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EXAMPLES FOR SMT PROBLEMS(1)

o Planning with Resources
o Straightforward to encode into SMT(LA(Q))

Example:
(Deliver ) // goal
A (MaxLoad) // load constraint
A (MaxFuel) // fuel constraint
A (Move - MinFuel) // move requires fuel
A (Move - Deliver) // move 1mplies delivery
A (GoodTrip =2 Deliver) // a good trip requires
A (GoodTrip - AllLoaded) // a full delivery
A (MaxLoad - (load 30)) // load limit
A (MaxFuel 2 (fuel 15)) // fuel limit
A (MinFuel 2 (fuel 7 + 0.5load)) // fuel constraint
A (AllLoaded - (load = 45)) // more than MaxLoad......




EXAMPLES FOR SMT PROBLEMS(2)

o Verification of HW circuit designs & microcode
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o Control paths handled by Boolean reasoning

o Data paths information abstracted into theory-specific
terms
e words (bit-vectors, integers, EUF vars, ... ): a¢[31 : 0], a
o word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators)
x[15: 0] = (y[15: 8] :: 2[7 : 0]) << w][3 : 0],
(a=a; + 2%ay), (m, = store(m, l,, vy)), ...

o SMT on BV, EUF, AR, modulo-LA(Z) required




INTRODUCTION — WHY SMT?

o SAT solvers are developed very well.
o SAT has benefited many areas: Al, formal methods

o However......

o applications in these fields require determining the
satisfiability of formulas in more expressive logics
such as first-order logic

o Bit-level encoding (bit-blasting) usually exploit
problem-specific structures makes hardware verification
not scalable

(o)

o General first-order satisfiability is Undecidable.
e It 1s only semi-decidable.

o general-purpose first-order theorem provers are
typically not able to solve such formulas directly




INTRODUCTION — WHY SMT? (CONT.)

o In most applications...
e Not require general first-order satisfiability

o fixed interpretations of certain predicate and function
symbols

o Can we solve the simpler formulae directly?

o Can we adopt the wisdom of SAT solvers?

o DPLL, non-chronological backtracking, conflict-driven
learning, two-literal watch scheme, VSIDS

o Can we make SAT solvers structure-aware?
o So...... here comes SMT !




INTRODUCTION- FIRST ORDER LOGIC (1)

o Syntax : First-Order Languages consist of
e Logical symbols

o variables : x,y, z, ...
o logic operators and quantifiers : =V A —,3V
o equality symbol: = (optional)
o Parameters
o constant symbols : ¢y, ¢y, ... (countable)
o function symbols : f, g, ... (possibly empty)
o predicate symbols : p, g, ... (possibly empty)

o Ex. Zy = {1{0}, {S,+}, {=}}

o To specify a language, we need to specity
e Presence of “=”
e Symbols




INTRODUCTION- FIRST ORDER LOGIC(2)

o Terms
e Every constant c; or variable x is a term.

o Ifty, .., t; are terms and f i1s a k-ary function symbol, f(tq, ..., t) 18
a term.

o Ex:SS0
o Formula
e True and False are atomic formulas.

o Ifty, .., t; are terms and P is a k-ary predicate symbol, P(t4, ..., ty)
1s an atomic formula.

o Ex: <xy (define < as predicate sumbol)

o Well Form Formulae;:

o expression built up from atomic formulas by applying these
operations: =V A —,3V
e Ex:(x<y)VviEx=y)
o Free variable:
e variables in a formula are those not bound by a quantifier

o Sentence :
e Formula without free variable




INTRODUCTION- FIRST ORDER LOGIC(3)

o Sematic : Structure A consists of
e Universe (or domain) of A

o Interpretation for each parameter
o (constant, function, predicate)

o Ex. A Xy-structure
o {{0}, {S*:=succ, +*:=plus, =" :=equal} }
o Define a structure A satisfies a wif ¢ with
assignment s
e The translation of ¢ determined by A 1s true,
where variable x is translated as s(x)
wherever 1t occurs free.
o A satisfies ¢ with every s :
e ¢$1s truein A
e A 1s a model of ¢




