

Symbolic Model Checking

(Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay (with help from Ming-Hsien Tsai and Jinn-Shu Chang)

> Dept. of Information Management National Taiwan University

Introduction

- We have studied
 - 🌞 the operations on OBDDs and
 - 🌞 the encoding of a transition system in OBDDs.
- How does one use OBDDs in model checking?
 - Symbolic CTL model checking
 - Symbolic LTL model checking
- The model checking algorithms are symbolic, because they are based on the manipulation of Boolean functions (rather than state transition graphs).
- Boolean functions (OBDDs) represent sets of states and transitions.
- We can operate on entire sets rather than on individual states and transitions.

Fixpoints

- \bigcirc Let S be the set of all states of a system.
- A set $Z \in \mathcal{P}(S)$ is called a fixpoint of a function $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ if $\tau(Z) = Z$.
- A temporal formula f can be viewed as a set Z of states such that

 - 🌻 f is true exactly on the states in Z.
- Each temporal logic operator can be characterized by a fixpoint.

Complete Lattices

- Recall that a complete lattice is a partially ordered set in which every subset of elements has a *least upper bound* (supremum) and a *greatest lower bound* (infimum).
- lacktriangle For a given set S, $\langle \mathcal{P}(S), \subseteq
 angle$ forms a complete lattice.
- $igoplus {\mathcal S}'\subseteq {\mathcal P}({\mathcal S})$, then
 - $ilde{*}$ the supremum of \mathcal{S}' , usually denoted $\mathit{sup}(\mathcal{S}')$, equals $\bigcup \mathcal{S}'$ and
 - \red the infimum of \mathcal{S}' , denoted $inf(\mathcal{S}')$, equals $\bigcap \mathcal{S}'$.
- The least element in $\mathcal{P}(S)$ is the empty set ∅, which we refer to as False.
- \odot The greatest element in $\mathcal{P}(S)$ is the set S, which we refer to as *True*.

Predicate Transformer

- **OVER IDENTIFY** A predicate transformer on $\mathcal{P}(S)$ is a function $\tau: \mathcal{P}(S) \to \mathcal{P}(S)$.
- $\odot \tau^i(Z)$ is used to denote *i* applications of τ to Z:
 - $\stackrel{\text{\tiny \emptyset}}{=} \tau^0(Z) = Z$
 - $\stackrel{*}{\gg} \tau^{i+1}(Z) = \tau(\tau^i(Z))$

Predicate Transformer (cont.)

- \bigcirc Let τ be a predicate transformer.
- \bullet τ is monotonic (order-preserving) provided that

$$P \subseteq Q$$
 implies $\tau(P) \subseteq \tau(Q)$.

 \odot au is \cup -continuous provided that

$$P_1 \subseteq P_2 \subseteq \cdots$$
 implies $\tau(\cup_i P_i) = \cup_i \tau(P_i)$.

 $\red{\circ}~ au$ is \cap -continuous provided that

$$P_1 \supseteq P_2 \supseteq \cdots$$
 implies $\tau(\cap_i P_i) = \cap_i \tau(P_i)$.

LFP and GFP

- We have seen the following results in a separate lecture.
- \P $\mathcal{P}(S)$ is a complete lattice and hence also a CPO.
- $igoplus ext{Consequently, a monotonic predicate transformer $ au$ on $\mathcal{P}(S)$ always has$
 - $ilde{*}$ a least fixpoint, denoted μZ . au(Z), and
 - $t ilde{*}$ a greatest fixpoint, denoted u Z . au(Z).
- More precisely,

$$\mu Z$$
 . $\tau(Z) = \begin{cases} \cap \{Z \mid \tau(Z) \subseteq Z\} \text{ whenever } \tau \text{ is monotonic } \cup_i \tau^i(False) \text{ whenever } \tau \text{ is also } \cup\text{-continuous} \end{cases}$

$$\nu Z$$
 . $\tau(Z) = \begin{cases} \cup \{Z \mid \tau(Z) \supseteq Z\} \text{ whenever } \tau \text{ is monotonic } \\ \cap_i \tau^i(\mathit{True}) \text{ whenever } \tau \text{ is also } \cap \text{-continuous} \end{cases}$

Continuity of Predicate Transformers

Lemma (Lemma 5)

If S is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous.

- \bigcirc Because S is finite, there is j_0 such that
 - for every $j \ge j_0$, $P_j = P_{j_0}$, and for every $i < j_0$, $P_i \subseteq P_i$
- for every $j < j_0$, $P_j \subseteq P_{j_0}$.
- lacktriangle Thus, $\cup_i P_i = P_{j_0}$ and $\tau(\cup_i P_i) = \tau(P_{j_0})$.
- lacktriangle Because au is monotonic,
 - \bullet $\tau(P_1) \subseteq \tau(P_2) \subseteq \ldots$, and thus
 - $ilde{*}$ for every $j\geq j_0$, $au(P_j)= au(P_{j_0})$ and
 - $ilde{*}$ for every $j < j_0$, $au(P_j) \subseteq au(P_{j_0})$.
- ${\color{red} igotheta}$ As a result, $\cup_i au(P_i) = au(P_{j_0}) = au(\cup_i P_i)$.
 - best The proof that au is \cap -continuous is similar.

Iterative Approximation

Lemma (Lemma 6)

If τ is monotonic, then for every $i \ (\geq 0)$

- $ightharpoonup au^i(False) \subseteq au^{i+1}(False)$, and
- $\bullet \quad \tau^i(\mathsf{True}) \supseteq \tau^{i+1}(\mathsf{True}).$

- By induction on i.
- igoplus Base case: $au^0(\mathit{False}) = \mathit{False} \subseteq au(\mathit{False})$.
- Inductive step: since τ is monotonic, $\tau^k(False) \subseteq \tau^{k+1}(False)$ implies $\tau(\tau^k(False)) \subseteq \tau(\tau^{k+1}(False))$ and hence $\tau^{(k+1)}(False) \subseteq \tau^{(k+1)+1}(False)$, for $k \ge 0$.
- The other case is similar.

