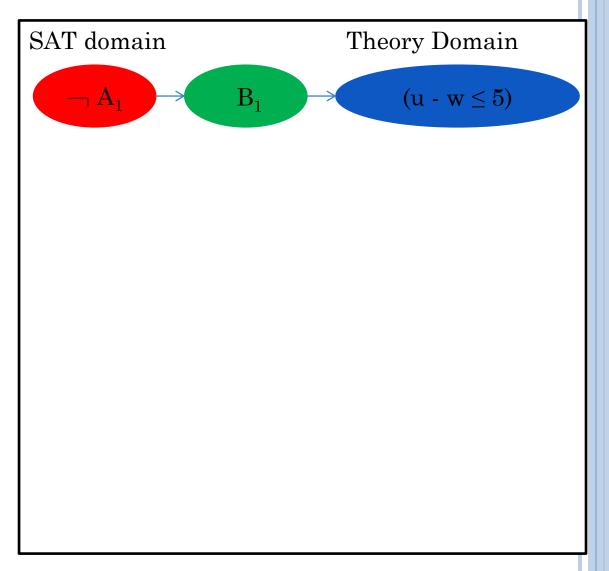




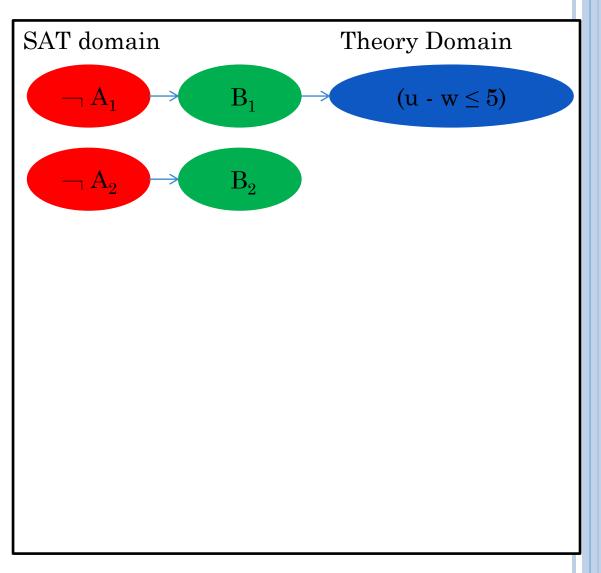




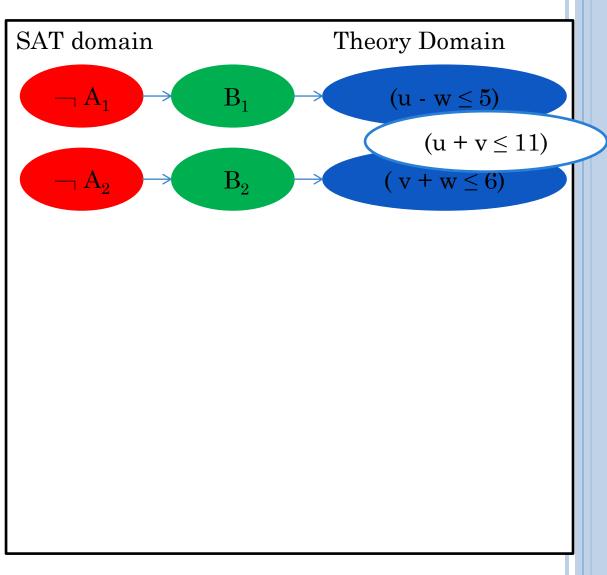
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[A_3 \vee B_3]$ $[A_4 \vee B_4]$ $\left[\neg A_{3} \lor \neg A_{4}\right]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$



