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Introduction

In symbolic model checking, BDDs had traditionally been used
for boolean encodings.

Drawbacks of BDDs:

For large systems (with over a few hundred boolean variables),
they can be prohibitively large.
Selecting the right variable ordering is often time-consuming or
needs manual intervention.

Propositional decision procedures, or SAT solvers, also operate
on boolean expressions, but do not use canonical forms.

SAT solvers can handle thousands of variables or even more.
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Introduction (cont.)

Basic ideas of bounded model checking (BMC):

Consider counterexamples of a particular length k .
Generate a propositional formula that is satisfiable iff such a
counterexample exists.
The propositional formula can be tested for satisfiability by a
SAT solver.

Advantages of BMC:

It finds counterexamples very fast.
It finds counterexamples of minimal length.
It uses much less space than BDD-based approaches.
It does not need a manually selected variable ordering or
time-consuming dynamic reordering.
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An Example

Consider a three-bit shift register.

Let M = 〈X , I ,T 〉 be its state machine:

X , {x [0], x [1], x [2]} contains the three bits.
I (X ) , true, posing no restriction on the initial states.
T (X ,X ′) , (x ′[0]⇔ x [1]) ∧ (x ′[1]⇔ x [2]) ∧ x ′[2].

Suppose we want to check if eventually all three bits are set to
0, i.e., if LTL formula p , 3(¬x [0] ∧ ¬x [1] ∧ ¬x [2]) holds on all
paths in M .

To do so, we search for a path in M such that
¬p , 2(x [0] ∨ x [1] ∨ x [2]) on the path.

If we succeed, then p does not hold on all paths; otherwise, it
does.
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An Example (cont.)

We look for (looping) paths with at most k + 1 states, for
instance k = 2.

Let Xi denote the set {xi [0], xi [1], xi [2]}.
The first 3 states of such a path can be characterized by the
following boolean formula:

fM , I (X0) ∧ T (X0,X1) ∧ T (X1,X2)

A witness for ¬p must contain a loop from X2 back to X0, X1,
or X2:

Li , T (X2,Xi)

The path must fulfill the constraints imposed by ¬p:

Si , xi [0] ∨ xi [1] ∨ xi [2]
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An Example (cont.)

The following formula is satisfiable iff there is a counterexample
of length 2 for p.

fM ∧
2∨

i=0

Li ∧
2∧

i=0

Si

Here is a satisfying assignment:

x0[0] = x0[1] = x0[2]
= x1[0] = x1[1] = x1[2]
= x2[0] = x2[1] = x2[2]
= 1.
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Part I:

Bounded Model Checking for LTL
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Kripke Structures

A Kripke structure is a tuple M = (S , I ,T , L) with

a finite set of states S ,
the set of initial states I ⊆ S ,
a transition relation between states T ⊆ S × S , and
the labeling of the states L : S →P(A) with atomic
propositions A.

Every state of M is required to have a successor.

We write s → t for (s, t) ∈ T .

For an infinite sequence π of states s0, s1, . . ., we define

π(i) = si
πi = si , si+1, . . ..

An infinite sequence π is a path if π(i)→ π(i + 1) for all i ∈ N.
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Linear Temporal Logic (LTL)

Let M be a Kripke structure, π be a path in M , and f be an
LTL formula (in negation normal form).

π |= f (f is valid along π) is defined as follows:

π |= p iff p ∈ L(π(0))
π |= ¬p iff p 6∈ L(π(0))
π |= f ∧ g iff π |= f and π |= g
π |= f ∨ g iff π |= f or π |= g
π |= 2f iff ∀j ∈ [0,∞).πj |= f
π |= 3f iff ∃j ∈ [0,∞).πj |= f
π |= ©f iff π1 |= f
π |= f U g iff ∃j ∈ [0,∞).(πj |= g and ∀k ∈ [0, j).πk |= f )
π |= f R g iff ∀j ∈ [0,∞).(πj |= g or ∃k ∈ [0, j).πk |= f )
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Model Checking

An LTL formula f is valid in a Kripke structure M , denoted as
M |= A f , iff π |= f for all paths π in M with π(0) ∈ I .