Convergence of Iterative Approximation

Lemma (Lemma 7)

If τ is monotonic and S is finite, then

- there is an integer i_0 such that for every $j \ge i_0$, $\tau^j(False) = \tau^{i_0}(False)$, and
- \odot similarly, there is some j_0 such that for every $j \geq j_0$, $\tau^j(True) = \tau^{j_0}(True)$.

Convergence of Iterative Approximation (cont.)

Lemma (Lemma 8)

If τ is monotonic and S is finite, then

- lacktriangle there is an integer i $_0$ such that μZ . $au(Z)= au^{i_0}(extit{False})$, and
- similarly, there is an integer j_0 such that νZ . $\tau(Z) = \tau^{j_0}(True)$.

LFP Procedure

 \bullet In a Kripke structure, if au is monotonic, its least fixpoint can be computed by the following program.

```
function Lfp(\tau: PredicateTransformer): PredicateQ:=False; Q':=\tau(Q); while (Q \neq Q') do Q:=Q'; Q':=\tau(Q); end while; return(Q); end function
```

Correctness of LFP Procedure

The invariant of the while loop is

$$(Q' = \tau(Q)) \wedge (Q \subseteq \mu Z \cdot \tau(Z))$$

(cf.
$$(Q' = \tau(Q)) \wedge (Q' \subseteq \mu Z \cdot \tau(Z)))$$

- The number of iterations before the while loop terminates is bounded by |S|.
- When the loop does terminate, we will have
 - $ilde{*} \; \; Q = au(Q) \; (Q \; \mathsf{is a fixpoint}) \; \mathsf{and} \;$
 - $ilde{*} Q \subseteq \mu Z \cdot \tau(Z)$.
- **•** Since Q is also a fixpoint, μZ . $\tau(Z) \subseteq Q$.
- lacksquare Hence $extbf{ extit{Q}} = \mu extbf{ extit{Z}}$. $au(extbf{ extit{Z}})$.

GFP Procedure

lacktriangle We can also see that, if au is monotonic, its greatest fixpoint can be computed by the following program.

```
function \mathsf{Gfp}(\tau : \mathsf{PredicateTransformer}) : \mathsf{Predicate}
Q := \mathit{True};
Q' := \tau(Q);
\mathsf{while} \ (Q \neq Q') \ \mathsf{do}
Q := Q';
Q' := \tau(Q);
\mathsf{end} \ \mathsf{while};
\mathsf{return}(Q);
\mathsf{end} \ \mathsf{function}
```

• An analogous argument can be used to show that the procedure terminates and the value returns is νZ . $\tau(Z)$.

Characterization of CTL Operators

- **⊙** Each CTL formula f is identified with the predicate $\{s \mid M, s \models f\}$ in $\mathcal{P}(S)$.
- It turns out that each of the basic CTL operators may be characterized as the least or greatest fixpoint of an appropriate predicate transformer.
- Least fixpoints correspond to eventualities.
- Greatest fixpoints correspond to properties that should hold forever.
- We will take a closer look at two cases:
 - \clubsuit **EG** $f = \nu Z$. $f \wedge \textbf{EX} Z$
 - $\circledast \mathbf{E}[f_1 \mathbf{U} f_2] = \mu \mathbf{Z} \cdot f_2 \vee (f_1 \wedge \mathbf{EX} \mathbf{Z})$

Characterization of EG

- ightharpoonup To see why **EG** f=
 u Z . $f\wedge \mathbf{EX}\, Z$ intuitively ...
- Let $\tau(Z) = f \wedge \mathbf{EX} Z$.
- $\bullet \quad \tau(\mathsf{True}) = f \land \mathsf{EX} \; \mathsf{True} = f.$
- $rac{1}{2}$ $\tau^2(True) = f \wedge \mathbf{EX} f$.
- $\tau^3(True) = f \wedge \mathbf{EX}(f \wedge \mathbf{EX}f).$
- (} ...
- $\tau^i(\mathit{True}) = f \wedge \mathsf{EX} (f \wedge \mathsf{EX} (\cdots (f \wedge \mathsf{EX} f) \cdots))$ (**EX** is applied i-1 times to the inner most f).
- lacktriangle So, states in the limit of $au^i(\mathit{True})$ satisfy **EG** f .

About $\tau(Z) = f \wedge \mathbf{EX} Z$

Lemma (Lemma 9)

$$\tau(Z) = f \wedge \mathbf{EX} Z$$
 is monotonic.

- **let** $P_1 \subseteq P_2$. We need to show that $\tau(P_1) \subseteq \tau(P_2)$.
- **•** Consider an arbitrary state $s \in \tau(P_1)$.
- lacktriangledown To show that $s\in au(P_2)$, it is sufficient to show that
 - \circledast $s \models f$ and
 - $ilde{*}$ there is a successor of s which is in P_2 .
- **?** Because $s \in \tau(P_1)$,
 - \circledast $s \models f$ and
 - $\red{*}$ there exists a state s' such that $(s,s') \in R$ and $s' \in P_1$, which implies $s' \in P_2$ (since $P_1 \subseteq P_2$).
- Thus $s \in \tau(P_2)$.

Lemma (Lemma 10)

Let $\tau(Z) = f \land \textbf{EX} \ Z$ and let $\tau^{i_0}(\textit{True})$ be the limit of the sequence $\textit{True} \supseteq \tau(\textit{True}) \supseteq \cdots$. For every $s \in S$, if $s \in \tau^{i_0}(\textit{True})$ then $s \models f$, and there is a state s' such that $(s,s') \in R$ and $s' \in \tau^{i_0}(\textit{True})$.