INTRODUCTION- FIRST ORDER LOGIC(4)

o A theory T (over a structure)
e a set of first-order sentences closed under
logical implication.
o A 1s a model for the theory T
 1f all sentences of Tare true in A.

o So far, that 1s the definition from the book
o “A Mathematical Introduction to Logic”




SATISFIABILITY OF SAT AND SMT

o Satisfiability is the problem of determining if a
formula has a model
o Model :structure with variable assignment.

o In purely Boolean cases
e a model is a truth assignment to the Boolean variables.

o In first-order cases

e a model assigns values from a domain to variables and
Iinterpretations over the domain to the function and
predicate symbols.

o A formula F is satisfiable if there 1s an interpretation
(model )M such that

e« M EF.
e Otherwise, the formula F 1s unsatisfiable.
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THEORY OF EQUALITY Tj

o Theory of equality and uninterpreted functions.

OZIE:{{CL' } {flJ' } {:}}
+ Ex. [f(f@) = a] al[f (f(F@)) =a| Alf (@ # a]

o Jg-unsatisfiable
o Axiom schema
e Vx.(x = x) (reflexivity)
e Vx,y.(x =y ->y=x) (symmetry)
e Vx,y,z.(x =yANy =2z—- x = z) (transitivity)
* VX,y.(Ax; =y; = f(X) = f(¥)) (congruence)
o The satisfiability problem for conjunction of literals in

T 1s decidable in polynomial time using congruence ‘
closure.




CONGRUENCE CLOSURE (1)

o Given binary relation R over S.

o The equivalence closure of R

e The unique minimal extension R’ of R, that is closed
under equivalence relation
o reflexivity, symmetry, transitivity.

o congruence closure of R

e The unique minimal extension R’ of R, that is closed
under congruence relation. .

o We use the directed acyclic graph (DAG) to [
represent terms: )

A term corresponds to exactly one node in DAG/!

o Equalities are represented as dot lines. !

o Ex:f(f(a,b),b)=a

-
-




CONGRUENCE CLOSURE (2)

o Computing congruence closure:

o Pick arbitrary representatives for all equivalence
classes (nodes connected by dotted edges)

e Construct congruence closure for these edges.

o Ex: f(a, b) =a = f(f(a, b) , b) =1f(a, b)




REAL LINEAR ARITHMETIC Ty

OZQ — { {Z}a {+9 _}7 {<7 :} } ’
Ag = the set of rational numbers

e Ex. 2x<4) N (2x>2) (Tp-satisfiable)
e no need to consider 1irrational under linear real
arithmetic.
0 SAT(Jgp) can be solved by polynomial time
algorithm.
e Fourier-Motzkin variable elimination
algorithm.

e Simplex algorithm
o exponential methods
o tend to perform best in practice.




QUANTIFIER ELIMINATION

o If a formula with no free and no quantifiers, then
1t 1s easy to determine 1ts truth value

e 10>11Vv3+4<5x3-6
o Quantifier elimination

o take input P with n quantifiers

e turn it into equivalent formula P’ with m quantifiers,
where m < n.

o Eventually P=P'= - - -=Q and Q has no
quantifiers.

o Q will be trivially true or false, and that 1s the
decision.




FOURIER-MOTZKIN THEOREMS

o The following simple facts are the basis for a very
simple quantifier elimination procedure.

o transitivity.
e xX<yAy<z)=>x<z.
o Over R, with a, b > O:
e dx.(c<ax Abx<d)=(bc<ad)
e dx.(c<axAbx<d)=3x.(c<ax Abx<d)
= 3Ix.(c<ax Abx <d) = (bc < ad)
o Proof:
e Forbc<ad= (Ix.c<ax Abx<d)
o take x to be d/b = ¢ < a(d/b) and b(d/b) < d.
o Combining Many Constraints
e Ax.(c<axAbx<d; Aby,x<dy)
=b,c<ad; Aby,c<ad,




DIFFERENCE LOGIC

Difference logic is a fragment of linear arithmetic.
Atoms have the form:
X —y=c

Most linear arithmetic atoms found 1n hardware
and software verification are in this fragment.

The quantifier free satisfiability problem 1is
solvable in O(VE).