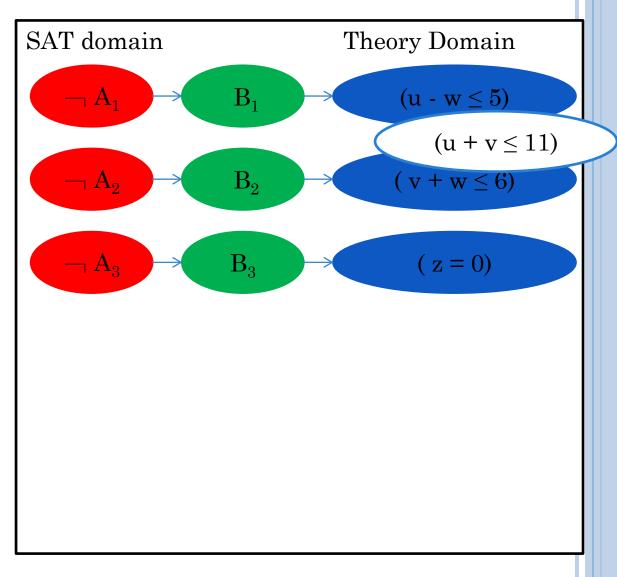
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[\mathbf{A}_3 \vee \mathbf{B}_3]$ $[A_4 \vee B_4]$ $[\neg A_3 \lor \neg A_4]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$



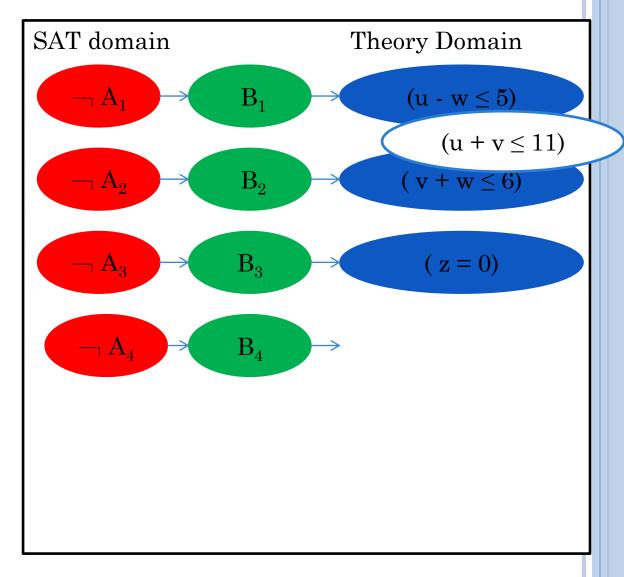
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[\mathbf{A}_3 \vee \mathbf{B}_3]$ $[\mathbf{A}_{4} \vee \mathbf{B}_{4}]$ $\left[\neg A_{3} \lor \neg A_{4} \right]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$



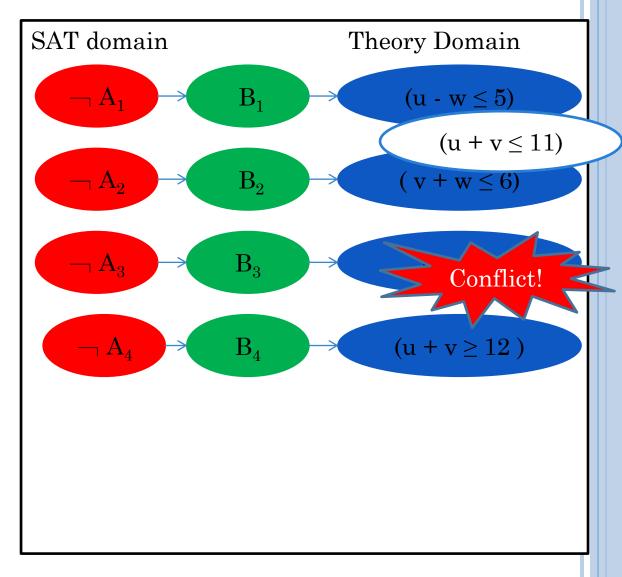
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[\mathbf{A}_3 \vee \mathbf{B}_3]$ $[\mathbf{A}_4 \lor \mathbf{B}_4]$ $[\neg A_3 \lor \neg A_4]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$