- Let $s \in \tau^{i_0}(True)$.
- lacktriangle Because $au^{i_0}(\mathit{True})$ is a fixpoint of au, $au^{i_0}(\mathit{True}) = au(au^{i_0}(\mathit{True}))$.
- $igoplus Thus s \in au(au^{i_0}(\mathit{True})).$
- **>** By definition of τ we get that $s \models f$ and there is a state s', such that $(s, s') \in R$ and $s' \in \tau^{i_0}(True)$.

Lemma (Lemma 11)

EG f is a fixpoint of the function $\tau(Z) = f \wedge \textbf{EX} Z$.

- We first show **EG** $f \subseteq f \land \textbf{EX} \textbf{EG} f$ and then $f \land \textbf{EX} \textbf{EG} f \subseteq \textbf{EG} f$.
- Suppose $s_0 \models \mathbf{EG} f$.
- By the definition of |=, there is a path s₀, s₁, · · · in M such that for all k, s_k |= f.
- This implies that $s_0 \models f$ and $s_1 \models \mathbf{EG} f$.
- In other words, $s_0 \models f$ and $s_0 \models \mathbf{EX} \mathbf{EG} f$.
- \bigcirc Thus, **EG** $f \subseteq f \land$ **EX EG** f.
- $igoplus Similarly, if <math>s_0 \models f \land \mathsf{EX} \, \mathsf{EG} \, f$, then $s_0 \models \mathsf{EG} \, f$.
- Thus, $f \wedge \mathbf{EX} \mathbf{EG} f \subseteq \mathbf{EG} f$.

Lemma (Lemma 12)

EG f is the greatest fixpoint of the function $\tau(Z) = f \wedge \textbf{EX} Z$.

- igoplus Because au is monotonic (Lemma 9), by Lemma 5 it is also \cap -continuous.
- In order to show that **EG** f is the greatest fixpoint of τ , it is sufficient to prove that **EG** $f = \bigcap_i \tau^i(True)$, i.e.,
 - \circledast **EG** $f \subseteq \cap_i \tau^i(True)$ and

Proof of **EG** $f \subseteq \cap_i \tau^i(True)$:

- It suffices to show that **EG** $f \subseteq \tau^i(True)$, for all i.
- \odot The proof is by induction on i.
- igoplus Base case: clearly, **EG** $f\subseteq True= au^0(True)$.
- Inductive step:
 - $ilde{*}$ Assume that **EG** $f \subseteq \tau^k(\mathit{True})$, for an arbitrary k.
 - Because τ is monotonic, $\tau(\mathbf{EG}\,f)\subseteq \tau(\tau^k(\mathit{True}))=\tau^{k+1}(\mathit{True}).$
 - \red By Lemma 11 (**EG** f is a fixpoint of τ), τ (**EG** f) = **EG** f.
 - $\stackrel{*}{\gg}$ Hence, **EG** $f \subseteq \tau^{k+1}(True)$.

Proof of $\cap_i \tau^i(\mathit{True}) \subseteq \mathsf{EG} f$:

- **?** Consider some state $s \in \cap_i \tau^i(True)$.
- The state s is included in every $\tau^i(True)$.
- ightharpoonup Hence, it is also in the fixpoint $au^{i_0}(\mathit{True})$.
- By Lemma 10, s is the start of an infinite sequence of states in which each state is related to the previous one by the relation R.
- \bigcirc Furthermore, each state in the sequence satisfies f.
- \bigcirc Thus $s \models \mathbf{EG} f$.

Characterization of EU

- lacktriangledown To see why $\mathbf{E}[f_1\,\mathbf{U}\,f_2]=\mu Z$. $f_2ee (f_1\wedge \mathbf{EX}\,Z)$ intuitively ...
- Let $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX} Z)$.
- $\bullet ag{False} = f_2 \lor (f_1 \land \textbf{EX} \ False) = f_2.$
- \bullet $\tau^2(False) = f_2 \lor (f_1 \land \mathbf{EX} f_2).$
- <u></u>
- $\tau^i(False) = f_2 \lor (f_1 \land \mathsf{EX} (f_2 \lor (f_1 \land \mathsf{EX} (\cdots (f_2 \lor (f_1 \land \mathsf{EX} f_2)) \cdots))))$ (**EX** is applied i-1 times to the inner most f_2).
- f_2 will eventually become true on some path; Before then, f_1 remains true.
- So, states in the limit of $\tau^i(False)$ satisfy $\mathbf{E}[f_1 \mathbf{U} f_2]$.

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX} Z)$

Lemma (Lemma 13)

E[f_1 **U** f_2] is the least fixpoint function of the function $\tau(Z) = f_2 \vee (f_1 \wedge \textbf{EX} Z)$.

- **E** $[f_1 \cup f_2]$ is a fixpoint of $\tau(Z)$.
- \odot We still need to prove that $\mathbf{E}[f_1 \mathbf{U} f_2]$ is the least fixpoint of $\tau(Z)$.
- lacktriangledown It is sufficient to show that $\mathbf{E}[f_1 \mathbf{U} f_2] = \cup_i \tau^i(False)$, i.e.,
 - $\circledast \cup_i \tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2] \text{ and }$

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX}\, Z)$ (cont.)