V: number of variables
E: number of Atoms

(solve by Bellman-Ford algorithm)



DIFFERENCE LOGIC (2)

o Given M ={a-b <2, b—c <3, c—a<-T}
e construct weighted graph G(M)

e M is T-inconsistent iff G(M) has a negative cycle

. k1 k2 kn
o Any negative cycle al—a2 - a3 —»... - an — al

corresponds to a set of literals:
e al —a2<kl
e a2 —a3<k2
e an—al <kn
o If we add them all, we get 0 <kl +k2+...+kn

e negative cycle implieskl +k2+...+kn<0 =
1nconsistent




INTEGER LINEAR ARITHMETIC 77
OZZ — { {Z}a {+9 _}9 {<9 :} }

Az= the set of integers
o Ex: (2x <4) A (2x > 2) (T;-unsatisfiable)
o0 SAT(J7;) 1s NP-complete.

e Fourier-Motzkin algorithm doesn’t work well.

o However, 1t becomes undecidable 1if
multiplication is introduced in 7.

o Ex:xxy<b




THEORY OF ARRAYS T,p

o The theory of arrays (7,z) aims at modeling the
behavior of arrays/memories.

e write(a,1, v) ; read(a, 1)

e a: array, 1. index, v: element
o Axiom schema

e McCarthy’s axioms

o Va,i,v.read(write(a,i,v),i) =v

oVa,i,jv.(i #j)— [read(write(a,i,v),i) =read(a,j))]
o Extensionality axioms

o Va,b.(Vi.(read(a,i) = read(b,i))) — (a = b)

0 SAT(T) 1s NP-complete modulo T;jem. ‘




THEORY OF BITVECTORS 7},

o Domains : vectors of bits.
e al7:0]
o Like hardware design

o Operators:
» read, write: like array
e extraction, concatenation:
o a[7:0]; b[3:0] =a[3:0]; c={a, b}
e bit-wise operations
o0&, |, "
e arithmetic operations
o+, -, %/, %

o SAT(T,,) 1s NP-complete.
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HISTORY OF SMT COMPETITION

o Since 2005
o0 2005&2006: Only several quantifier free linear

arithmetic categories
o QOutperform solvers: Yices 0.1, MathSAT3

o 2007: BV problems added
e 730.1, Yices 1.0, MathSAT4

o 2008:

o 73.2 dominated most categories,

» Boolector won 1in BV categories
o Poor MathSAT4.2 and Yices2......




THEORIES IN SMT COMPETITION

QF_UF : equality and uniterpreted functions.
QF_RDL/QF_IDL : real/integer difference logic.
QF_LIA/QF_LRA : linear real/integer arithmetic
QF_NIA : nonlinear integer arithmetic

QF_AX : arrays with extensionality.

QF_BV : bit-vectors.

AUFLIRA : arrays, UF, LIA, LRA

AUFNIRA : arrays, UF, NIA, NRA

All of the above are decidable!



HISTORY OF SMT COMPETITION

o 2009: more and more categories.......

o MathSAT 4.3, Yices2.0 outperformed others in most
categories

e Boolector only took BV domain(still worked well)

e 73 was 1n summer vacation?
o 2010: first year of parallel track

e Many new solvers appeared

o 73 and Boolector took summer vacation again.....
e MathSAT5, CVC3, openSMT

o 2011
o 7.3 kicked other solvers.......
e MathSAT5, CVC3, openSMT




WHAT WE KNOW FROM THE HISTORY?

o If we focus on BV problems:
 Why boolector works so well?

o What’s going on with Yices?
o How can MathSAT and Z3 outperform others?

o Case-dependent? Luck?
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GENERAL IDEA OF EAGER APPROACH

o Translate the original formula to an satisfiability-
equivalent Boolean formula in a single step.

» Boolector, BV part in Yices

e The performance is related to the size of SAT instance.
o Bit-blasting example:

o x[3:0] + y[3:0] = z[3:0]

e 1t might introduce other variables

o =2z[0] = x[0]®y[0], c[0] = x[0]y[O], z[1] = x[1] ®y[1] &Dc[O0].....
o Smaller domain encoding

o Convert Fy g to Fgrien

e Replace each constraint in F,,.;;;, with a fresh
Boolean variables to get a Boolean formulakF,,,
e Convert F,;;;, to Boolean formula Fp,,,;.

e Ex: (x[3:0] +y[3:0] =2[3:0] )V (W[3:0]=7)=>AVB .