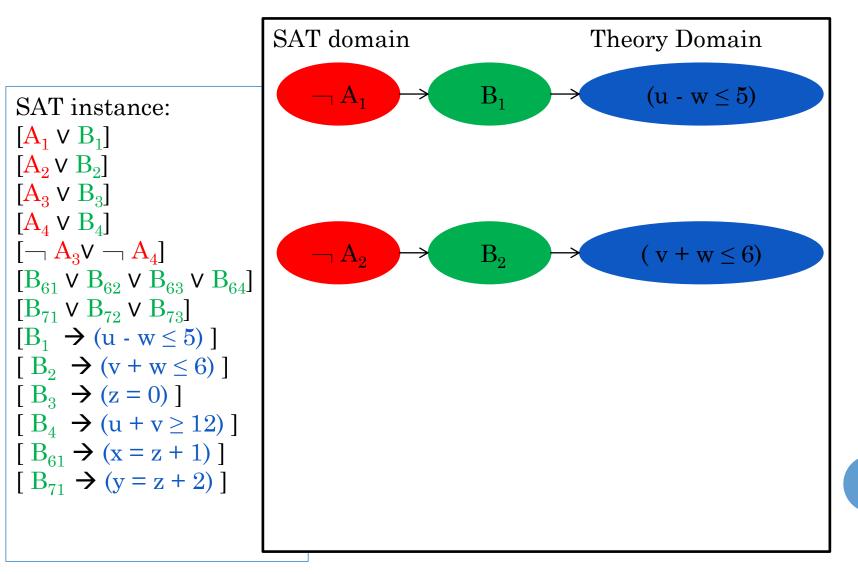


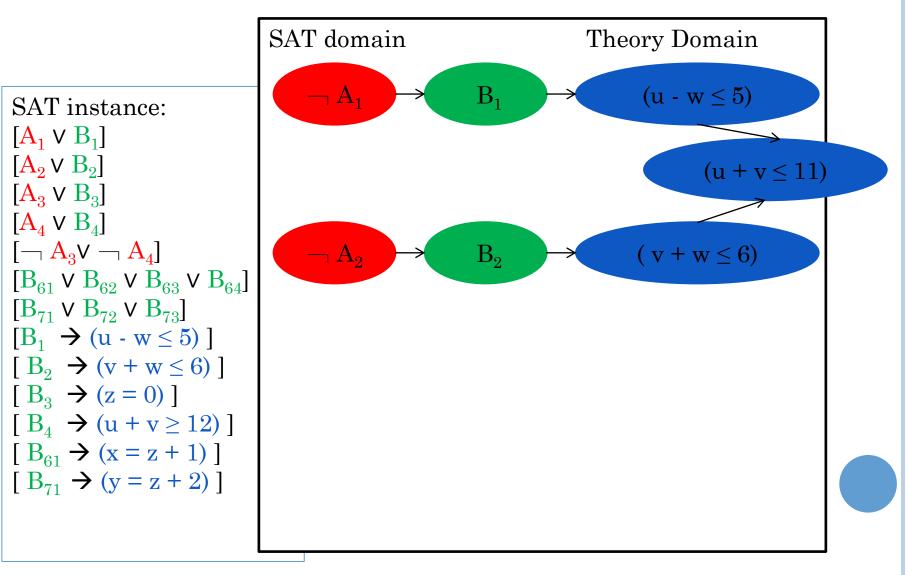
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[\mathbf{A}_3 \vee \mathbf{B}_3]$ $[\mathbf{A}_4 \lor \mathbf{B}_4]$ $[\neg A_3 \lor \neg A_4]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$