Proof of $\bigcup_i \tau^i(False) \subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$:

- \bigcirc It suffices to show that $\tau^i(False) \subseteq \mathbf{E}[f_1 \cup f_2]$ for all i.
- ightharpoonup We prove this by induction on i.
- ightharpoonup Base case: $au^0(\mathit{False}) = \mathit{False} \subseteq \mathbf{E}[\mathit{f}_1 \, \mathbf{U} \, \mathit{f}_2].$
- Inductive step:
 - $ilde{*}$ We assume $au^k(\mathit{False}) \subseteq \mathbf{E}[\mathit{f}_1 \ \mathbf{U} \ \mathit{f}_2]$ for an arbitrary k.
 - $ilde{*}$ By the monotonicity of $au,\ au(au^k(\mathit{False})) \subseteq au(\mathsf{E}[\mathit{f}_1\,\mathsf{U}\,\mathit{f}_2]).$
 - Since $\mathbf{E}[f_1 \mathbf{U} f_2]$ is a fixpoint of $\tau(Z)$, $\tau(\mathbf{E}[f_1 \mathbf{U} f_2]) = \mathbf{E}[f_1 \mathbf{U} f_2]$.
 - $ilde{*}$ It follows that $au^{k+1}(\mathit{False}) \subseteq \mathsf{E}[\mathit{f}_1 \, \mathsf{U} \, \mathit{f}_2]$.

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX}\, Z)$ (cont.)

Proof of $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \cup_i \tau^i(False)$:

- We prove this direction by induction on the length of the prefix of the path along which $f_1 \cup f_2$ is satisfied.
- •• If $s \in \mathbf{E}[f_1 \cup f_2]$ (i.e., $s \models \mathbf{E}[f_1 \cup f_2]$), then there exists a path $\pi = s_1, s_2, \ldots$ with $s = s_1$ such that, for some $j \ge 1$, $s_j \models f_2$ and, for all l < j, $s_l \models f_1$.
- We claim the following: For every $\pi = s_1, s_2, ...$, if $\pi \models f_1 \mathbf{U} f_2$, then for every j such that $s_j \models f_2$ and, for all l < j, $s_l \models f_1$, $s_1 \in \tau^j(False)$ holds.
- From the claim, it follows that $s \in \mathbf{E}[f_1 \cup f_2]$ implies $s \in \tau^j(False)$ for some j.
- Therefore, $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \bigcup_i \tau^i(False)$.

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX} Z)$ (cont.)

- Proof of $\mathbf{E}[f_1 \mathbf{U} f_2] \subset \bigcup_i \tau^i(False)$ (continued):
 - We now prove the claim by induction on i.
 - \bigcirc Base case (i=1):
 - $ilde{*}$ $s_1 \models f_2$ and therefore $s_1 \in f_2 \lor (f_1 \land \mathsf{EX}\ \mathit{False}) = \tau(\mathit{False})$.
 - Inductive step:
 - Let π be a path $s_1, s_2, \ldots, s_k, \ldots$ with k > 1 such that $s_k \models f_2$ and for all l < k, $s_l \models f_1$ (so, $\pi \models f_1 \cup f_2$).
 - $\stackrel{\$}{=}$ Since k > 1, s_2, s_3, \ldots also satisfies $f_1 \cup f_2$. More precisely, s_2 is the start of a sequence $\pi' = s_1', s_2', \dots (=s_2, s_3, \dots)$ such that $s'_{k-1}(=s_k) \models f_2$ and for all l < k-1, $s'_l \models f_1$.
 - $ilde{*}$ From the induction hypothesis, $s_1' \in au^{k-1}(\mathit{False})$, i.e., $s_2 \in \tau^{k-1}(False)$.
 - \red With $s_1 \models f_1$, $(s_1, s_2) \in R$, and $s_2 \in \tau^{k-1}(False)$, we have $s_1 \in f_1 \wedge \mathsf{EX} (\tau^{k-1}(\mathsf{False})) \subset f_2 \vee (f_1 \wedge \mathsf{EX} (\tau^{k-1}(\mathsf{False}))) =$ τ^k (False).

An Example

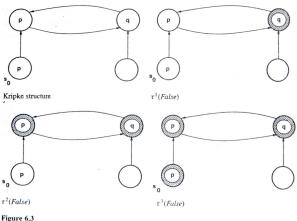


Figure 6.3 Sequence of approximations for $E[p \ U \ q]$.

Source: [Clarke et al. 1999]. Names of states (clockwise): s_0 , s_1 , s_2 , s_3 .

An Example (cont.)

Sequence of approximations for $\mathbf{E}[p \mathbf{U} q] = \mu Z$. $q \vee (p \wedge \mathbf{EX} Z)$:

$$\tau^{1}(\textit{False}) = q \lor (p \land \textbf{EX False})$$

$$= q$$

$$\tau^{2}(\textit{False}) = q \lor (p \land \textbf{EX } \tau(\textit{False}))$$

$$= q \lor (p \land \textbf{EX } q)$$

$$= q \lor (p \land \{s_{1}, s_{3}\})$$

$$= q \lor \{s_{1}\}$$

$$\tau^{3}(\textit{Fasle}) = q \lor (p \land \textbf{EX } \tau^{2}(\textit{Fasle}))$$

$$= q \lor (p \land \textbf{EX } (q \lor \{s_{1}\}))$$

$$= q \lor (p \land \{s_{0}, s_{1}, s_{2}, s_{3}\})$$

$$= q \lor p$$

Characterization of CTL Operators (cont.)

- \bullet **AF** $f = \mu Z$. $f \vee AX Z$
- lacktriangle $\mathbf{AG}\,f=
 u Z$. $f\wedge \mathbf{AX}\,Z$
- **§** EG $f = \nu Z$. $f \wedge EX Z$
- $\Pled \mathbf{A}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{AX} Z)$
- **©** $\mathbf{E}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{EX} Z)$
- lacklet $\mathbf{E}[f \mathbf{R} g] = \nu Z \cdot g \wedge (f \vee \mathbf{EX} Z)$

Symbolic Model Checking for CTL

- There is a quite fast explicit state model checking algorithm for CTL, but a state explosion problem may occur.
- In the following, we will present a Symbolic Model Checking (SMC) algorithm for CTL which operates on Kripke structures represented symbolically using OBDDs.
- For this, the logic of Quantified Boolean Formulae (QBF) will be used.
 - QBF formulae are as expressive as the usual Boolean formulae.
 - However, they allow a more succinct notation for complex operations on Boolean formulae.

