
Automata-Theoretic Approach
to Model Checking

(Based on [Clarke et al. 1999] and [Holzmann 2003])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 1 / 44

Outline

Büchi and Generalized Büchi Automata

Automata-Based Model Checking

Intersection

Emptiness Test

LTL to Büchi Automata

Basic Practical Details
Parallel Compositions
On-the-Fly State Exploration
Fairness

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 2 / 44

Büchi Automata

The simplest computation model for finite behaviors is the finite
state automaton, which accepts finite words.

The simplest computation model for infinite behaviors is the
ω-automaton, which accepts infinite words.

Both have the same syntactic structure.

Model checking traditionally deals with non-terminating systems.

Infinite words conveniently represent the infinite behaviors
exhibited by a non-terminating system.

Büchi automata are the simplest kind of ω-automata.

They were first proposed and studied by J.R. Büchi in the early
1960’s, to devise decision procedures for the logic S1S.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 3 / 44

Büchi Automata (cont.)

A Büchi automaton (BA) has the same structure as a finite state
automaton (FA) and is also given by a 5-tuple (Σ,Q,∆, q0,F):

1. Σ is a finite set of symbols (the alphabet),
2. Q is a finite set of states,
3. ∆ ⊆ Q × Σ× Q is the transition relation,
4. q0 ∈ Q is the start (or initial) state (sometimes we allow

multiple start states, indicated by Q0 or Q0), and
5. F ⊆ Q is the set of accepting (final in FA) states.

Let B = (Σ,Q,∆, q0,F) be a BA and w = w1w2 . . .wiwi+1 . . .
be an infinite string (or word) over Σ.

A run of B over w is a sequence of states
r0, r1, r2, . . . , ri , ri+1, . . . such that

1. r0 = q0 and
2. (ri ,wi+1, ri+1) ∈ ∆ for i ≥ 0.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 4 / 44

Büchi Automata (cont.)

Let inf (ρ) denote the set of states occurring infinitely many
times in a run ρ.

A run ρ is accepting if it satisfies the following condition:

inf (ρ) ∩ F 6= ∅.

An infinite word w ∈ Σω is accepted by a BA B if there exists
an accepting run of B over w .

The language recognized by B (or the language of B), denoted
L(B), is the set of all words accepted by B .

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 5 / 44

An Example Büchi Automaton

a

b

b

a

q0 q1

This Büchi automaton accepts infinite words over {a, b} that
have infinitely many a’s.

Using an ω-regular expression, its language is expressed as
(b∗a)ω.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 6 / 44

Closure Properties

A class of languages is closed under intersection if the
intersection of any two languages in the class remains in the
class.

Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed
under intersection and complementation (and hence all boolean
operations).

Note: the theorem would not hold if we were restricted to
deterministic Büchi automata, unlike in the classic case.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 7 / 44

Generalized Büchi Automata

A generalized Büchi automaton (GBA) has an acceptance
component of the form F = {F1,F2, · · · ,Fn} ⊆ 2Q .

A run ρ of a GBA is accepting if for each Fi ∈ F ,
inf (ρ) ∩ Fi 6= ∅.
GBA’s naturally arise in the modeling of finite-state concurrent
systems with fairness constraints.

They are also a convenient intermediate representation in the
translation from a linear temporal formula to an equivalent BA.

There is a simple translation from a GBA to a Büchi automaton,
as shown next.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 8 / 44

GBA to BA

Let B = (Σ,Q,∆, q0,F), where F = {F1, · · · ,Fn}, be a GBA.

Construct B ′ = (Σ,Q × {0, · · · , n},∆′, 〈q0, 0〉,Q × {n}).

The transition relation ∆′ is constructed such that
(〈q, x〉, a, 〈q′, y〉) ∈ ∆′ when (q, a, q′) ∈ ∆ and x and y are
defined according to the following rules:

If q′ ∈ Fi and x = i − 1, then y = i .
If x = n, then y = 0.
Otherwise, y = x .

Claim: L(B ′) = L(B).

Theorem

For every GBA B , there is an equivalent BA B ′ such that
L(B ′) = L(B).

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 9 / 44

Model Checking Using Automata

Kripke structures are the most commonly used model for
concurrent and reactive systems in model checking.

Let AP be a set of atomic propositions.

