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EXAMPLES FOR SMT PROBLEMS(1) 

 Planning with Resources 

 Straightforward to encode into SMT(LA(Q)) 

Example:  

    (Deliver )  

∧  (MaxLoad) 

∧  (MaxFuel) 

∧  (Move  MinFuel) 

∧  (Move  Deliver ) 

∧  (GoodTrip Deliver ) 

∧  (GoodTrip  AllLoaded) 

∧  (MaxLoad  (load  30)) 

∧  (MaxFuel  (fuel  15)) 

∧  (MinFuel  (fuel  7 + 0.5load)) 

∧  (AllLoaded  (load = 45)) 

// goal 

// load constraint 

// fuel constraint 

// move requires fuel 

// move implies delivery 

// a good trip requires 

// a full delivery 

// load limit 

// fuel limit 

// fuel constraint 

// more than MaxLoad...... 



EXAMPLES FOR SMT PROBLEMS(2) 

 Verification of HW circuit designs & microcode 

 

 

 

 

 Control paths handled by Boolean reasoning 

 Data paths information abstracted into theory-specific 
terms 

 words (bit-vectors, integers, EUF vars, ... ): a[31 : 0], a 

 word operations: (BV, EUF, AR, LA(Z), NLA(Z) operators) 

    x[15 : 0] = (y[15 : 8] :: z[7 : 0]) << w[3 : 0], 

    (a = aL + 216aH), (m1 = store(m0, l0, v0)), ... 

 SMT on BV, EUF, AR, modulo-LA(Z) required 



INTRODUCTION – WHY SMT? 

 SAT solvers are developed very well. 

 SAT has benefited many areas: AI, formal methods 

 However…… 

 applications in these fields require determining the 
satisfiability of formulas in more expressive logics 
such as first-order logic 

 Bit-level encoding (bit-blasting) usually exploit 
problem-specific structures makes hardware verification 
not scalable  
 (the example for bit-blasting is in Eager approach) 

 General first-order satisfiability is Undecidable. 

 It is only semi-decidable. 

 general-purpose first-order theorem provers are 
typically not able to solve such formulas directly  



INTRODUCTION – WHY SMT? (CONT.) 

 In most applications… 

 Not require general first-order satisfiability 

 fixed interpretations of certain predicate and function 

symbols 

 Can we solve the simpler formulae directly? 

 

 Can we adopt the wisdom of SAT solvers? 

 DPLL, non-chronological backtracking, conflict-driven 

learning, two-literal watch scheme, VSIDS 

 Can we make SAT solvers structure-aware? 

 So……here comes SMT ! 

 

 



INTRODUCTION- FIRST ORDER LOGIC (1) 

 Syntax : First-Order Languages consist of 

 Logical symbols 
 variables : 𝑥, 𝑦, 𝑧, …  

 logic operators and quantifiers : ¬ ∨ ∧ →, ∃∀ 

 equality symbol: = (optional) 

 Parameters 
 constant symbols : 𝑐1, 𝑐2, … (countable) 

 function symbols : 𝑓, 𝑔, …    (possibly empty) 

 predicate symbols : 𝑝, 𝑞, … (possibly empty) 

 Ex. Σℕ = { {0}, {𝑆,+}, {=} } 

To specify a language, we need to specify 

 Presence of “=” 

 Symbols 



INTRODUCTION- FIRST ORDER LOGIC(2) 

 Terms 
 Every constant 𝑐1 or variable 𝑥 is a term. 

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑓 is a 𝑘-ary function symbol, 𝑓(𝑡1, … , 𝑡𝑘) is 
a term. 

 Ex: SS0 

 Formula 
 True and False are atomic formulas. 

 If 𝑡1, … , 𝑡𝑘 are terms and 𝑃 is a 𝑘-ary predicate symbol, 𝑃(𝑡1, … , 𝑡𝑘) 
is an atomic formula. 