Quantified Boolean Formulae (QBF)

- igoplus Let V be a set $\{v_0, \dots, v_{n-1}\}$ of propositional variables.
- $\, \, igoplus \, QBF(V) \,$ is the smallest set of formulae such that
 - 🥟 every variable in V is a formula,
 - \ref{g} if f and g are formulae, then $\neg f$, $f \lor g$, and $f \land g$ are formulae, and
 - $ilde{*}$ if f is a formula and $v \in V$, then $\exists v f$ and $\forall v f$ are formulae.

Truth Assignment

- lacktriangledown A truth assignment for QBF(V) is a function $\sigma:V o\{0,1\}$.
- If $a \in \{0,1\}$, then the notation $\sigma \langle v \leftarrow a \rangle$ is used for the truth assignment defined by

$$\sigma\langle v\leftarrow a\rangle(w)=\left\{egin{array}{ll} a & ext{if } v=w \\ \sigma(w) & ext{otherwise} \end{array}
ight.$$

Models of QBF

- $\sigma \models f$ denotes that the QBF formula f is true under the assignment σ .
- lacktriangle The \models (satisfaction) relation is defined inductively as follows:

$$\sigma \models v & \text{iff} \quad \sigma(v) = 1 \\
\sigma \models \neg f & \text{iff} \quad \sigma \not\models f \\
\sigma \models f \lor g & \text{iff} \quad \sigma \models f \text{ or } \sigma \models g \\
\sigma \models f \land g & \text{iff} \quad \sigma \models f \text{ and } \sigma \models g \\
\sigma \models \exists vf & \text{iff} \quad \sigma \langle v \leftarrow 0 \rangle \models f \text{ or } \sigma \langle v \leftarrow 1 \rangle \models f \\
\sigma \models \forall vf & \text{iff} \quad \sigma \langle v \leftarrow 0 \rangle \models f \text{ and } \sigma \langle v \leftarrow 1 \rangle \models f$$

Quantification

The quantifiers in QBF can be implemented as combinations of the restrict and apply operators.

$$\exists x f = f|_{x \leftarrow 0} \lor f|_{x \leftarrow 1}$$

$$\forall x f = f|_{x \leftarrow 0} \land f|_{x \leftarrow 1}$$

So, like Boolean formulae, QBF formulae can be represented by OBDDs.

SMC Algorithm

- The SMC algorithm is implemented by a procedure *Check*.
 - Argument: a CTL formula
 - Return: an OBDD that represents exactly those states of the system that satisfy the formula

SMC Algorithm (cont.)


```
\begin{array}{lll} \textit{Check}(a) & = & \textit{the OBDD representing the set of states} \\ & & \textit{satisfying the atomic proposition } a \\ \textit{Check}(f \land g) & = & \textit{Check}(f) \land \textit{Check}(g) \\ \textit{Check}(\neg f) & = & \neg \textit{Check}(f) \\ \textit{Check}(\textbf{EX}\ f) & = & \textit{CheckEX}(\textit{Check}(f)) \\ \textit{Check}(\textbf{E}[f\ \textbf{U}\ g]) & = & \textit{CheckEU}(\textit{Check}(f),\textit{Check}(g)) \\ \textit{Check}(\textbf{EG}\ f) & = & \textit{CheckEG}(\textit{Check}(f)) \\ \end{array}
```

CheckEX

The formula **EX** *f* is true in a state if the state has a successor in which *f* is true.

$$CheckEX(f(\bar{v})) = \exists \bar{v}'[f(\bar{v}') \land R(\bar{v}, \bar{v}')],$$

where $R(\bar{v}, \bar{v}')$ is the OBDD representation of the transition relation.

CheckEU

• CheckEU is based on the least fixpoint characterization for the CTL operator EU.

$$\mathbf{E}[f \mathbf{U} g] = \mu Z \cdot g \vee (f \wedge \mathbf{EX} Z)$$

The function Lfp is used to compute a sequence of approximations

$$Q_0, Q_1, \ldots, Q_i, \ldots$$

that converges to $\mathbf{E}[f \mathbf{U} g]$ in a finite number of steps.

CheckEU (cont.)

- If we have OBDDs for f, g, and the current approximation Q_i , then we can compute an OBDD for the next approximation Q_{i+1} .
- When $Q_i = Q_{i+1}$ (it is easy to test because OBDDs provide a canonical form of Boolean functions), the function Lfp terminates.

CheckEG

• CheckEG is based on the greatest fixpoint characterization for the CTL operator EG.

$$\mathbf{EG} f = \nu Z \cdot f \wedge \mathbf{EX} Z$$

Fairness in SMC

- Assume the fairness constraints are given by a set of CTL formulae $F = \{P_1, \dots, P_n\}$.
- → A fair path is a path on which each formula in F holds infinitely often.
- We define a new procedure CheckFair for checking CTL formulae relative to the fairness constructions in F.
- We do this by defining new intermediate procedures CheckFairEX, CheckFairEU, and CheckFairEG, which correspond to the intermediate procedures used to define Check.

EG f with Fairness

- Consider the formula EG f given fairness constraints F.
- \odot The formula means that there exists a fair path beginning with the current state on which f holds globally.
- The set of such states Z is the largest set with the following two properties:

 - * for all $P_k \in F$ and all $s \in Z$, there is a sequence of states of length one or greater from s to a state in Z satisfying P_k such that all states on the path satisfy f.
 - (cf. There exists a path in S', where f holds, that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').)

EG *f* with Fairness (cont.)

The characterization can be expressed by means of a fixpoint as follows:

$$\mathbf{EG}\,f = \nu Z \,\,.\,\, f \wedge \bigwedge_{k=1}^n \mathbf{EX}\, \mathbf{E}[f\, \mathbf{U}\, (Z \wedge P_k)]$$

- Note that the formula is not directly expressible in CTL.
- We are going to prove the correctness of this equation.
- We split it into two lemmas.