An LTL formula f is satisfiable in a Kripke structure M , denoted
as M |= E f , iff there is a path π in M such that π |= f and
π(0) ∈ I .

Given a Kripke structure M and an LTL formula f , the model
checking problem is to determine whether M |= A f , which is
equivalent to determine whether M 6|= E ¬f .

In the following, the problem is restricted to find a witness for
formulae of the form E f .
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Bounded Model Checking

Consider only a finite prefix of a path that may be a witness of
E f .

We restrict the length of the prefix to a certain bound k .

Generate a propositional formula that is satisfiable iff there is a
witness within the bound k .

The propositional formula can be solved by a SAT solver.

If there is no witness within bound k , we increase the bound and
look for longer and longer possible witnesses.
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Infinite Paths from the Prefix

Though the prefix of a path is finite, it still might represent an
infinite path if there is a back loop from the last state of the
prefix to any of the previous states.

If there is no such back loop, then the prefix does not say
anything about the infinite behavior of the path.

Only a prefix with a back loop can represent a witness for 2f .
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Loops

A path π is a (k , l)-loop for l ≤ k if

π(k)→ π(l) and
π = u · vω with

u = π(0), . . . , π(l − 1) and
v = π(l), . . . , π(k)

t - t - t - t - t
� �
?

sl = sk+1 si sk

A path π is a k-loop if there is an l ∈ N with l ≤ k for which π
is a (k , l)-loop.
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Bounded Semantics

In bounded semantics, we only consider a finite prefix of a path
which may or may not be a loop.

In particular, we only use the first k + 1 states of a path to
determine the validity of a formula along that path.

The bounded semantics π |=k f states that the LTL formula f is
valid along the path π with bound k .
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Bounded Semantics for a Loop

Let k ∈ N and π be a k-loop.

π |=k f iff π |= f .

This is so, because all information about π is contained in the
prefix of length k .
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Bounded Semantics without a Loop

Let k ∈ N and π be a path that is not a k-loop.

π |=k f iff (π, 0) |=k f where

(π, i) |=k p iff p ∈ L(π(i))
(π, i) |=k ¬p iff p 6∈ L(π(i))
(π, i) |=k f ∧ g iff (π, i) |=k f and (π, i) |=k g
(π, i) |=k f ∨ g iff (π, i) |=k f or (π, i) |=k g
(π, i) |=k 2f iff false
(π, i) |=k 3f iff ∃j ∈ [i , k].(π, j) |=k f
(π, i) |=k ©f iff i < k and (π, i + 1) |=k f
(π, i) |=k f U g iff ∃j ∈ [i , k].((π, j) |=k g and ∀n ∈ [i , j).(π, n) |=k f )
(π, i) |=k f R g iff ∃j ∈ [i , k].((π, j) |=k f and ∀n ∈ [i , j].(π, n) |=k g)

Note: (π, i) |=k f is written as π |=i
k f in the paper.
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Bounded Semantics without a Loop (cont.)

Note that the bounded semantics without a loop imply that the
following two dualities no longer hold:

the duality of 2 and 3 (¬2f = 3¬f ), and
the duality of U and R (¬(f U g) = (¬f ) R (¬g)).
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Reduction to Bounded Model Checking

Lemma

Let h be an LTL formula and π a path, then π |=k h⇒ π |= h.

Lemma

Let f be an LTL formula and M a Kripke structure. If M |= E f then
there exists k ∈ N with M |=k E f .

Theorem

Let f be an LTL formula and M a Kripke structure. Then M |= E f
iff there exists k ∈ N with M |=k E f .
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Proof of Lemma 1

Let h be an LTL formula and π a path, then π |=k h⇒ π |= h.

Case 1: π is a k-loop.

The conclusion follows by the definition.