A Kripke structure M over AP is a four-tuple M = (S ,R , S0, L):

1. S is a finite set of states.
2. R ⊆ S × S is a transition relation that must be total, that is,

for every state s ∈ S there is a state s ′ ∈ S such that R(s, s ′).
3. S0 ⊆ S is the set of initial states.
4. L : S → 2AP is a function that labels each state with the set of

atomic propositions true in that state.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 10 / 44

Model Checking Using Automata (cont.)

Finite automata can be used to model concurrent and reactive
systems as well.

One of the main advantages of using automata for model
checking is that both the modeled system and the specification
are represented in the same way.

A Kripke structure directly corresponds to a Büchi automaton,
where all the states are accepting.

A Kripke structure (S ,R , S0, L) can be transformed into an
automaton A = (Σ, S ∪ {ι},∆, ι, S ∪ {ι}) with Σ = 2AP where

(s, α, s ′) ∈ ∆ for s, s ′ ∈ S iff (s, s ′) ∈ R and α = L(s ′) and
(ι, α, s) ∈ ∆ iff s ∈ S0 and α = L(s).

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 11 / 44

Model Checking Using Automata (cont.)

The given system is modeled as a Büchi automaton A.

Suppose the desired property is originally given by a linear
temporal formula f .

Let Bf (resp. B¬f) denote a Büchi automaton equivalent to f
(resp. ¬f); we will later study how a temporal formula can be
translated into an automaton.

The model checking problem A |= f is equivalent to asking
whether

L(A) ⊆ L(Bf) or L(A) ∩ L(B¬f) = ∅.

The well-used model checker SPIN, for example, adopts this
automata-theoretic approach.

So, we are left with two basic problems:

Compute the intersection of two Büchi automata.
Test the emptiness of the resulting automaton.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 12 / 44

Intersection of Büchi Automata

Let B1 = (Σ,Q1,∆1,Q
0
1 ,F1) and B2 = (Σ,Q2,∆2,Q

0
2 ,F2).

We can build an automaton for L(B1) ∩ L(B2) as follows.

B1∩B2 = (Σ,Q1×Q2×{0, 1, 2},∆,Q0
1×Q0

2×{0},Q1×Q2×{2}).

We have (〈r , q, x〉, a, 〈r ′, q′, y〉) ∈ ∆ iff the following conditions
hold:

(r , a, r ′) ∈ ∆1 and (q, a, q′) ∈ ∆2.
The third component is affected by the accepting conditions of
B1 and B2.

If x = 0 and r ′ ∈ F1, then y = 1.
If x = 1 and q′ ∈ F2, then y = 2.
If x = 2, then y = 0.
Otherwise, y = x .

The third component is responsible for guaranteeing that
accepting states from both B1 and B2 appear infinitely often.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 13 / 44

Intersection of Büchi Automata (cont.)

A simpler intersection may be obtained when all of the states of
one of the automata are accepting.

Assuming all states of B1 are accepting and that the acceptance
set of B2 is F2, their intersection can be defined as follows:

B1 ∩ B2 = (Σ,Q1 × Q2,∆
′,Q0

1 × Q0
2 ,Q1 × F2)

where (〈r , q〉, a, 〈r ′, q′〉) ∈ ∆′ iff (r , a, r ′) ∈ ∆1 and
(q, a, q′) ∈ ∆2.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 14 / 44

Checking Emptiness

Let ρ be an accepting run of a Büchi automaton
B = (Σ,Q,∆,Q0,F).

Then, ρ contains infinitely many accepting states from F .

Since Q is finite, there is some suffix ρ′ of ρ such that every
state on it appears infinitely many times.

Each state on ρ′ is reachable from any other state on ρ′.

Hence, the states in ρ′ are included in a strongly connected
component.

This component is reachable from an initial state and contains
an accepting state.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 15 / 44

Checking Emptiness (cont.)

Conversely, any strongly connected component that is reachable
from an initial state and contains an accepting state generates
an accepting run of the automaton.

Thus, checking nonemptiness of L(B) is equivalent to finding a
strongly connected component that is reachable from an initial
state and contains an accepting state.

That is, the language L(B) is nonempty iff there is a reachable
accepting state with a cycle back to itself.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 16 / 44

Double DFS Algorithm

procedure emptiness
for all q0 ∈ Q0 do

dfs1(q0);
terminate(True);

end procedure

procedure dfs1(q)
local q′;
hash(q);
for all successors q′ of q do

if q′ not in the hash table then dfs1(q′);
if accept(q) then dfs2(q);

end procedure

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 17 / 44

Double DFS Algorithm (cont.)

procedure dfs2(q)
local q′;
flag(q);
for all successors q′ of q do

if q′ on dfs1 stack then terminate(False);
else if q′ not flagged then dfs2(q′);
end if;

end procedure

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 18 / 44

Correctness

Lemma

Let q be a node that does not appear on any cycle. Then the DFS
algorithm will backtrack from q only after all the nodes that are
reachable from q have been explored and backtracked from.