 Ex: < x y (define < as predicate sumbol)  

 Well Form Formulae: 
 expression built up from atomic formulas by applying these 

operations: ¬ ∨ ∧ →, ∃∀ 

 Ex: (x < y) ∨ (x = y) 

 Free variable: 
 variables in a formula are those not bound by a quantifier 

 Sentence :  
 Formula without free variable 

 



INTRODUCTION- FIRST ORDER LOGIC(3) 

 Sematic : Structure 𝒜 consists of 
 Universe (or domain) of 𝒜 

 Interpretation for each parameter  
 (constant, function, predicate) 

 Ex. A Σℕ-structure  
  { {0}, {𝑆𝒜:=succ, +𝒜:=plus, =𝒜  :=equal} } 

Define a structure 𝒜 satisfies a wff ϕ with 
assignment s 
 The translation of ϕ determined by A is true, 

where variable x is translated as s(x) 
wherever it occurs free. 

𝒜 satisfies ϕ with every s : 
 ϕ is true in 𝒜  

 𝒜 is a model of ϕ 



INTRODUCTION- FIRST ORDER LOGIC(4) 

A theory 𝒯(over a structure)  

 a set of first-order sentences closed under 

logical implication. 

𝒜 is a model for the theory 𝒯  

 if all sentences of  𝒯are true in 𝒜. 

 So far, that is the definition from the book  

 “A Mathematical Introduction to Logic” 

 



SATISFIABILITY OF SAT AND SMT 

 Satisfiability is the problem of determining if a 

formula has a model 

 Model :structure with variable assignment. 

 In purely Boolean cases 

  a model is a truth assignment to the Boolean variables. 

 In first-order cases 

 a model assigns values from a domain to variables and 

interpretations over the domain to the function and 

predicate symbols. 

 A formula F is satisfiable if there is an interpretation 

(model )M such that 

 M ⊨F. 

 Otherwise, the formula F is unsatisfiable. 
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THEORY OF EQUALITY 𝒯𝔼 

 Theory of equality and uninterpreted functions. 

 Σ𝔼 = { {𝑐1, …}, {𝑓1, …}, {=} } 

 Ex. 𝑓 𝑓 a = a ∧ 𝑓 𝑓 𝑓 a = a ∧ [𝑓(𝑎) ≠ 𝑎] 

 𝒯𝔼-unsatisfiable 

 Axiom schema 

 ∀𝑥. (𝑥 = 𝑥)                                   (reflexivity) 

 ∀𝑥, 𝑦. (𝑥 = 𝑦 → 𝑦 = 𝑥)                  (symmetry) 

 ∀𝑥, 𝑦, 𝑧. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧) (transitivity) 

 ∀𝑥 , 𝑦 . ( 𝑥𝑖 = 𝑦𝑖 → 𝑓 𝑥 = 𝑓(𝑦 ))  (congruence) 

 The satisfiability problem for conjunction of literals in 

𝒯𝔼 is decidable in polynomial time using congruence 

closure. 

 

 



CONGRUENCE CLOSURE (1) 

 Given binary relation R over S. 

 The equivalence closure of R  

 The unique minimal extension R′ of R, that is closed 
under equivalence relation 
 reflexivity, symmetry, transitivity. 

 congruence closure of R  

 The unique minimal extension R′ of R, that is closed 
under congruence relation. 

 We use the directed acyclic graph (DAG) to 
represent terms: 

 A term corresponds to exactly one node in DAG. 

 Equalities are represented as dot lines. 

 Ex: f (f (a, b), b) = a a b 

f 

f 



CONGRUENCE CLOSURE (2) 

 Computing congruence closure: 

 Pick arbitrary representatives for all equivalence 

classes (nodes connected by dotted edges)  

 Construct congruence closure for these edges. 

 

 Ex: f(a, b) = a  f(f(a, b) , b)  = f(a, b) 

a b 

f 

f 

a b 

f 

f 



REAL LINEAR ARITHMETIC 𝒯ℚ 

Σℚ = { {ℤ}, {, }, {<, =} } ,  

    𝐴ℚ = the set of rational numbers 

 Ex. (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℚ-satisfiable) 

 no need to consider irrational under linear real 
arithmetic. 

SAT(𝒯ℚ) can be solved by polynomial time 
algorithm. 
 Fourier-Motzkin variable elimination 

algorithm. 

 Simplex algorithm 
 exponential methods  

 tend to perform best in practice. 