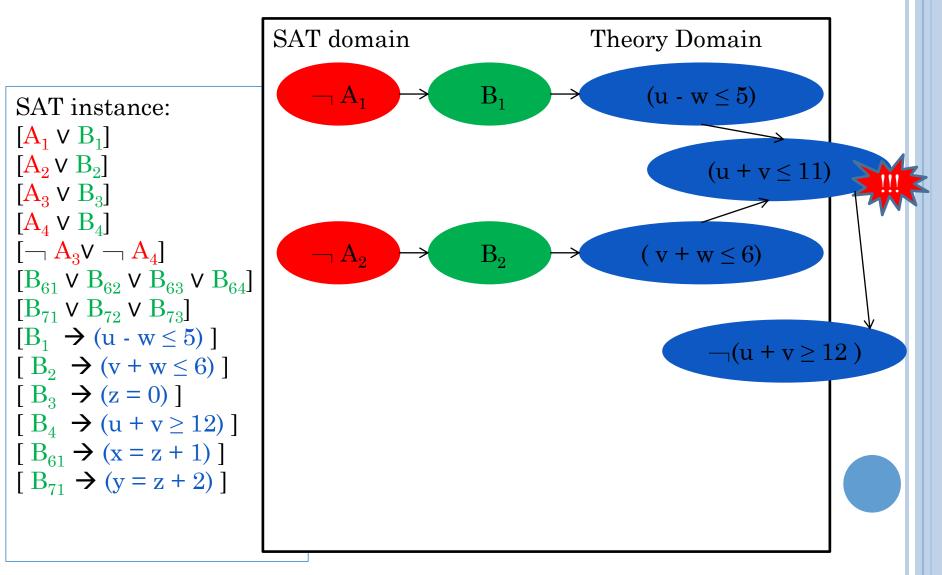


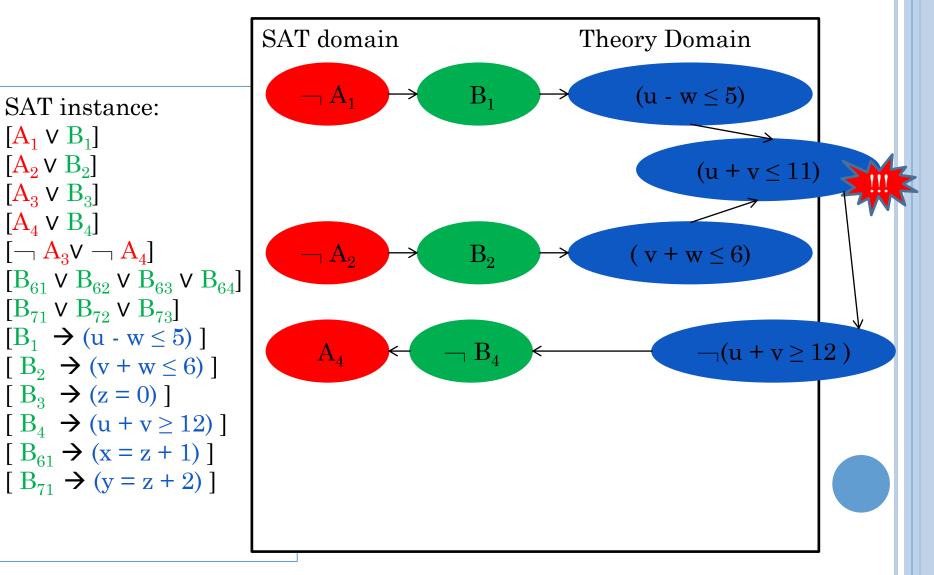
SAT instance: $[\mathbf{A}_1 \vee \mathbf{B}_1]$ $[A_2 \vee B_2]$ $[\mathbf{A}_3 \lor \mathbf{B}_3]$ $[\mathbf{A}_4 \lor \mathbf{B}_4]$ $[\neg A_3 \lor \neg A_4]$ $[B_{61} \vee B_{62} \vee B_{63} \vee B_{64}]$ $[B_{71} \vee B_{72} \vee B_{73}]$ $[B_1 \rightarrow (u - w \le 5)]$ $[B_2 \rightarrow (v + w \le 6)]$ $[B_3 \rightarrow (z=0)]$ $[B_4 \rightarrow (u + v \ge 12)]$ $[B_{61} \rightarrow (x = z + 1)]$ $[B_{71} \rightarrow (y = z + 2)]$