Case 2: π is not a loop.

Prove by induction over the structure of f and i ≤ k the
stronger property π |=i

k h⇒ πi |= h.
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Proof of Lemma 1 (cont.)

π |=i
k f R g

⇔ ∃j ∈ [i , k].(π |=j
k f and ∀n ∈ [i , j ].π |=n

k g)
⇒ ∃j ∈ [i , k].(πj |= f and ∀n ∈ [i , j ].πn |= g)
⇒ ∃j ∈ [i ,∞].(πj |= f and ∀n ∈ [i , j ].πn |= g)
⇒ ∃j ′ ∈ [0,∞).(πi+j ′ |= f and ∀n′ ∈ [0, j ′].πi+n′ |= g)

(with j ′ = j − i and n′ = n − i)
⇒ ∃j ∈ [0,∞).[(πi)j |= f and ∀n ∈ [0, j ].(πi)n |= g ]
⇒ ∀n ∈ [0,∞).[(πi)n |= g or ∃j ∈ [0, n).(πi)j |= f ]

(see next slide)
⇒ πi |= f R g

Yih-Kuen Tsay (IM.NTU) Bounded Model Checking Automatic Verification 2015 21 / 49



Proof of Lemma 1 (cont.)

∃m[πm |= f and ∀l , l ≤ m.πl |= g ]⇒ ∀n[πn |= g or ∃j , j < n.πj |= f ]

Assume that m is the smallest number such that πm |= f and
πl |= g for all l with l ≤ m.

Case 1: n > m.

Based on the assumption, there exists j < n such that πj |= f
(choose j = m).

Case 2: n ≤ m.

Because πl |= g for all l ≤ m we have πn |= g for all n ≤ m.
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Proof of Lemma 2

Let f be an LTL formula and M a Kripke structure. If M |= E f then
there exists k ∈ N with M |=k E f .

If f is satisfiable in M , then there exists a path in the product
structure of M and the tableau of f that starts with an initial
state and ends with a cycle in the strongly connected component
of fair states.

This path can be chosen to be a k-loop with k bounded by
|S | · 2|f | which is the size of the product structure.

If we project this path onto its first component, the original
Kripke structure, then we get a path π that is a k-loop and in
addition fulfills π |= f .

By definition of the bounded semantics this also implies π |=k f .
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From BMC to SAT

Given a Kripke structure M , an LTL formula f , and a bound k ,
we will construct a propositional formula [[M , f ]]k .

The bounded model checking problem can be reduced in
polynomial time to propositional satisfiability.

The size of [[M, f ]]k is polynomial in the size of f if common
sub-formulae are shared.
It is quadratic in k and linear in the size of the propositional
formulae for T , I , and the p ∈ A.
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Unfolding the Transition Relation

For a Kripke structure M and k ∈ N,

[[M]]k , I (s0) ∧
k−1∧
i=0

T (si , si+1)
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Trans. of an LTL formula without a Loop

For an LTL formula f and k , i ∈ N, with i ≤ k ,

[[p]]ik , p(si )

[[¬p]]ik , ¬p(si )

[[f ∧ g ]]ik , [[f ]]ik ∧ [[g ]]ik
[[f ∨ g ]]ik , [[f ]]ik ∨ [[g ]]ik
[[2f ]]ik , false

[[3f ]]ik ,
∨k

j=i [[f ]]jk
[[©f ]]ik , if i < k then [[f ]]i+1

k else false

[[f U g ]]ik ,
∨k

j=i ([[g ]]jk ∧
∧j−1

n=i [[f ]]nk)

[[f R g ]]ik ,
∨k

j=i ([[f ]]jk ∧
∧j

n=i [[g ]]nk)
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Trans. of an LTL formula for a Loop