 



QUANTIFIER ELIMINATION 

 If a formula with no free and no quantifiers, then 

it is easy to determine its truth value 

 10 > 11 ∨ 3 + 4 < 5 × 3 − 6 

 Quantifier elimination  

 take input P with n quantifiers  

 turn it into equivalent formula P′ with m quantifiers, 

where m < n. 

 Eventually P ≡ P′ ≡ · · · ≡ Q and Q has no 

quantifiers. 

 Q will be trivially true or false, and that is the 

decision. 



FOURIER-MOTZKIN THEOREMS 

 The following simple facts are the basis for a very 
simple quantifier elimination procedure. 

 transitivity. 
 (x < y ∧ y ≤ z) ⇒ x < z. 

 Over R, with a, b > 0: 
 ∃x.(c ≤ ax ∧ bx ≤ d) ≡ (bc ≤ ad) 

 ∃x.(c < ax ∧ bx ≤ d) ≡ ∃x.(c ≤ ax ∧ bx < d)  

    ≡ ∃x.(c < ax ∧ bx < d) ≡ (bc < ad) 

 Proof: 
 For bc < ad ⇒ (∃x.c < ax ∧ bx ≤ d) 

 take x to be d/b  c < a(d/b) and b(d/b) ≤ d. 

 Combining Many Constraints 
 ∃x.(c ≤ ax ∧ b1x ≤ d1 ∧ b2x ≤ d2)  

 ≡ b1c ≤ ad1 ∧ b2c ≤ ad2 



DIFFERENCE LOGIC 

 Difference logic is a fragment of linear arithmetic. 

 Atoms have the form:  

 x − y ≤ c. 

 Most linear arithmetic atoms found in hardware 

and software verification are in this fragment. 

 The quantifier free satisfiability problem is 

solvable in O(VE).  

 V: number of variables 

 E: number of Atoms 

 (solve by Bellman-Ford algorithm) 

 



DIFFERENCE LOGIC (2) 

 Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7}, 

 construct weighted graph G(M) 

 M is T-inconsistent iff G(M) has a negative cycle 

 Any negative cycle a1
𝑘1

a2 
𝑘2
 a3 →. . . → an 

𝑘𝑛
 a1 

    corresponds to a set of literals: 

 a1 − a2 ≤ k1 

 a2 − a3 ≤ k2 

 . . . 

 an − a1 ≤ kn 

 If we add them all, we get 0 ≤ k1 + k2 + . . . + kn 

 negative cycle implies k1 + k2 + . . . + kn < 0  
inconsistent 

a 

c 

b 
2 

3 -7 



INTEGER LINEAR ARITHMETIC 𝒯ℤ 

Σℤ = { {ℤ}, {, }, {<, =} }  

    𝐴ℤ= the set of integers 

 Ex: (2𝑥 < 4) ∧ (2𝑥 > 2) (𝒯ℤ-unsatisfiable) 

SAT(𝒯ℤ) is NP-complete. 

 Fourier-Motzkin algorithm doesn’t work well. 

 However, it becomes undecidable if 

multiplication is introduced in 𝒯ℤ. 

  Ex: x  y<5 



THEORY OF ARRAYS 𝒯𝐴𝑅  

 The theory of arrays (𝒯𝐴𝑅) aims at modeling the 

behavior of arrays/memories. 

 write(a, i , v) ; read(a, i ) 

 a: array, i: index, v: element 

Axiom schema 

 McCarthy’s axioms 
 ∀𝑎, 𝑖, 𝑣. 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑣 

 ∀𝑎, 𝑖, 𝑗, 𝑣. 𝑖 ≠ 𝑗 → [𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑖 = 𝑟𝑒𝑎𝑑 𝑎, 𝑗 )] 

 Extensionality axioms 
 ∀𝑎, 𝑏. (∀𝑖. (𝑟𝑒𝑎𝑑 𝑎, 𝑖 = 𝑟𝑒𝑎𝑑 𝑏, 𝑖 )) → (𝑎 = 𝑏) 

SAT(𝒯𝔸) is NP-complete modulo 𝒯elem. 