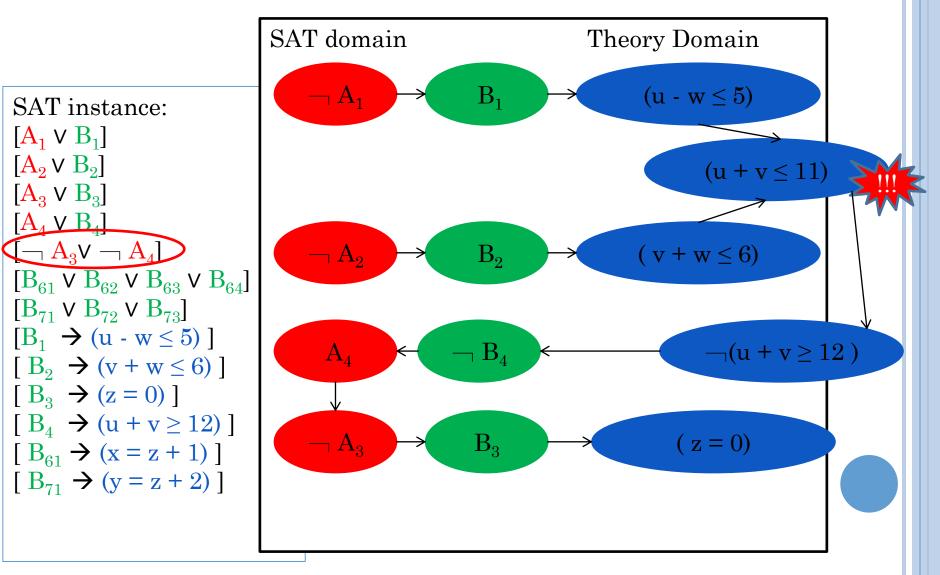












COMPARISON

• Lazy Integration

- SAT solver can work as an enumerator.
- ©Easier to implement
- [©]Can not find out the conflicts earlier
- Eager Integration
 - Requires a tighter integration of the source codes of the SAT solver and \mathcal{T} -solver.
 - ©Able to detect conflict earlier
 - \otimes terrible implementation
- The choice relies on the trade-off between efficiency and implementation effort.

RESOURCE OF MATHSAT5

• Italy, University of Trento

- <u>http://mathsat.fbk.eu/</u>
- 3 Ph.D. thesis and many papers...
- Only execution file and libraries(C API)...

• Provide some API to use the

• Read problem in smt2 format

• (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5)))

SPECIALTY OF MATHSAT

- Layered theory solvers
- Sometimes a fully general solver for \mathcal{T} is not always needed.
 - For example, difference constraints are special case of linear constraints, and are easier to be solved.
- Thus, a *T*-solver may be organized in a layered hierarchy of solvers of increasing solving capabilities.
- Ex: Difference \rightarrow UTVPI \rightarrow Linear
 - UTVPI: two integer variables per inequality constraint

 a*x+b*y < c

RESOURCE OF Z3

- Create by MicroSoft
 - <u>http://research.microsoft.com/en-</u> <u>us/um/redmond/projects/z3/</u>
- Only execution file and libraries...
- Has been used in several program analysis, verification, test case generation projects at Microsoft

• Support Several input formats

- SMT-LIB, Z3, Dimacs
- Main features
 - Linear real and integer arithmetic.
 - Fixed-size bit-vectors
 - Uninterpreted functions
 - Extensional arrays
 - Quantifiers

COMBINATION OF THEORIES

• Example:

• $x+2 = y \Rightarrow f(read(write(a, x, 3), y - 2)) = f(y - x + 1)$

• Given

- $\Sigma = \Sigma_1 \ \cup \ \Sigma_2$
- ${\mathcal T}_1, {\mathcal T}_2$: theories over Σ_1, Σ_2
- $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$
- Is \mathcal{T} consistent?
- Given satisfiability procedures for conjunction of literals of $\mathcal{T}1$ and $\mathcal{T}2$, how to decide the satisfiability of \mathcal{T} ?
- Nelson-Oppen Combination

COMBINATION OF THEORIES(2)

- Nelson-Oppen Combination
- Essential concept:
 - Purification
 - For a conjunction of $(\Sigma_1 \cup \Sigma_2)$ -literals φ , transform it into a equisatisfiable $\phi_1 \wedge \phi_2$ such that ϕ_i contains only Σ_i -literals.
 - Stably-Infinite Theories
 - A theory is stably infinite if every satisfiable sentence is satisfiable in an infinite model.
 - Example: Theories with only finite models are not stably infinite. (only two elements in the domain)