For an LTL formula f and k , l , i ∈ N, with l , i ≤ k ,

l [[p]]ik , p(si)

l [[¬p]]ik , ¬p(si)

l [[f ∧ g ]]ik , l [[f ]]ik ∧ l [[g ]]ik
l [[f ∨ g ]]ik , l [[f ]]ik ∨ l [[g ]]ik
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Trans. of an LTL formula for a Loop

l [[2f ]]ik ,
∧k

j=min(i ,l) l [[f ]]jk

l [[3f ]]ik ,
∨k

j=min(i ,l) l [[f ]]jk

l [[©f ]]ik , l [[f ]]
succ(i)
k

t - t - t - t - t
� �
?

sl = sk+1si sk

t - t - t - t - t
� �
?

sl = sk+1 si sk

Let k , l , i ∈ N, with l , i ≤ k .

succ(i) ,

{
i + 1 for i < k
l for i = k
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Trans. of an LTL formula for a Loop (cont.)

l [[f U g ]]ik ,
∨k

j=i(l [[g ]]jk ∧
∧j−1

n=i l [[f ]]nk)∨∨i−1
j=l (l [[g ]]jk ∧

∧k
n=i l [[f ]]nk ∧

∧j−1
n=l l [[f ]]nk)

l [[f R g ]]ik ,
∧k

j=min(i ,l) l [[g ]]jk∨∨k
j=i(l [[f ]]jk ∧

∧j
n=i l [[g ]]nk)∨∨i−1

j=l (l [[f ]]jk ∧
∧k

n=i l [[g ]]nk ∧
∧j

n=l l [[g ]]nk)

t - t - t - t - t
� �
?

sl = sk+1si sk

t - t - t - t - t
� �
?

sl = sk+1 si sk
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Loop Condition

The loop condition Lk is used to distinguish paths with bound k
which are loops or not loops.

For k , l ∈ N, let

lLk , T (sk , sl)

Lk ,
k∨

l=0

lLk .
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General Translation

Let f be an LTL formula, M a Kripke structure, and k ∈ N.

[[M , f ]]k , [[M]]k ∧ ((¬Lk ∧ [[f ]]0
k) ∨ (

k∨
l=0

(lLk ∧ l [[f ]]0
k)))

Note: is the term ¬Lk redundant?

Theorem

[[M , f ]]k is satisfiable iff M |=k E f .

Corollary

M |= A ¬f iff [[M , f ]]k is unsatisfiable for all k ∈ N.
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Bounds for LTL

LTL model checking is known to be PSPACE-complete.

A polynomial bound on k with respect to the size of M and f
for which M |=k E f ⇔ M |= E f is unlikely to be found.

Theorem

Given an LTL formula f and a Kripke structure M, let |M | be the
number of states in M, then M |= E f iff there exists k ≤ |M | × 2|f |

with M |=k E f .

For the subset of LTL formulae that involves only temporal
operators 3 and 2, LTL model checking is NP-complete.

For this subset of LTL formulae, there exists a bound on k linear
in the number of states and the size of the formula.
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Bounds for LTL (cont.)

Definition (Loop Diameter)

A Kripke structure is lasso shaped if every path p starting from an
initial state is of the form upvωp , where up and vp are finite sequences
of length less or equal to u and v, respectively. The loop diameter of
M is defined as (u, v).

Theorem

Given an LTL formula f and a lasso-shaped Kripke structure M, let
the loop diameter of M be (u, v), then M |= E f iff there exists
k ≤ u + v with M |=k E f .
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Part II:

Bounded Model Checking for LTL with Past

Note: (k , l)-loop here corresponds to (k − 1, l)-loop in Part I. For
easy cross-referencing with the original paper, we have not attempted
to unify the notion.
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Propositional Temporal Logic

The full propositional temporal logic (PTL) is LTL with past
operators.