 



THEORY OF BITVECTORS 𝒯𝑏𝑣 

 Domains : vectors of bits. 

 a[7:0] 

 Like hardware design 

 Operators: 

 read, write: like array 

 extraction, concatenation: 

 a[7:0];  b[3:0] = a[3:0]; c = { a, b} 

 bit-wise operations 

 &, |, ^ 

 arithmetic operations 

 +, -, *, /, % 

 SAT(𝒯𝑏𝑣) is NP-complete. 
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HISTORY OF SMT COMPETITION 

 Since 2005 

 2005&2006: Only several quantifier free linear 

arithmetic categories  

 Outperform solvers: Yices 0.1, MathSAT3 

 2007: BV problems added 

  Z3 0.1, Yices 1.0, MathSAT4  

 2008:  

 Z3.2 dominated most categories,  

 Boolector won in BV categories 

 Poor MathSAT4.2 and Yices2…… 

 



THEORIES IN SMT COMPETITION 

 QF_UF : equality and uniterpreted functions. 

 QF_RDL/QF_IDL : real/integer difference logic. 

 QF_LIA/QF_LRA : linear real/integer arithmetic  

 QF_NIA : nonlinear integer arithmetic 

 QF_AX : arrays with extensionality. 

 QF_BV : bit-vectors. 

 AUFLIRA : arrays, UF, LIA, LRA  

 AUFNIRA : arrays, UF, NIA, NRA 

 All of the above are decidable! 



HISTORY OF SMT COMPETITION 

 2009: more and more categories……. 

 MathSAT 4.3, Yices2.0 outperformed others in most 

categories 

 Boolector only took BV domain(still worked well) 

 Z3 was in summer vacation? 

 2010: first year of parallel track 

 Many new solvers appeared 

 Z3 and Boolector took summer vacation again….. 

 MathSAT5, CVC3, openSMT 

 2011 

 Z3 kicked other solvers……. 

 MathSAT5, CVC3, openSMT  



WHAT WE KNOW FROM THE HISTORY? 

 If we focus on BV problems: 

 Why boolector works so well? 

 What’s going on with Yices? 

 How can MathSAT and Z3 outperform others? 

 

 Case-dependent? Luck? 
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GENERAL IDEA OF EAGER APPROACH 

 Translate the original formula to an satisfiability-
equivalent Boolean formula in a single step. 

 Boolector, BV part in Yices 

 The performance is related to the size of SAT instance. 

 Bit-blasting example: 

 x[3:0] + y[3:0] = z[3:0]  

 it might introduce other variables 

 z[0] = x[0]⨁y[0], c[0] = x[0]y[0], z[1] = x[1] ⨁y[1] ⨁c[0]….. 

 Smaller domain encoding 

 Convert 𝐹𝑜𝑟𝑖𝑔 to 𝐹𝑎𝑟𝑖𝑡ℎ  

 Replace each constraint in 𝐹𝑎𝑟𝑖𝑡ℎ with a fresh 
Boolean variables to get a Boolean formula𝐹𝑣𝑎𝑟 

 Convert 𝐹𝑎𝑟𝑖𝑡ℎ to Boolean formula 𝐹𝑏𝑜𝑜𝑙.  

 Ex: (x[3:0] + y[3:0] = z[3:0] ) ∨ (w[3:0] = 7) = > A ∨ B 

 

 



EXAMPLE FOR SMALL ENCODING 

 over Integer Linear Arithmetic 𝒯ℤ 

𝐹𝑎𝑟𝑖𝑡ℎ  Φ =  

  ( (x+y < 5)   ∨ ¬(x+y > 10) ) 

∧( (x+y < 5)   ∨ ¬(x-y=3) )  

∧( (x+y > 10) ∨   (x-y=3) ) 

∧ ( ¬(x+y < 5)) 

 

 𝐹𝑣𝑎𝑟 Φ’ = 

  (A ∨ ¬B)  

∧(A∨ ¬C) 

∧(B∨   C) 

∧ (¬𝐴) 

 



AFTER SMALLER DOMAIN ENCODING 

 If UNSAT, we can return the answer. 

 However, we might miss some conflicts under 

smaller encoding 

 Ex: [ ¬(x + y = 3)∨(x + y<2) ] ∧ [ (x + y = 3) ] 

 After smaller encoding: [¬A ∨ B] ∧ [ A] 

 Assign A = 1, B = 1  SAT! 