• T = $(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$

- The union of two consistent, disjoint, stably infinite theories is consistent.
- Convex Theories.
 - for all finite sets Γ of literals and for all non-empty disjunctions $\bigvee_{i \in I} x_i = y_i$ of variables
 - $\Gamma \vDash_{\mathcal{T}} \bigvee_{i \in I} x_i = y_i$ iff $\Gamma \vDash_{\mathcal{T}} x_i = yi$ for some $i \in I$

NELSON-OPPEN COMBINATION

- Let \mathcal{T}_1 and \mathcal{T}_2 be consistent, stably infinite theories over disjoint (countable) signatures.
- Assume satisfiability of conjunction of literals can decided in $O(T_1(n))$ and $O(T_2(n))$ time respectively. Then,
 - 1. The combined theory T is consistent and stably infinite.
 - 2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O(2^{n^2} \times (T_1(n) + T_2(n)))$.
 - 3. If \mathcal{T}_1 and \mathcal{T}_2 are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O(n^3 \times (T_1(n) + T_2(n)))$.

NELSON-OPPEN COMBINATION PROCEDURE

- Initial State:
 - ϕ is a conjunction of literals over $\Sigma_1 \cup \Sigma_2$.
- Purification:
 - Preserving satisfiability transform ϕ into $\phi_1 \wedge \phi_2,$ such that, $\phi_i \in \Sigma_i$
- Interaction:
 - Guess a partition of $V(\varphi 1) \cap V(\varphi 2)$ into disjoint subsets. Express it as conjunction of literals ψ .
 - Example. The partition $\{x_1\}$, $\{x_2, x_3\}$, $\{x_4\}$ is represented as • $x_1 \neq x_2$, $x_1 \neq x_4$, $x_2 \neq x_4$, $x_2 = x_3$.
- Component Procedures :
 - Use individual procedures to decide whether $\phi i \wedge \psi$ is satisfiable
- Return:
 - If both return yes, return yes. No, otherwise.

NO PROCEDURE: EXAMPLE

Problem :

 $(x + 2 = y) \land f(read(write(a, x, 3), y - 2)) \neq f(y - x + 1)$

$\mathcal{T}_{\mathbb{E}}$	$\mathcal{T}_{L\mathrm{A}}$	$\mathcal{T}_{\mathrm{AR}}$

NO PROCEDURE: EXAMPLE

Problem :

 $(x + 2 = y) \land f(read(write(a, x, 3), y - 2)) \neq f(y - x + 1)$

$\mathcal{T}_{\mathbb{E}}$	$\mathcal{T}_{ ext{LA}}$	$\mathcal{T}_{ m AR}$

NO PROCEDURE: EXAMPLE

Problem :

$f(read(write(a, x, 3), y - 2)) \neq f(y - x + 1)$			
$\mathcal{T}_{\mathbb{E}}$	T_{LA} $x + 2 = y$	T _{AR}	

f(read	l(write(a, x, u₁), <mark>y – 2</mark>))≠	f(y-x+1)
$\mathcal{T}_{\mathbb{E}}$	$ \begin{array}{c} \mathcal{T}_{\text{LA}} \\ x + 2 = y \\ u_1 = 3 \end{array} $	July July July July <t< th=""></t<>

Problem :

 $f(read(write(a, x, u_1), u_2)) \neq f(y - x + 1)$

$\mathcal{T}_{\mathbb{E}}$	\mathcal{T}_{LA} $x + 2 = y$	$\mathcal{T}_{\mathrm{AR}}$
	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$ $u_2 = y - 2$	

	$f(u_3) \neq f(y - x + 1)$		
$\mathcal{T}_{\mathbb{E}}$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$ $u_2 = y - 2$	\mathcal{T}_{AR} $u_3 = read(write(a, x, u_1), u_2)$	

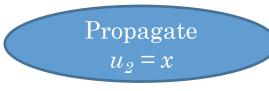
	$f(u_3) \neq f(u_4)$	
$\mathcal{T}_{\mathbb{E}}$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$ $u_2 = y - 2$ $u_4 = y - x + 1$	\mathcal{T}_{AR} $u_3 = read(write(a, x, u_1), u_2)$

$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$	\mathcal{T}_{AR} $u_3 = read(write(a, x, u_1), u_2)$
	$u_2 = y - 2$ $u_4 = y - x + 1$	