This lemma still holds for the first DFS in the double DFS algorithm.

Theorem

The double DFS algorithm returns a counterexample for the
emptiness of the checked automaton B exactly when the language
L(B) is not empty.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 19 / 44

Correctness (cont.)

Suppose a second DFS is started from a state q and there is a
path from q to some state p on the search stack of the first DFS.

There are two cases:

There exists a path from q to a state on the search stack of the
first DFS that contains only unflagged nodes when the second
DFS is started from q.
On every path from q to a state on the search stack of the first
DFS, there exists a state r that is already flagged.

The algorithm will find a cycle in the first case.

We show next that the second case is impossible.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 20 / 44

Correctness (cont.)

Suppose the contrary: on every path from q to a state on the
search stack of the first DFS, there exists a state r that is
already flagged.

Then there is an accepting state from which a second DFS
starts but fails to find a cycle even though one exists.

Let q be the first such state.

Let r be the first flagged state that is reached from q during the
second DFS and is on a cycle through q.

Let q′ be the accepting state that starts the second DFS in
which r was first encountered.

Thus, according to our assumptions, a second DFS was started
from q′ before a second DFS was started from q.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 21 / 44

Correctness (cont.)

Case 1: the state q′ is reachable from q.

There is a cycle q′ → · · · → r → · · · → q → · · · → q′.
This cycle could not have been found previously; otherwise, the
algorithm would have terminated.
This contradicts our assumption that q is the first accepting
state from which the second DFS missed a cycle.

Case 2: the state q′ is not reachable from q.

q′ cannot appear on a cycle; otherwise, q would not be the first
node to start the second DFS and miss a cycle.
q is reachable from r and q′.
If q′ does not occur on a cycle, by the lemma we must have
backtracked from q in the first DFS before from q′.
This contradicts our assumption about the order of doing the
second DFS.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 22 / 44

Temporal Formula vs. Büchi Automaton

~q

q

~p

p ~q

q

s0 s1

The above Büchi automaton says that, whenever p holds at
some point in time, q must hold at the same time or will hold at
a later time.
Note: the alphabet is {pq, p∼q, ∼pq, ∼p∼q}; q alone denotes any
input symbol from {pq, ∼pq}.
It may not be easy to see that this indeed is the case.

In linear temporal logic, this can easily be expressed as
G(p → Fq), which reads “always p implies eventually q”.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 23 / 44

LTL to Büchi Automata Translation

We will study a tableau-based algorithm [GPVW] for obtaining a
Büchi automaton from an LTL formula.

The algorithm is geared towards being used in model checking in
an on-the-fly fashion:
It is possible to detect that a property does not hold by only
constructing part of the model and of the automaton.

The algorithm can also be used to check the validity of a
temporal logic assertion.

To apply the translation algorithm, we first convert the formula
ϕ into the negation normal form.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 24 / 44

Preprocessing of Formulae

Every LTL formula can be converted into the negation normal form:

¬(p ∧ q) = (¬p) ∨ (¬q)

¬(p ∨ q) = (¬p) ∧ (¬q)

3p (or Fp) = True U p

2p (or Gp) = False R p

¬(p U q) = (¬p) R (¬q)

¬(p R q) = (¬p) U (¬q)

¬©p (or ¬Xp) = ©¬p

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 25 / 44

Data Structure of an Automaton Node

ID: a string that identifies the node.

Incoming : the incoming edges, represented by the IDs of the
nodes with an outgoing edge leading to this node.

New : a set of subformulae that must hold at this state and have
not yet been processed.

Old : the subformulae that must hold at this state and have
already been processed.