 However……(x + y = 3) ∧ (x + y < 2)  UNSAT! 

 Worse case, we still need bit-blasting! 

 Why Boolector is so powerful? 



THE SECRET OF BOOLECTOR-REWRITE 

 Example can not be handled by small encoding  

 (x+y =p) ∧(p+x = q) ∧(2x = r) ∧(r+y =s) ∧ ¬ (q=s) 

 Boolector contains crazy, rule-based rewrite! 

 Commutative property 

 Associativity 

 Symmetry 

 Better encoding for special operators: 

 Ex: Shift operator 

 c[3:0] = a[3:0] << b[1:0] 

 b[1] c[3:0] ≥ a[3:0]*2 

 

 



RESOURCE OF BOOLECTOR 

 Institute for Formal Models and Verification, Johannes 
Kepler University, Linz, Austria. 

 Open source: http://fmv.jku.at/boolector/ 
 Picosat needed 

 http://fmv.jku.at/boolector/README 

 The version for smtlib2 does not be uploaded 

 We can use the simpler format BTOR to write input cases 
 BTOR example 

1 var 6 

2 var 6 

3 var 6 

4 add 6 1 2 

5 add 6 4 3 

6 add 6 2 3 

7 add 6 6 1 

8 eq 1 5 7 

9 root 1 8 

 

http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/README
http://fmv.jku.at/boolector/README


RESOURCE OF YICES 

 Computer Science Laboratory, SRI International 

Menlo Park, CA 

 http://yices.csl.sri.com/ 

 http://yices-wiki.csl.sri.com/index.php/Main_Page 

 For BV, only some simplification rule, and bit-

blasting! 

 For other theories, apply lazy approach 

 No source code 

 Read SMT-LIB format and its own format 

http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
http://yices-wiki.csl.sri.com/index.php/Main_Page
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OVERVIEW OF LAZY APPROACH 

 Combine SAT and Theory Solvers 

T2B 

(abstraction)  

Conflict 

analyze 
SAT 

solver 

Theory 

solvers 

SMT instance 

SAT instance 

Theory Atoms 

UNSAT 

SAT 
UNSAT 

SAT B2T 

(refinement)  



DPLL(𝒯): T2B (THEORY-TO-BOOLEAN)  

 T 2B (Theory-to-Boolean)  

 a bijective function,  

 maps Boolean atoms into themselves 

 non-Boolean 𝒯-atoms into fresh Boolean atoms 

 Two atom instances are mapped into the same 

Boolean atom iff they are syntactically identical. 

 B2T := T2B-1 ( Boolean-to-Theory ) 

 T2B and B2T are also called Boolean abstraction and 

Boolean refinement respectively. 

 



EXAMPLE OF T2B  

 ϕ := { ￢(2x2 − x3 > 2) ∨ A1} 

       ∧ { ￢A2 ∨ (x1 − x5 ≤ 1) } 

       ∧ { (3x1 − 2x2 ≤ 3) ∨ A2} 

       ∧ { ￢(2x3 + x4 ≥ 5) ∨ ￢(3x1 − x3 ≤ 6) ∨ ￢A1} 

       ∧ { A1 ∨ (3x1 − 2x2 ≤ 3) } 

       ∧ { (x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ￢A1} 

       ∧ { A1 ∨ (x3 = 3x5 + 4) ∨ A2} 

 T 2B(ϕ) := {￢B1 ∨ A1} 

                  ∧ {￢A2 ∨ B2} 

                  ∧ {B3 ∨ A2} 

                  ∧ {￢B4 ∨ ￢B5 ∨ ￢A1} 

                  ∧ {A1 ∨ B3} 

                  ∧ {B6 ∨ B7 ∨ ￢A1} 

                  ∧ {A1 ∨ B8 ∨ A2} 

 



INTEGRATION BETWEEN SAT SOLVER AND 

THEORY SOLVERS 

 Lazy Integration 

 Theory solvers are triggered only after SAT solver 

determines all variables 

 Return learning clauses after conflicts occur 

 Easier to implement 

 Eager Integration 

 theory solver participates in early stages 

 value propagation (implications)  

 conflict analysis 

 Find the conflict sources earlier 

 Require much more implementation works 



EXAMPLE FOR INTEGRATION  

 Input instance: 
 [A1 ∨ (u - w ≤5) ] 