Problem :

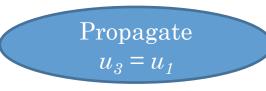
$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$ $u_2 = y - 2$ $u_4 = y - x + 1$	u _{3 =} read(w

 \mathcal{T}_{AR} $u_3 = read(write(a, x, u_1), u_2)$

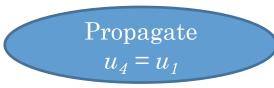


$ \begin{array}{c c} \mathcal{T}_{\mathbb{E}} \\ f(u_3) \neq f(u_4) \\ u_1 = 3 \\ u_2 = x \\ u_4 = 3 \end{array} $ $ \begin{array}{c} \mathcal{T}_{LA} \\ x + 2 = y \\ u_3 = read(write(a, x, u_1), u_2) \\ u_3 = read(write(a, x, u_1), u_2) \\ (write(a, x, u_1), u_2)$		
	$x + 2 = y$ $u_1 = 3$ $u_2 = x$	

$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$	\mathcal{T}_{AR} $u_3 = read(write(a, x, u_1), u_2)$
$u_2 = x$	$u_2 = x$ $u_4 = 3$	$u_2 = x$



$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$ $u_2 = x$	\mathcal{T}_{LA} $x + 2 = y$ $u_1 = 3$ $u_2 = x$	\mathcal{T}_{AR} $u_3 = u_1$ $u_2 = x$
	u ₄ = 3	



$u_1 = 3 \land u_4 = 3 \Rightarrow u_4 = u_1$		
$\mathcal{T}_{\mathbb{E}}$	$\mathcal{T}_{ ext{LA}}$	$\mathcal{T}_{ m AR}$
$f(u_3) \neq f(u_4)$	$x + 2 = y$ $u_1 = 3$	$u_3 = u_1$
$u_2 = x$	$u_2 = x$	$u_2 = x$
$u_3 = u_1$	$u_4 = 3$	
	$u_3 = u_1$	

Congruence $u_3 = u_1 \land u_4 = u_1 \Rightarrow f(u_3) = f(u_4)$		
$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$ $u_2 = x$ $u_3 = u_1$ $u_4 = u_1$ $f(u_3) = f(u_4)$	$ \begin{array}{c} \mathcal{T}_{A}\\ x+2=y\\ u_{1}=3\\ u_{2}=x\\ u_{4}=3\\ u_{3}=u_{1}\\ u_{4}=u_{1} \end{array} $	\mathcal{T}_{AR} $u_3 = u_1$ $u_2 = x$ $u_4 = u_1$

	UNSAT!		
$\mathcal{T}_{\mathbb{E}}$ $f(u_3) \neq f(u_4)$ $u_2 = x$ $u_3 = u_1$ $u_4 = u_1$ $f(u_3) = f(u_4)$	\mathcal{T}_{A} $x + 2 = y$ $u_{1} = 3$ $u_{2} = x$ $u_{4} = 3$ $u_{3} = u_{1}$ $u_{4} = u_{1}$	\mathcal{T}_{AR} $u_3 = u_1$ $u_2 = x$ $u_4 = u_1$	

CONCLUSION

• We go through

- some theories of interest
- eager approaches to SMT
- lazy approaches to SMT
- Some theories and algorithms are simply discussed
- More details: see reference slides.

REFERENCE

• A Mathematical Introduction to Logic

- by <u>Herbert B. Enderton</u>
- SMT-COMP
 - The Satisfiability Modulo Theories Competition
 - <u>http://smtcomp.sourceforge.net/2012/</u>
- SMT-LIB
 - The Satisfiability Modulo Theories Library
 - <u>http://goedel.cs.uiowa.edu/smtlib/</u>
- Satisfiability Modulo Theories slides
 - Roberto Sebastiani for IJCAI 11
- Solvers' websites:
 - Boolector, Yices, Z3, MathSAT5
 - Many papers from MathSAT team
 - Tutorial slides from Z3
- Previous slides from Yi-Wen Chang and Chih-Chun Lee
- Congruence closure
 - $\bullet \ \underline{http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf}$
- Difference Logic
 - <u>http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf</u>