Next: the subformulae that must hold in all states that are
immediate successors of states satisfying the formulae in Old.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 26 / 44

The Algorithm: Start and Overview
Start with a single node having a single incoming edge labeled
init (i.e., from an initial node).
The starting node has initially one obligation in New, namely ϕ,
and Old and Next are initially empty.
Expand the starting node (which generates new nodes) in an
DFS manner.
Fully processed nodes are put in a list called Nodes.

function create graph(ϕ)
expand([ID ← new ID(),

Incoming ← {init},
Old ← ∅,
New ← {ϕ},
Next ← ∅],

∅);
end function

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 27 / 44

The Algorithm: Node-Expansion
Check if there are unprocessed obligations in New of the current
node N .
If New is empty, it means node N is fully processed and ready to
be added to Nodes.
Otherwise, a formula in New is selected, processed, and moved
to Old .

function expand(q,Nodes)
if New(q) = ∅ then

if ∃r ∈ Nodes : Old(r) = Old(q) ∧ Next(r) = Next(q) then
. . .

else . . .
else let η ∈ New(q);

New(q) := New(q)− η;
. . .

end function

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 28 / 44

The Algorithm: Node-Expansion (cont.)

/* in function expand */
if New(q) = ∅ then

if ∃r ∈ Nodes : Old(r) = Old(q) ∧ Next(r) = Next(q) then
Incoming(r) := Incoming(r) ∪ Incoming(q);
return(Nodes);

else expand([ID ← new ID(),
Incoming ← {ID(q)},
Old ← ∅,
New ← Next(q),
Next ← ∅], Nodes ∪ {q});

end if
else let η ∈ New(q);

New(q) := New(q)− η;
if η ∈ Old(q) then expand(q,Nodes);
else . . . /* cases according to the form of η */

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 29 / 44

The Algorithm: Updating the Nodes List

A fully processed current node N is added to Nodes as follows:

If there already is a node in Nodes with the same obligations in
both its Old and Next fields, the incoming edges of N are
incorporated into those of the existing node.

Otherwise, the current node N is added to Nodes.

With the addition of node N in Nodes, a new current node is
formed for its successor as follows:

1. There is initially one edge from N to the new node.
2. New is set initially to the Next field of N.
3. Old and Next of the new node are initially empty.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 30 / 44

The Algorithm: Node-Expansion (cont.)

A formula η in New is processed as follows:

If η is just a literal (a proposition or the negation of a
proposition), then

if ¬η is in Old, the current node is discarded;
otherwise, η is added to Old .

If η is not a literal, the current node can be split into two or not
split, and new formulae can be added to the fields New and
Next.

The exact actions depend on the form of η.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 31 / 44

The Algorithm: Node-Expansion (cont.)

case η of
p ∧ q: q′ := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p, q},
Next ← Next(q)];

expand(q′,Nodes);
p ∨ q: . . .
p U q: . . .
p R q: . . .
©p: . . .

end case

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 32 / 44

The Algorithm: Node-Expansion (cont.)

Actions on η (that is not a literal):

η = p ∧ q, then both p and q are added to New .

η = p ∨ q, then the node is split, adding p to New of one copy,
and q to the other.

η = p U q (∼= q ∨ (p ∧ ©(p U q))), then the node is split.
For the first copy, p is added to New and p U q to Next.
For the other copy, q is added to New .

η = p R q (∼= (p ∧ q) ∨ (q ∧ ©(p R q))), similar to U .

η = ©p, then p is added to Next.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 33 / 44

The Algorithm: Handling U
case η of

. . .
p U q: q1 := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p},
Next ← Next(q) ∪ {p U q}];

q2 := [ID ← new ID(),
Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {q},
Next ← Next(q)];

expand(q2, expand(q1,Nodes));
. . .

end case

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 34 / 44

The Algorithm: Handling R
case η of

. . .
p R q: q1 := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {q},
Next ← Next(q) ∪ {p R q}];

q2 := [ID ← new ID(),
Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p, q},
Next ← Next(q)];

expand(q2, expand(q1,Nodes));
. . .

end case

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 35 / 44

Nodes to GBA

The list of nodes in Nodes can now be converted into a generalized
Büchi automaton B = (Σ,Q, q0,∆,F):

1. Σ consists of sets of propositions from AP .

2. The set of states Q includes the nodes in Nodes and the
additional initial state q0.

3. (r , α, r ′) ∈ ∆ iff r ∈ Incoming(r ′) and α satisfies the
conjunction of the negated and nonnegated propositions in
Old(r ′)

4. q0 is the initial state, playing the role of init.

5. F contains a separate set Fi of states for each subformula of the
form p U q; Fi contains all the states r such that either
q ∈ Old(r) or p U q 6∈ Old(r).

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 36 / 44

Basic Practical Details

We now have the essential automata-based theory for model
checking, but we still need to pay attention to a few more basic
practical details.