(π, i) |= −©f iff i > 0 and (π, i − 1) |= f
(π, i) |= ∼©f iff i = 0 or (π, i − 1) |= f
(π, i) |= −3f iff ∃j , j ≤ i .(π, j) |= f
(π, i) |= −2f iff ∀j , j ≤ i .(π, j) |= f
(π, i) |= f S g iff ∃j , j ≤ i .((π, j) |= g and ∀k, j < k ≤ i .(π, k) |= f )
(π, i) |= f T g iff ∀j , j ≤ i .((π, j) |= g or ∃k, j < k ≤ i .(π, k) |= f )

Every PTL formula can be converted into the negation normal
form.
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Extend the Translation without Loops

Let k , i ∈ N with i ≤ k .

[[ −©f ]]ik ,

{
false i = 0
[[f ]]i−1

k i > 0

[[ ∼©f ]]ik ,

{
true i = 0
[[f ]]i−1

k i > 0

[[ −3f ]]ik ,
∨i

j=0 [[f ]]jk
[[ −2f ]]ik ,

∧i
j=0 [[f ]]jk

[[f S g ]]ik ,
∨i

j=0([[g ]]jk ∧
∧i

n=j+1 [[f ]]nk)

[[f T g ]]ik ,
∧i

j=0([[g ]]jk ∨
∨i

n=j+1 [[f ]]nk)
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Extend the Translation with Loops

The extension is not straightforward.

For example, consider the path 01(2345)ω which can be seen as
a (6, 2)-loop.

In the future case, the encoding of a specification is based on
the idea that, for every time in the encoding, exactly one
successor time exists.
Past formulae do not enjoy the above property.

The predecessor of 2 may be 1 or 5.

x =

time

0 1 2 3 4 5 2 3 4 5 2 3 4 5 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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The Solution: Intuition

The formula 3(x = 2 ∧ −3(x = 3 ∧ −3(x = 4 ∧ ( −3(x = 5))))) is
true in all the occurrences of x = 2 after the fourth.

The key idea is that every formula has a finite discriminating
power for events in the past.

When evaluated sufficiently far from the origin of time, a
formula becomes unable to distinguish its past sequence from
infinitely many other past sequences with a ”similar” behavior.

The idea is then to collapse the undistinguishable versions of the
past together into the same equivalence class.
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Past Temporal Horizon

The past temporal horizon (PTH) τπ(f ) of a PTL formula f
with respect to a (k , l)-loop π (with period p = k − l) is the
smallest value n ∈ N such that

∀i , l ≤ i < k .((π, i + np) |= f iff (∀n′ > n.(π, i + n′p) |= f )).
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PTH of a PTL Formula

The PTH τ(f ) of a PTL formula f is defined as
τ(f ) , maxτ∈Π τπ(f ) where Π is the set of all the paths which
are (k , l)-loops for some k > l ≥ 0.

Theorem

Let f and g be PTL formulae. Then, it holds that:

τ(p) = 0, when p ∈ A and τ(f ) = τ(¬f );

τ(◦f ) ≤ τ(f ), when ◦ ∈ {©,3,2};
τ(◦f ) ≤ τ(f ) + 1, when ◦ ∈ { −©, ∼©, −3, −2};
τ(f ◦ g) ≤ max(τ(f ), τ(g)), when ◦ ∈ {∧,∨,U ,R};
τ(f ◦ g) ≤ max(τ(f ), τ(g)) + 1, when ◦ ∈ {S, T };

The PTH of a PTL formula is bounded by its structure
regardless of the particular path π.
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Borders and Intervals

We call

LB(n) , l + np the n-th left border of π,
RB(n) , k + np the n-th right border of π, and
the interval M(n) , [0,RB(n)) the n-th main domain of a
(k , l)-loop.

We call

LB(f ) , LB(τ(f )) the left border of f ,
RB(f ) , RB(τ(f )) the right border of f , and
M(f ) , M(τ(f )) the main domain of f .
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Borders and Intervals (cont.)

x =

time

0 1 2 3 4 5 2 3 4 5 2 3 4 5 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LB(0) = 2

RB(0) = 6

LB(1) = 6

RB(1) = 10
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Projection of Points

Let i ∈ N.