Fair Version of EG *f*

Lemma (Lemma 14)

The fair version of $\mathbf{EG} f$ is a fixpoint of the equation

$$Z = f \wedge \bigwedge_{k=1}^{n} \mathbf{EX} \, \mathbf{E}[f \, \mathbf{U} \, (Z \wedge P_{k})].$$

Proof: It suffices to show that

$$\operatorname{\mathsf{EG}} f \subseteq f \wedge \bigwedge_{k=1}^n \operatorname{\mathsf{EX}} \operatorname{\mathsf{E}}[f \operatorname{\mathsf{U}} (\operatorname{\mathsf{EG}} f \wedge P_k)]$$

and

$$f \wedge \bigwedge^{"} \mathbf{EX} \mathbf{E}[f \mathbf{U} (\mathbf{EG} f \wedge P_k)] \subseteq \mathbf{EG} f.$$

- Case 1: **EG** $f \subseteq f \land \bigwedge_{k=1}^{n} \mathbf{EXE}[f \mathbf{U} (\mathbf{EG} f \land P_{k})].$
 - ***** Let $s \models \mathbf{EG} f$, then s is the start of a fair path π , all of whose states satisfy f.
 - $ilde{*}$ Let s_i be the first state on π such that $s_i \in P_i$ and $s_i
 eq s$.
 - The state s_i is also a start of a fair path along which all states satisfy f.
 - \bullet Thus, $s_i \in \mathbf{EG} f$.
 - $ilde{*}$ It follows that for every $i, s \models f \land \mathsf{EX} \, \mathsf{E}[f \, \mathsf{U} \, (\mathsf{EG} \, f \land P_i)].$
 - * Therefore, $s \models f \land \bigwedge_{k=1}^{n} \mathsf{EX} \, \mathsf{E}[f \, \mathsf{U} \, (\mathsf{EG} \, f \land P_k)].$

- Case 2: $f \wedge \bigwedge_{k=1} \mathbf{EX} \mathbf{E}[f \mathbf{U} (\mathbf{EG} f \wedge P_k)] \subseteq \mathbf{EG} f$.
 - * If $s \models f \land \bigwedge_{k=1}^{n} \mathsf{EX}\,\mathsf{E}[f\,\mathsf{U}\,(\mathsf{EG}\,f \land P_{k})]$, then there is a finite path starting from s to a state s' such that $s' \models (\mathsf{EG}\,f \land P_{k})$.
 - $ilde{*}$ Every state on the path from s to s' satisfies f.
 - s' is the beginning of a fair path such that each state on the path satisfies f.

Lemma (Lemma 15)

The greatest fixpoint of the following equation is included in $\mathbf{EG} f$.

$$Z = f \wedge \bigwedge^{n} \mathbf{EX} \mathbf{E}[f \mathbf{U} (Z \wedge P_{k})]$$

Proof of Lemma 15:

- lacktriangle Let Z be an arbitrary fixpoint of the formula.
- igcep Assume that $s \in Z$. Then $s \models f$.
- \odot s has a successor s' that is a start of a path to a state s_1 such that
 - all states on this path satisfy f and
 - \circledast s_1 satisfies $Z \wedge P_1$.
- Secause $s_1 \in Z$ we can conclude by the same argument that there is a path from s_1 to a state s_2 in P_2 .

Proof of Lemma 15 (continued):

- Using this argument n times we conclude that s is the start of a path along which all states satisfy f and which passes through P_1, \ldots, P_k .
- \bullet The last state on the path is in Z, and thus there is a path from this state back to some state in P_1 .
- Induction can be used to show that there exists a fair path starting at s such that f is satisfied along the path, i.e., $s \models \mathbf{EG} f$.

CheckFairEG

• CheckFairEG($f(\bar{v})$) is based on the following fixpoint characterization:

$$\nu Z(\bar{\nu}) \cdot f(\bar{\nu}) \wedge \bigwedge_{k=1}^{n} \mathbf{EXE}[f(\bar{\nu}) \mathbf{U}(Z(\bar{\nu}) \wedge P_{k})].$$

CheckFair

The set of all states which are the start of some fair computation is

 $fair(\bar{v}) = CheckFair(\textbf{EG True}).$

CheckFairEX

The formula **EX** f under fairness constraints is equivalent to the formula **EX** $f \wedge fair$ without fairness constraints.

$$CheckFairEX(f(\bar{v})) = CheckEX(f(\bar{v}) \land fair(\bar{v}))$$

CheckFairEU

The formula $\mathbf{E}[f \ \mathbf{U} \ g]$ under fairness constraints is equivalent to the formula $\mathbf{E}[f \ \mathbf{U} \ g \land fair]$ without fairness constraints.

$$CheckFairEU(f(\bar{v}), g(\bar{v})) = CheckEU(f(\bar{v}), g(\bar{v}) \land fair(\bar{v}))$$

LTL Model Checking

- \bullet Let **A** f be a linear temporal logic formula where f is a restricted path formula.
- A formula f is a restricted path formula if all state subformulae in f are atomic propositions.
- **⊙** The problem is to determine all of those states $s \in S$ such that $M, s \models \mathbf{A} f$.
- Since $M, s \models \mathbf{A} f$ iff $M, s \models \neg \mathbf{E} \neg f$, it is sufficient to check the truth of formulae of the form $\mathbf{E} f$.

LTL Model Checking (cont.)

- Given a formula E f and a Kripke structure M, the procedure of LTL model checking is:
 - $ilde{*}$ Construct a tableau T for the path formula f .
 - 🥮 Compose T with M.
 - Find a path in the composition.
- 😚 The tableau can be represented by OBDDs.