EXAMPLE FOR SMALL ENCODING

o over Integer Linear Arithmetic 75
Farith D =
((x+ty <5) V =(xty>10))
A((xty <5) V =(x-y=3))
A((xty > 10)V  (x-y=3))
A(—(xty <9))

o E,,; ® =

(A V —|B)
ANAV —C)
ANBv C)
N (_IA)




AFTER SMALLER DOMAIN ENCODING

o If UNSAT, we can return the answer.

o However, we might miss some conflicts under
smaller encoding
O Ex: [(x+y=3)Vx+y<2) JA[x+y=3)]
o After smaller encoding: [-AV B] A[A]
e Assign A=1,B=1=> SAT!
« However...... x+y=3)AE+y<2)=> UNSAT!
o Worse case, we still need bit-blasting!

o Why Boolector 1s so powerful?




THE SECRET OF BOOLECTOR-REWRITE

o Example can not be handled by small encoding
* (xty =p) A(p+x =q) A(2x =1) AN(r+ty =s) A = (q=s)
o Boolector contains crazy, rule-based rewrite!
o« Commutative property
o Associativity
e Symmetry

o Better encoding for special operators:

o Ex: Shift operator
o ¢[3:0] = a[3:0] << b[1:0]
o b[1] =¢[3:0] > a[3:0]*2




RESOURCE OF BOOLECTOR

o Institute for Formal Models and Verification, Johannes
Kepler University, Linz, Austria.
o Open source: http://fmv.jku.at/boolector/
e Picosat needed
e http://fmv.jku.at/boolector/ README
e The version for smtlib2 does not be uploaded

o We can use the simpler format BTOR to write input cases©
e BTOR example
1 var 6
2 var 6
3 var 6
4add 612
5add 64 3
6add 62 3
7Tadd 661
8eqlb7
9root 18



http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/README
http://fmv.jku.at/boolector/README

RESOURCE OF YICES

o Computer Science Laboratory, SRI International
Menlo Park, CA

o http://yices.csl.sri.com/

o http://vices-wiki.csl.sri.com/index.php/Main_ Page

o For BV, only some simplification rule, and bit-
blasting!

o For other theories, apply lazy approach
o No source code
o Read SMT-LIB format and its own format



http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
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OVERVIEW OF LLAZY APPROACH

o Combine SAT and Theory Solvers
SMT instance

T2B

(abstraction)

SAT instance
Conflict
analyze
‘( SAT
UNSAT solver
SAT

Theory
solvers

B2T

(refinement)

Theory Atoms




DPLL(T): T2B (THEORY-TO-BOOLEAN)

o T 2B (Theory-to-Boolean)

a bijective function,
maps Boolean atoms into themselves
non-Boolean J-atoms into fresh Boolean atoms

Two atom instances are mapped into the same
Boolean atom 1iff they are syntactically identical.

o B2T :=T2B! ( Boolean-to-Theory )

T2B and B2T are also called Boolean abstraction and
Boolean refinement respectively.




EXAMPLE OF T2B

0¢0:={(2x,—x3>2) VA }
A=AV (X —%X=1)}
AN (Bx; —2x,<3)V A}
A{—(@2x3+x,25)V —(3x; —x3<6) V —A}
AN{AV(3x;—2x,<3)}
ANMXy—%X,<6)V (X;=5-3x,)V —A}
AN{AV(x3=3x;,+4) VA,
o T 2B(¢) :={—B; VA
A{Ay V By
A{Bs Vv Ay}
N\ {—|B4 \% —|B5 V —|A1}
AN{A, Vv Bg}
AN{BgVv B, v —A}
N{A, VvV BgVv Ay}




INTEGRATION BETWEEN SAT SOLVER AND
THEORY SOLVERS

o Lazy Integration

o Theory solvers are triggered only after SAT solver
determines all variables

o Return learning clauses after conflicts occur

o Easier to implement

o Eager Integration

» theory solver participates in early stages
o value propagation (implications)
o conflict analysis