∧[A2 ∨ (v + w ≤ 6) ] 

∧[A3 ∨ (z = 0) ] 

∧[A4 ∨ (u + v ≥12) ] 

∧[￢ A3 ∨ ￢ A4] 

∧[ (x = z + 1) ∨ (x = z + 3) ∨ (x = z + 5) ∨ (x = z + 7) ] 

∧[ (y = z + 2) ∨ (y = z + 4) ∨ (y = z + 6) ] 

∧[ (u + v - 4x - 4y = 0) ] 

 After T2B 
 [A1 ∨ B1] 

∧[A2 ∨ B2] 

∧[A3 ∨ B3] 

∧[A4 ∨ B4] 

∧[￢ A3∨ ￢ A4] 

∧[B61 ∨ B62 ∨ B63 ∨ B64] 

∧[B71 ∨ B72 ∨ B73] 

∧[1] 

 



LAZY INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[1] 

 

￢ A1  B1 

￢ A2  B2 

￢ A3  B3 

￢ A4  B4 

B61  

B71 

SAT solver 

SAT!! Go to theory solver! 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  
(u + v ≤ 11)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  
(u + v ≤ 11)  

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(0 ≤ -1)  

Conflict! 

(z = 0)  

In the integer solver…… 



LAZY INTEGRATION(2) 

 

B1    (u - w ≤ 5)  

B2    (v + w ≤ 6)  

B3    (z = 0)  

B4    (u + v ≥ 12) 

B61  (x = z + 1)  

B71   (y = z + 2)  

B1 

B2 

B3 

B4 

B7 

B6 

(u - w ≤ 5)  

(v + w ≤ 6)  

(u + v ≥ 12) 

(u + v ≤ 11)  

(0 ≤ -1)  

Conflict! 

(z = 0)  

In the integer solver…… 

Add 

learning 

clause 

 ￢ B1 ∨ ￢ B2 ∨ ￢ B4 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1  B1 (u - w ≤ 5) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A3 

 B1 

 B2 

B3 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A4 

￢ A3 

 B1 

 B2 

B3 

B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≤ 11) 



EAGER INTEGRATION 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

￢ A4 

￢ A3 

 B1 

 B2 

B3 

B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

( z = 0) 

(u + v ≥ 12 ) 

Conflict! 

(u + v ≤ 11) 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 B1 

 B2 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 A4 

 B1 

 B2 

￢ B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 



EAGER INTEGRATION(2) 

 

SAT instance: 

[A1 ∨ B1] 

[A2 ∨ B2] 

[A3 ∨ B3] 

[A4 ∨ B4] 

[￢ A3∨ ￢ A4] 

[B61 ∨ B62 ∨ B63 ∨ B64] 

[B71 ∨ B72 ∨ B73] 

[B1    (u - w ≤ 5) ] 

[ B2    (v + w ≤ 6) ]  

[ B3    (z = 0) ] 

[ B4    (u + v ≥ 12) ] 

[ B61  (x = z + 1) ]  

[ B71   (y = z + 2) ] 

 

 

SAT domain                           Theory Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￢ A1 

￢ A2 

 A4 

￢ A3 

 B1 

 B2 

B3 

￢ B4 

(u - w ≤ 5) 

( v + w ≤ 6) 

(u + v ≤ 11)  

￢(u + v ≥ 12 ) 

!!! 

( z = 0) 



COMPARISON  

 Lazy Integration 

 SAT solver can work as an enumerator. 

 Easier to implement 

 Can not find out the conflicts earlier 

 Eager Integration 

 Requires a tighter integration of the source codes of 

the SAT solver and 𝒯−solver. 

 Able to detect conflict earlier 

  terrible implementation 

 The choice relies on the trade-off between 

efficiency and implementation effort. 

 



RESOURCE OF MATHSAT5 

 Italy, University of Trento 

 http://mathsat.fbk.eu/ 

 3 Ph.D. thesis and many papers… 

 Only execution file and libraries(C API)… 

 Provide some API to use the  

 Read problem in smt2 format 

 (and (= v3 (h v0)) (= v4 (h v1)) (= v6 (f v2)) (= v7 (f v5))) 

 

http://mathsat.fbk.eu/
http://mathsat.fbk.eu/


SPECIALTY OF MATHSAT 

 Layered theory solvers 

 Sometimes a fully general solver for 𝒯 is not 

always needed. 