The projection of the point i in the n-th main domain of a
(k , l)-loop is ρn(i), defined as

ρn(i) ,

{
i i < RB(n)
ρn(i − p) otherwise

The projection of the point i onto the main domain of f is
defined as ρf (i) , ρτ(f )(i).
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Projection of Intervals

The projection of the interval [a, b) onto the main domain of f
is defined as ρf ([a, b)) , ρτ(f )([a, b)).

Lemma
For an open interval [a, b),

ρn([a, b)) =


∅ if a = b, else
[a, b) if b < RB(n), else
[min(a,LB(n)) ,RB(n)) if b − a ≥ p, else
[ρn(a), ρn(b)) if ρn(a) < ρn(b), else
[ρn(a),RB(n)) ∪ [LB(n), ρn(b))
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Extended Projection of Intervals

An extended intervals is of the form [a, b) where b is possibly
less than a (or even it is equal to ∞).

Let [a, b) be an extended interval.

The extended projection of [a, b) onto the n-th main domain of
a (k , l)-loop is defined as follows

ρ∗n([a, b)) ,


ρ∗n([a,max(a,RB(n)) + p)) b =∞
ρ∗n([a, b + p)) b < a
ρ∗n([a, b)) otherwise

As before, ρ∗f ([a, b)) , ρ∗τ(f )([a, b)).
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Equivalent Counterparts

Theorem

For

any PTL formula f ,

any (k , l)-loop π, and

any extended interval [a, b),

a point i ∈ [a, b) such that (π, i) |= f exists iff a point i ′ ∈ ρ∗f ([a, b))
exists such that (π, i ′) |= f .

Yih-Kuen Tsay (IM.NTU) Bounded Model Checking Automatic Verification 2015 46 / 49



Extend the Translation with Loops

The translation of a PTL formula on a (k , l)-loop π at time
point i (with k , l , i ∈ N and 0 ≤ l < k) is a propositional
formula inductively defined as follows.

l [[p]]ik , pρ0(i)

l [[ 6= p]]ik , 6= pρ0(i)

l [[f ∧ g ]]ik , l [[f ]]
ρf (i)
k ∧ l [[g ]]

ρg (i)
k

l [[f ∨ g ]]ik , l [[f ]]
ρf (i)
k ∨ l [[g ]]

ρg (i)
k
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Extend the Translation with Loops (cont.)

l [[3f ]]ik ,
∨

j∈ρ∗f ([i ,∞)) l [[f ]]jk

l [[2f ]]ik ,
∧

j∈ρ∗f ([i ,∞)) l [[f ]]jk

l [[f U g ]]ik ,
∨

j∈ρ∗g ([i ,∞))(l [[g ]]jk ∧
∧

n∈ρ∗f ([i ,j)) l [[f ]]nk)

l [[f R g ]]ik ,
∧

j∈ρ∗g ([i ,∞))(l [[g ]]jk ∨
∨

n∈ρ∗f ([i ,j)) l [[f ]]nk)

l [[ −©f ]]ik , i > 0 ∧ l [[f ]]
ρf (i−1)
k

l [[ ∼©f ]]ik , i = 0 ∨ l [[f ]]
ρf (i−1)
k

l [[ −3f ]]ik ,
∨

j∈ρ∗f ([0,i ]) l [[f ]]jk

l [[ −2f ]]ik ,
∧

j∈ρ∗f ([0,i ]) l [[f ]]jk

l [[f S g ]]ik ,
∨

j∈ρ∗g ([0,i ])(l [[g ]]jk ∧
∧

n∈ρ∗f ((j ,i ]) l [[f ]]nk)

l [[f T g ]]ik ,
∧

j∈ρ∗g ([0,i ])(l [[g ]]jk ∨
∨

n∈ρ∗f ((j ,i ]) l [[f ]]nk)
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Correctness of the Translation

Theorem

For any PTL formula f , a (k , l)-loop path π in M such that π |= f
exists iff [[M]]k ∧ lLk ∧ l [[f ]]0

k is satisfiable.
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