Many systems are more naturally represented as the parallel
composition of several concurrently executing processes, rather
than as a monolithic chunk of code.

There are also concerns with the size of the system and the gap
between the computation model and a concurrent system
running on real hardware.

Specifically, we will look into

asynchronous products of automata,
on-the-fly state exploration, and
fairness (in the computation model).

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 37 / 44

Processes as Automata

#define N 4

int x = N;

active proctype A0()

{

do

:: x%2 -> x = 3*x + 1

od

}

active proctype A1()

{

do

:: !(x%2) -> x = x/2

od

}

A:

s0

s1

x%2 x = 3x + 1

A′:

s ′0

s ′1

!(x%2) x = x/2

The transition labeled “x%2”
is enabled if x%2 6= 0, i.e., if
x is odd; “!(x%2)” is enabled
if x is even.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 38 / 44

Interleaving as Asynchronous Product

A:

s0

s1

x%2 x = 3x + 1 A′:

s ′0

s ′1

!(x%2) x = x/2

A× A′:

s0, s
′
0

s1, s
′
0

s0, s
′
1

s1, s
′
1

x%2

!(x%2)

x = 3x + 1

!(x%2)

x = x/2

x%2

x = x/2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 39 / 44

Expanded Asynchronous Product

A0× A1:

s0, s′0

s1, s′0

s0, s′1

s1, s′1

x%2

!(x%2)

x = 3x + 1

!(x%2)

x = x/2

x%2

x = x/2

x = 3x + 1

With x = 4 initially, we have a concrete finite-state automaton:

s0, s′0
x =4

s0, s′1
x =4

s0, s′0
x =2

s0, s′1
x =2

s0, s′0
x =1

s1, s′0
x =1!(x%2) x =x/2 !(x%2) x =x/2 x%2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 40 / 44

Specification as a Büchi Automaton

/* N was defined to be 4 */

#define p (x < N)

never { /* <>[]p */

T0_init:

if

:: p -> goto accept_S4

:: true -> goto T0_init

fi;

accept_S4:

if

:: p -> goto accept_S4

fi;

}

B :

q0

q1

True

x < 4

x < 4

Automaton B is equiv-
alent to the “never
claim”, which specifies
all the bad behaviors.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 41 / 44

Synchronous Product

s0, s
′
0

x = 4
s0, s

′
1

x = 4
s0, s

′
0

x = 2
s0, s

′
1

x = 2
s0, s

′
0

x = 1
s1, s

′
0

x = 1!(x%2) x =x/2 !(x%2) x =x/2 x%2

x = 3x + 1

⊗
q0

q1

True

x < 4

x < 4

s0, s′0
4, q0

s0, s′1
4, q0

s0, s′0
2, q0

s0, s′1
2, q0

s0, s′0
1, q0

s1, s′0
1, q0

s0, s′0
4, q1

s0, s′1
2, q1

s0, s′0
1, q1

s1, s′0
1, q1

!(x%2) x =x/2 !(x%2) x =x/2 x%2

x = 3x + 1

!(x%2) x =x/2 x%2

x =x/2 x%2

x = 3x + 1

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 42 / 44

On-the-Fly State Exploration

The automaton of the system under verification may be too
large to fit into the memory.

Using the double DFS search for a counterexample, the system
(the asynchronous product automaton) need not be expanded
fully.

All we need to do are the following:

Keep track of the current active search path.
Compute the successor states of the current state.
Remember (by hashing) states that have been visited.

This avoids construction of the entire system automaton and is
referred to as on-the-fly state exploration.

The search can stop as soon as a counterexample is found.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 43 / 44

Fairness

A concurrent system is composed of several concurrently
executing processes.

Any process that can execute a statement should eventually
proceed with that instruction, reflecting the very basic fact that
a normal functioning processor has a positive speed.

This is the well-known notion of weak fairness, which is
practically the most important kind of fairness.

Such fairness may be enforced in one of the following two ways:

When searching for a counterexample, make sure that every
process gets a chance to execute its next statement.
Encode the fairness constraint in the specification automaton.

Yih-Kuen Tsay (IM.NTU) Automata-Theoretic Approach Automatic Verification 2019 44 / 44

	Büchi and Generalized Büchi Automata
	Automata-Based Model Checking
	Intersection
	Emptiness Test
	LTL to Büchi Automata
	Basic Practical Details
	Parallel Compositions
	On-the-Fly State Exploration
	Fairness