 For example, difference constraints are special 

case of linear constraints, and are easier to be 

solved. 

 Thus, a 𝒯-solver may be organized in a layered 

hierarchy of solvers of increasing solving 

capabilities. 

Ex: Difference  UTVPI  Linear 
 UTVPI: two integer variables per inequality constraint 

 a*x+b*y < c 



RESOURCE OF Z3 

 Create by MicroSoft 

 http://research.microsoft.com/en-
us/um/redmond/projects/z3/ 

 Only execution file and libraries… 

 Has been used in several program analysis, 
verification, test case generation projects at Microsoft 

 Support Several input formats  

 SMT-LIB, Z3, Dimacs 

 Main features 

 Linear real and integer arithmetic. 

 Fixed-size bit-vectors 

 Uninterpreted functions 

 Extensional arrays 

 Quantifiers 

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/


COMBINATION OF THEORIES 

 Example: 

 x+ 2 = y ⇒ f(read(write(a, x, 3), y −2)) = f(y −x+ 1) 

 Given 

 Σ = Σ1 ∪ Σ2 

 𝒯1,𝒯2 : theories over Σ1, Σ2 

 𝒯= 𝒯1 ∪𝒯2 

 Is  𝒯 consistent? 

 Given satisfiability procedures for conjunction of 

literals of 𝒯1 and 𝒯2, how to decide the 

satisfiability of𝒯? 

 Nelson-Oppen Combination 



COMBINATION OF THEORIES(2) 

 Nelson-Oppen Combination 

 Essential concept: 

 Purification 
 For a conjunction of (Σ1 ∪ Σ2)-literals 𝜑, transform it into a 

equisatisfiable 𝜙1 ∧ 𝜙2 such that 𝜙𝑖 contains only Σ𝑖-literals. 

 Stably-Infinite Theories 

 A theory is stably infinite if every satisfiable sentence is 
satisfiable in an infinite model. 

 Example: Theories with only finite models are not stably 
infinite. (only two elements in the domain) 

 T = (∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)). 

 The union of two consistent, disjoint, stably infinite theories is 
consistent. 

 Convex Theories. 

 for all finite sets Γ of literals and for all non-empty disjunctions 
 𝑥𝑖 = 𝑦𝑖𝑖∈𝐼  of variables 

 Γ ⊨Τ  𝑥𝑖 = 𝑦𝑖𝑖∈𝐼  iff Γ ⊨Τ 𝑥𝑖 = 𝑦𝑖for some i ∈ 𝐼 



NELSON-OPPEN COMBINATION 

 Let 𝒯1 and𝒯2 be consistent, stably infinite 

theories over disjoint (countable) signatures. 

 Assume satisfiability of conjunction of literals can 

decided in O(T1(n)) and O(T2(n)) time respectively. 

Then, 

 1. The combined theory T is consistent and stably 

infinite. 

 2. Satisfiability of quantifier free conjunction of 

literals in 𝒯 can be decided in O(2𝑛
2
× (T1(n) + T2(n)). 

 3. If 𝒯1 and𝒯2 are convex, then so is 𝒯 and 

satisfiability in 𝒯 is in O(n3 × (T1(n) + T2(n))). 



NELSON-OPPEN COMBINATION 

PROCEDURE 

 Initial State:  
 φ is a conjunction of literals over Σ1 ∪ Σ2. 

 Purification:  
 Preserving satisfiability transform φ into φ1 ∧ φ2, such that, 

φi ∈ Σi 

 Interaction: 
 Guess a partition of V(φ1) ∩ V(φ2) into disjoint subsets. 

Express it as conjunction of literals ψ. 

 Example. The partition {x1}, {x2, x3}, {x4} is represented as 
  x1 ≠ x2, x1 ≠ x4, x2 ≠ x4, x2 = x3. 