* Find the conflict sources earlier
 Require much more implementation works




EXAMPLE FOR INTEGRATION

o Input instance:
e [A;V(u-w<sH)]
ANAV (v +w<6) ]
[AyV (z=0)]
[A,V(u+v>12)]
[_IA3V_‘A4]
[(x=z+1)VE=z+3)VE=z+H)VE=z+T7)]
[y=z+2)vV(y=z+4)V(y=z+6)]
[(W+vVv-4x-4y=0)]
o After T2B
[A; V B]
[Ay V By
[AngS]

> > > > > >

[ 3V — A

[Bg1 V Bgy V Bgs V Bg, ]
[B71 V B7y vV Byl

[1]

>>>>>>>




LAZY INTEGRATION

SAT instance:
[A; Vv B]
[AyV By

|

[Bg; V Bgy V Bgs v By ]
[B;; V By vV B3l
[

SAT solver A, > B,

SAT!! Go to theory solver!




LAZY INTEGRATION(2)

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)

In the integer solver




LAZY INTEGRATION(2)

In the integer solver......

D>

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)




LAZY INTEGRATION(2)

B, 2 u-w<bH)

B >rwee | |(B wrw=o D
B; 2((z=0)

B, 2 u+v>12)
By 2 =z+1)

B, > (y=z+2)




LAZY INTEGRATION(2)

B; 2((z=0)
B, 2 u+v>12)
By 2 =z+1)

B, > (y=z+2)

B, 2 (u-w<b) (u+vs<11)
B, > (v+w<06) +w§6)




LAZY INTEGRATION(2)

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)

In the integer solver......

W=
<z—o>>

@@@x

(u+v§1D




LAZY INTEGRATION(2)

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)

In the integer solver......

S

(u+v§1D




LAZY INTEGRATION(2)

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)

In the integer solver......

W=
G v=o
GO~ e=0 >

(u+VS1D

‘*@””D\)(w S

O%




LAZY INTEGRATION(2)

B, 2 @u-w<b)
B, 2 (v+w<6)
B; 2((z=0)

B, 2 (u+v>12)
By 2 =z+1)
By 2> =z+2)

In the integer solver......

(u-w<b

C (v+w<6)
(=0

— B;v—=B,v—=B,

Add

learning
clause

‘W‘

(utv< 1>

I,GHV>1D\)<O< D




EAGER INTEGRATION

SAT domain Theory Domain

SAT instance: “.

[A; V B]

[Ay v By

[As Vv Byl

[A, vV B]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B; 2 (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]
[B, 2 (u+v>12)]
[Bgg 2 x=z+1)]
[B;, 2 (y=2z+2)]




EAGER INTEGRATION

SAT domain Theory Domain

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]




EAGER INTEGRATION

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[_l A3V Sl A4]

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B; 2 (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Bg; 2> x=2z+1)]
[B;, 2 (y=2z+2)]

SAT domain

Theory Domain

(u+v<11)




EAGER INTEGRATION

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]

SAT domain Theory Domain

(u+v<1l)




EAGER INTEGRATION

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]

SAT domain Theory Domain

(u+v<1l)

@& - aE»
DS




EAGER INTEGRATION

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[_l A3V Sl A4]

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B; 2 (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Bg; 2> x=2z+1)]
[B;, 2 (y=2z+2)]

SAT domain

Theory Domain

(u+v<11)




EAGER INTEGRATION(2)

SAT domain Theory Domain

SAT instance: ‘..
(A, v B

[Ay v By

(A V B

[A, v B

[Be1 V By V Bgs v By

(B, V By v Bl

[B; 2 (u-w<hH)]
[B, 2 v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v=>12)]
[Bgy 2 x=2z+1)]
[By 2 (y=2+2)]




EAGER INTEGRATION(2)

SAT domain Theory Domain

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]




EAGER INTEGRATION(2)

SAT domain Theory Domain

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]




EAGER INTEGRATION(2)

SAT domain Theory Domain

SAT 1nstance:

[A, Vv Bi]

[Ay Vv By

[As Vv B

[A, v BJ]

[— AV — A

[Be1 V Bgy V By v Byl
[B7, vV By v By

[B;, 2> (u-w<H)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Be 2 x=2z+1)]
[B;y 2 (y=z+2)]




EAGER INTEGRATION(2)

SAT domain Theory Domain

SAT 1nstance:
[A, Vv Bi]
[Ay Vv By
[A; Vv B.]