States of the Tableau

- Each state in the tableau is a set of elementary formulae obtained from *f*.
- The set of elementary subformulae of f is denoted by el(f) and is defined recursively as follows.

$$el(p) = \{p\} \text{ if } p \in AP_f$$

 $el(\neg g) = el(g)$
 $el(g \lor h) = el(g) \cup el(h)$
 $el(\mathbf{X}g) = \{\mathbf{X}g\} \cup el(g)$
 $el(g \cup h) = \{\mathbf{X}(g \cup h)\} \cup el(g) \cup el(h)$

• The set of states S_T of T is $\mathcal{P}(el(f))$.

Transition Relation of the Tableau

• An additional function sat is defined recursively as follows.

$$sat(g) = \{s \mid g \in s\} \text{ where } g \in el(f)$$

$$sat(\neg g) = \{s \mid s \notin sat(g)\}$$

$$sat(g \lor h) = sat(g) \cup sat(h)$$

$$sat(g \mathbf{U} h) = sat(h) \cup (sat(g) \cap sat(\mathbf{X}(g \mathbf{U} h)))$$

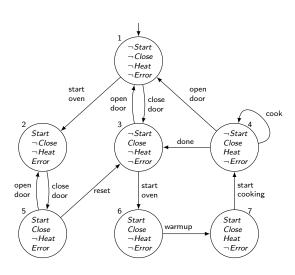
The transition relation R_T of T is defined as

$$R_T(s,s') = \bigwedge_{\mathbf{X}g \in el(f)} s \in sat(\mathbf{X}g) \Leftrightarrow s' \in sat(g)$$

Transition Relation of the Tableau (cont.)

- An additional condition is necessary in order to identify those paths along which *f* holds.
- lacktriangle A path π that starts from a state $s \in \mathit{sat}(f)$ will satisfy f iff
 - * for every subformula $g \cup h$ and for every state s on π , if $s \in sat(g \cup h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

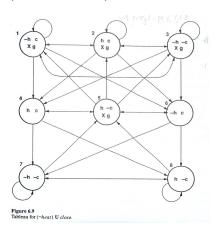
The Microwave Oven Example



Source: redrawn from [Clarke et al. 1999, Fig. 4.3].

The Microwave Oven Example (cont.)

Tableau for $\neg g = \neg(\neg heat \ \mathbf{U} \ close)$:



Source: [Clarke et al. 1999].

Eventuality

- The definition of R_T does not guarantee that eventuality properties are fulfilled.
- A path π that starts from a state s ∈ sat(f) will satisfy f if and only if
 - * for every subformulae $g \cup h$ and for every state s on π , if $s \in sat(g \cup h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

Additional Notations

- $\ \ \, \ \, \pi'=s_0',s_1',\ldots$ represents a path in M.
- lacktriangle For the suffix $\pi_i' = s_i', s_{i+1}', \ldots$ of π , we define

$$s_i = \{ \psi \mid \psi \in \mathit{el}(f) \text{ and } M, \pi' \models \psi \}$$

Correctness

Lemma (Lemma 16)

Let sub(f) be the set of all subformulae of f. For all $g \in sub(f) \cup el(f)$, $M, \pi'_i \models g$ if and only if $s_i \in sat(g)$.

Proof:

- Case 1: Let $g \in el(f)$.
 - $M, \pi'_i \models g \text{ iff } g \in s_i.$
 - $ilde{*} g \in s_i$ iff $s_i \in sat(g)$.
- lackgreap Case 3: Let $g=g_1\, oldsymbol{\mathsf{U}}\, g_2$.
 - $M, \pi'_i \models g_1 \cup g_2 \text{ iff } M, \pi'_i \models g_2 \text{ or } (M, \pi'_i \models g_1 \text{ and } M, \pi'_i \models \mathbf{X}(g_1 \cup g_2)).$
 - $M, \pi'_i \models g_2 \text{ or } (M, \pi'_i \models g_1 \text{ and } M, \pi'_i \models \mathbf{X}(g_1 \cup g_2)) \text{ iff } s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(\mathbf{X}(g_1 \cup g_2))).$
 - $s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(\mathbf{X}(g_1 \cup g_2)))$ iff $s_i \in sat(g_1 \cup g_2)$.

Correctness (cont.)

Lemma (Lemma 17)

Let $\pi' = s_0' s_1' \dots$ be a path in M. For all $i \geq 0$, let s_i be the tableau state. Then $\pi = s_0 s_1 \dots$ is a path in T.

Correctness (cont.)

Theorem (Theorem 4)

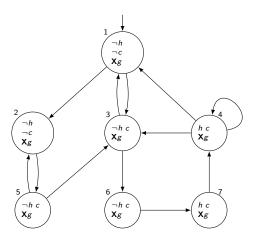
Let T be the tableau for the path formula f. Then, for every Kripke structure M and every path π' of M, if $M, \pi' \models f$ then there is a path π in T that starts in a state in $\mathsf{sat}(f)$, such that $\mathsf{label}(\pi')|_{AP_{\epsilon}} = \mathsf{label}(\pi)$.

Composition of T and M

- P = (S, R, L) is the product of the tableau $T = (S_T, R_T, L_T)$ and the Kripke structure $M = (S_M, R_M, L_M)$.
 - $\# S = \{(s, s') \mid s \in S_T, s' \in S_M \text{ and } L_M(s') \mid_{AP_f} = L_T(s)\}.$
 - R((s,s'),(t,t')) iff $R_T(s,t)$ and $R_M(s',t')$.
- The function sat is extended to be defined over S by $(s, s') \in sat(g)$ if and only if $s \in sat(g)$.

The Microwave Oven Example (cont.)

Product of the microwave and the tableau for $\neg(\neg heat \ U \ close)$:



Source: adapted from [Clarke et al. 1999, Fig. 6.10].