 Component Procedures :  
 Use individual procedures to decide whether φi ∧ ψ is 

satisfiable 

 Return:  
 If both return yes, return yes. No, otherwise. 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯𝐿A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯𝐿A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(u3 ) ≠ f( y − x + 1) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

f(u3 ) ≠ f(u4) 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Finish 

Purifying 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Solving 𝒯LA 

x + 2 = y 

u1 = 3 

u2 = y - 2 

u3  = read(write(a, x, u1), u2) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u2 = x 

x + 2 = y 

u1 = 3 

u2 = x 

u3  = read(write(a, x, u1), u2) 

u4 = 3 

f(u3 ) ≠ f(u4) 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Solve 𝒯AR   

x + 2 = y 

u1 = 3 

u2 = x 

u3  = read(write(a, x, u1), u2) 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u3 = u1  

x + 2 = y 

u1 = 3 

u2 = x 

u3  = u1 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

Propagate  

u4 = u1  

x + 2 = y 

u1 = 3 

u2 = x 

u3  = u1 

u4 = 3 

f(u3 ) ≠ f(u4) 

u2 = x u2 = x 

u3  = u1 

u3  = u1 

u1 = 3 ∧ u4 = 3 ⇒ u4  = u1    



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

x + 2 = y 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

u1 = 3 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

u2 = y - 2 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

u3  = read(write(a, x, u1), u2) 

f(u3 ) ≠ f( y − x + 1) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 

f(u3 ) ≠ f(u4) 

Solve 

x + 2 = y 

u2 = y - 2 

u4 = y – x + 1 

  u2 =  x      

    u4 = 3         

  u2 =  x      

x + 2 = y 

              u2 =  x      
  u2 =  x      

u3  = read(write(a, x, u1), u2)                u3  = u1                                         u3  = u1                          

      u3  = u1 

      u3  = u1 

      u4  = u1 

u1 = 3 

u4 = 3 

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4) 

f(u3 ) = f(u4) 

      u4  = u1 

      u4  = u1 



NO PROCEDURE: EXAMPLE 

Problem :  

𝒯𝔼 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯A 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒯AR  

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

Purifying 

(x + 2 = y) ∧ f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

x + 2 = y 

f(read(write(a, x, 3), y − 2)) ≠ f(y − x + 1) 

u1 = 3 

f(read(write(a, x, u1), y − 2)) ≠ f(y − x + 1) 

u2 = y - 2 

f( read(write(a, x, u1), u2) ) ≠ f(y − x + 1) 

u3  = read(write(a, x, u1), u2) 

f(u3 ) ≠ f( y − x + 1) 

u4 = y – x + 1 

f(u3 ) ≠ f(u4) 

f(u3 ) ≠ f(u4) 

Solve 

x + 2 = y 

u2 = y - 2 

u4 = y – x + 1 

  u2 =  x      

    u4 = 3         

  u2 =  x      

x + 2 = y 

              u2 =  x      
  u2 =  x      

u3  = read(write(a, x, u1), u2)                u3  = u1                                         u3  = u1                          

      u3  = u1 

      u3  = u1 

      u4  = u1 

u1 = 3 

u4 = 3 

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4)  UNSAT! 

f(u3 ) = f(u4) 

      u4  = u1 

      u4  = u1 



CONCLUSION 

We go through 

 some theories of interest 

 eager approaches to SMT 

 lazy approaches to SMT 

 Some theories and algorithms are simply  

discussed 

 More details: see reference slides. 
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 A Mathematical Introduction to Logic 
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 SMT-LIB 
 The Satisfiability Modulo Theories Library 

 http://goedel.cs.uiowa.edu/smtlib/ 

 Satisfiability Modulo Theories slides 
 Roberto Sebastiani for IJCAI 11 

 Solvers’ websites: 
 Boolector, Yices, Z3, MathSAT5 

 Many papers from MathSAT team 

 Tutorial  slides from Z3 

 Previous slides from Yi-Wen Chang and Chih-Chun Lee 

 Congruence closure  
 http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf 

 Difference Logic 
 http://www.lsi.upc.edu/~oliveras/TDV/dl.pdf 

http://www.math.ucla.edu/~hbe
http://www.math.ucla.edu/~hbe
http://smtcomp.sourceforge.net/2012/
http://goedel.cs.uiowa.edu/smtlib/
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
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