[A
— AV — A

[Be1 V Bgy V By v Byl
[B;; V By, vV By

B, 2> (u-w<5)]
[B, 2 (v+w<6)]
[B; 2 (z=0)]

[B, 2 (u+v>12)]
[Bey 2 x=z+1)]
[B;y 2 (y=z+2)]




COMPARISON

o Lazy Integration
o SAT solver can work as an enumerator.
o ©FEasier to implement
e ®Can not find out the conflicts earlier

o Eager Integration

 Requires a tighter integration of the source codes of
the SAT solver and ' —solver.

o ©Able to detect conflict earlier
o ® terrible implementation

o The choice relies on the trade-off between
efficiency and implementation effort.




RESOURCE OF MATHSATS

o Italy, University of Trento
e http://mathsat.fbk.eu/
e 3 Ph.D. thesis and many papers...

o Only execution file and libraries(C API)...

o Provide some API to use the

 Read problem in smt2 format
o(and (=v3 (h v0)) (=v4 (h vl)) (=v6 (f v2)) (=v7 (f v5)))



http://mathsat.fbk.eu/
http://mathsat.fbk.eu/

SPECIALTY OF MATHSAT

o Layered theory solvers

o Sometimes a fully general solver for T is not
always needed.

o For example, difference constraints are special
case of linear constraints, and are easier to be
solved.

o Thus, a T-solver may be organized in a layered
hierarchy of solvers of increasing solving
capabilities.

o Ex: Difference > UTVPI - Linear

« UTVPI: two integer variables per inequality constraint
o a*x+b*y <c




RESOURCE OF %3

o Create by MicroSoft

e http://research.microsoft.com/en-
us/um/redmond/projects/z3/

o Only execution file and libraries...

o Has been used in several program analysis,
verification, test case generation projects at Microsoft
o Support Several input formats
o SMT-LIB, Z3, Dimacs
o Main features

e Linear real and integer arithmetic.
» Fixed-size bit-vectors

Uninterpreted functions

Extensional arrays

Quantifiers



http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

COMBINATION OF THEORIES

o Example:

e xt+ 2 =y = f(read(write(a, x, 3), y —2)) =f(y —x+ 1)
o Given

e X=X, U2,

e J',,7, : theories over X, X,

o =T, UT,
o Is T consistent?

o Given satisfiability procedures for conjunction of
literals of 71 and T2, how to decide the
satisfiability of7™?

o Nelson-Oppen Combination ‘




COMBINATION OF THEORIES(2)

Nelson-Oppen Combination

Essential concept:

Purification

o For a conjunction of (£; U Z,)-literals ¢, transform it into a
equisatisfiable ¢; A ¢, such that ¢; contains only Z;-literals.

Stably-Infinite Theories

o A theory is stably infinite if every satisfiable sentence is
satisfiable in an infinite model.

o Example: Theories with only finite models are not stably
infinite. (only two elements in the domain)

T=(vx,y,z. x=y) V=2V (y = 2)).
o The union of two consistent, disjoint, stably infinite theories is
consistent.

Convex Theories.

o for all finite sets I of literals and for all non-empty disjunctions
Ve x; = y; of variables

ol'Er Vi xi =y; Hf T 1 x; = yifor some 1€ [



NELSON-OPPEN COMBINATION

o Let T, andT, be consistent, stably infinite
theories over disjoint (countable) signatures.

o Assume satisfiability of conjunction of literals can
decided in O(T,(n)) and O(Ty(n)) time respectively.
Then,

e 1. The combined theory T is consistent and stably
infinite.

o 2. Satisfiability of quantifier free conjunction of
literals in T can be decided in O(anx(TZ(n) + Ty(n)).

e 3. IfT, andT, are convex, then so 1s T and
satisfiability in T is in O(n® x (T;(n) + T(n))).