Correctness

Lemma (Lemma 18)

 $\pi'' = (s_0, s_0'), (s_1, s_1'), \dots$ is a path in P with $L_P((s_i, s_i')) = L_T(s_i)$ for all $i \ge 0$ if and only if there exists a path $\pi = s_0, s_1, \dots$ in T, and a path $\pi' = s_0', s_1', \dots$ in M with $L_T(s_i) = L_M(s_i) \mid_{AP_f}$ for all $i \ge 0$.

Correctness (cont.)

Theorem (Theorem 5)

 $M, s' \models \mathbf{E} f$ if and only if there is a state s in T such that $(s, s') \in sat(f)$ and $P, (s, s') \models \mathbf{EG}$ True under fairness constraints

 $\{sat(\neg(g \mathbf{U} h) \lor h) \mid g \mathbf{U} h \text{ occurs in } f\}.$

Summary of LTL Model Checking

- Given a Kripke structure M, a state s' in M and a LTL formula f.
- \bigcirc Construct a symbolic representation of M.
- $igstyle{ \odot}$ Construct a symbolic representation of $T_{\lnot f}$.
- lacksquare Construct the product P of M and $T_{\neg f}$.
- \odot Use the symbolic CTL model checking algorithm to check if there is a state s in $T_{\neg f}$ such that
 - $(s,s') \in sat(\neg f)$ and
 - $ilde{*} P, (s, s') \models \mathbf{EG} True$ under fairness constraints

 $\{sat(\neg(g \mathbf{U} h) \lor h) \mid g \mathbf{U} h \text{ occurs in } f\}.$

SMC for LTL [Kesten et al 1995]

- Here we slightly modify the definition of Kripke structures and the symbolic algorithm in [Kesten *et al.* 1995].
- \odot A Kripke structure M is a tuple (V, S_0, R) where
 - V is a set of system variables and thus the set of states S is the set of all valuations for V,
 - $sthingspace S_0$ is the initial condition defined upon V, and
 - $ilde{*}$ $R\subseteq S imes S$ is the transition relation which is total.
- The problem is to check, given a Kripke structure M and a formula f, whether $M \models f$ (all paths of M satisfy f).

SMC for LTL [Kesten et al 1995] (cont.)

- Let V_f be the set of all propositions in f. Without loss of generality, we assume $V_f = V$ (of the Kripke structure).
- For each elementary formula $p \in el(f)$, a Boolean variable (elementary variable) x_p is associated.
- The set of elementary variables are represented by a vector $\bar{x} = x_1, x_2, \dots, x_m$ where m = |el(f)|.
- Note that a valuation for \bar{x} constitutes a state in M and a state in T_f .

Formulae in Elementary Formulae

- \bigcirc Let CL(f) denote the closure of the LTL formula f.
- For each formula $p \in CL(f)$, we define a Boolean function $\chi_p(\bar{x})$ which expresses p in terms of the elementary variables:

For
$$p \in el(f)$$
, $\chi_p(\bar{x}) = x_p$
For $p = \neg q$, $\chi_p = \neg \chi_q$
For $q \wedge r$, $\chi_p = \chi_q \wedge \chi_r$
For $p = q \mathbf{U} r$, $\chi_p = \chi_r \vee (\chi_q \wedge x_{\mathbf{X}(q \mathbf{U}r)})$
For $p = q \mathbf{S} r$, $\chi_p = \chi_r \vee (\chi_q \wedge x_{\mathbf{Y}(q \mathbf{S}r)})$

Note: **Y** is the "previous" operator.

LTL Model Checking

There exists a computation in M satisfying f iff $sat_{M,f}$ as defined below is true.

$$\operatorname{\mathit{sat}}_{M,f}:\exists \bar{x},\bar{y}:\operatorname{\mathit{init}}(\bar{x})\wedge \operatorname{\mathit{E}}^*(\bar{x},\bar{y})\wedge\operatorname{\mathit{scf}}^{\operatorname{\mathit{E}}}(\bar{y})$$

Initial Condition

- \odot The following formula identifies an initial state in the product of M and T_f .
 - It is an initial state in M.

$$init(\bar{x}): \chi_f(\bar{x}) \wedge (\bigwedge_{\mathbf{Y}_p \in CL(f)} \neg x_{\mathbf{Y}_p}) \wedge S_0(\bar{x})$$

Transition Relation

The following formula identifies the set of transitions in the product:

$$E(\bar{x},\bar{y}): e(\bar{x},\bar{y}) \wedge R(\bar{x},\bar{y})$$

where

$$e(\bar{x},\bar{y}): \bigwedge_{\mathbf{X}_p \in el(f)} (x_{\mathbf{X}_p} \leftrightarrow \chi_p(\bar{y})) \land \bigwedge_{\mathbf{Y}_p \in el(f)} (\chi_p(\bar{x}) \leftrightarrow y_{\mathbf{Y}_p})$$

$$E^{+}(\bar{x},\bar{y}) = E(\bar{x},\bar{y}) \vee \exists \bar{z} : E^{+}(\bar{x},\bar{z}) \wedge E(\bar{z},\bar{y})$$
$$E^{*}(\bar{x},\bar{y}) : (\bar{x} = \bar{y}) \vee E^{+}(\bar{x},\bar{y})$$

The definitions of $e^+(\bar{x}, \bar{y})$ and $e^*(\bar{x}, \bar{y})$ are similar to $E^+(\bar{x}, \bar{y})$ and $E^*(\bar{x}, \bar{y})$.

Fulfilling Atoms

The following formula identifies fulfilling atoms.

$$scf^{E}(\bar{x}): E^{+}(\bar{x},\bar{x}) \wedge \bigwedge_{\rho \cup q \in CL(f)} (\chi_{\rho \cup q}(\bar{x}) \to \exists \bar{z}: E^{*}(\bar{x},\bar{z}) \wedge \chi_{q}(\bar{z}) \wedge E^{*}(\bar{z},\bar{x}))$$