NELSON-OPPEN COMBINATION
PROCEDURE

o Initial State:
e @ 1s a conjunction of literals over X; U X,.

o Purification:

o Preservmg satisfiability transform ¢ into @, A @,, such that,
. E X

o Interact10n°

e Guess a partition of V(¢p1) N V(92) into disjoint subsets.
Express it as conjunction of literals .

e Example. The partition {x}, {x,, X3}, {X,} 1s represented as
0 Xy £ Xy, X1 Xy, Xg F Xy, X9 = Xs.
o Component Procedures :

e Use individual procedures to decide whether @1 A y 1s
satisfiable

o Return:
o If both return yes, return yes. No, otherwise.




NO PROCEDURE: EXAMPLE @

Problem :

(x + 2 =y) Af(read(write(a, x, 3),y —2)) #f(y —x + 1)

TE Tia T




NO PROCEDURE: EXAMPLE @

Problem :

(x + 2 =1y) Af(read(write(a, x, 3),y —2)) #f(y —x + 1)

TE JLa T




NO PROCEDURE: EXAMPLE @

Problem :

f(read(write(a, x, 3),y —2)) #f(y —x + 1)

Ik JraA
x+2=y




NO PROCEDURE: EXAMPLE @

Problem :

f(read(write(a, x, u,),y —2)) #f(y —x+ 1)

Ik JraA
x+2=y

u; =3




NO PROCEDURE: EXAMPLE @

Problem :
f( read(write(a, x, w,;), uy) ) # fly —x+1)
TIE 7-i_.A TAR
x+2=y
u; =3

Uo=y-2




NO PROCEDURE: EXAMPLE @

Problem :
fluz) # f(y —x + 1)
T T
S LA TAR
x+2=y uy —read(write(a, x, u;), u,)
u, =3

Uo=y-2




NO PROCEDURE: EXAMPLE @
Problem :
fluy) # flu,)
Ty Tia T
X2y u, _read(write(a, x, u,), u,)
w, =3
Uo=y-2

u,=y—x+1




NO PROCEDURE: EXAMPLE
Purifying

Problem :
T; T;
E LA TAR
+ =
f(ug) #f(u4) X+2=Yy Us _read(write(a, x, u1), u2)
u; =3
Uo=y-2




NO PROCEDURE: EXAMPLE
olving J;

Problem :
T; T;
E LA TAR
+ =
f(ug) #f(u4) x+2=Yy Us _read(write(a, x, u1), u2)
u; =3
Ug=y-2




NO PROCEDURE: EXAMPLE
Uy =X
Problem :

T; T;
E LA TAR
+2= :
f(ug)if(l%) Xtz J Us =read(wrlte(a, X, u1), uz)
u; =3
Ug =X




NO PROCEDURE: EXAMPLE
olve Thg
Problem :

T; T;
E LA TAR
+ =
f(ug)if(l%) X+2=Yy Us _read(write(a, x, u1), u?)
u; =3
Ug =X Ug =X

Uy =X




NO PROCEDURE: EXAMPLE

Propagate
Ug = Uy
Problem :
T T
E LA T
flug) # f(uy) x+2=y _
Us —U;
u; =3
Ug =X Ug =X Uy =X




NO PROCEDURE: EXAMPLE Errsmmhie

U,=u,
Problem :
u; =3 Nu,=3=>u,_-u;
T T
E LA TAR
flus) # f(uy X¥+2=y _
Us = U,
u; =3
Ug =X Ug =X Uy =X
Us = U, uy,=3
Usg =U;




NO PROCEDURE: EXAMPLE »

Problem :

Congruence us=u; Nu,=u; = f(ug) =f(u,)

T T,
E A Tue
flus) # fluy ¥+2=y Ug U
Uy = X Uy =93 3
U= Ug= X
Ug U, z
u,=3 Uy=Uj
Uy U
Ug U,
flus) =f(uy u, _u,




NO PROCEDURE: EXAMPLE »

Problem :
UNSAT!
J; T
E A T
flus ) # f(u,) ¥+2=y w —u,
Uy = X Uy =3
Uy = X Hp= X
Uy U z
u,=3 Uy=Uj
U, U,
Uy U
flus)=f(uy) u, _u,




CONCLUSION

We go through

some theories of interest
eager approaches to SMT
lazy approaches to SMT

Some theories and algorithms are simply
discussed

More details: see reference slides.
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