

Compositional Reasoning

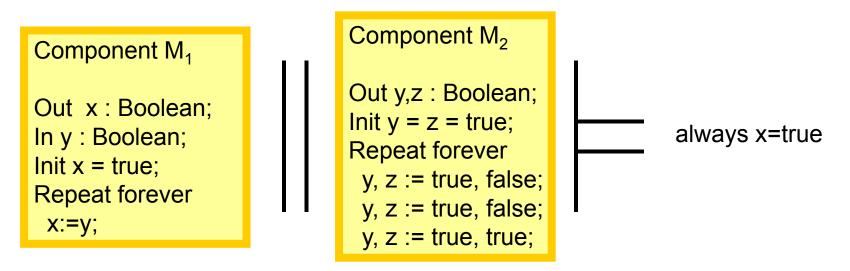
Yih-Kuen Tsay (original created by Yu-Fang Chen) Dept. of Information Management National Taiwan University

Yih-Kuen Tsay

SVVRL 🛞 IM.NTU

Verification of Parallel Compositions

- Verification Task: verify if the system composed of components M_1 and M_2 satisfies a property P, i.e., $M_1 || M_2 \models P$.
- M_1 and M_2 may rely on each other to satisfy P.

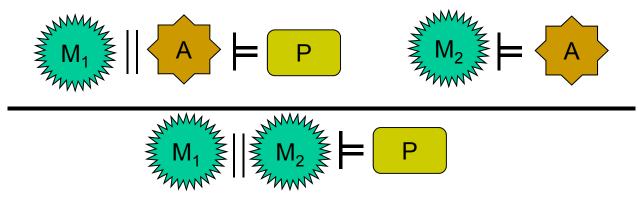


 M_1 alone does not guarantee "always x = true"!

• Can the construction of $M_1 || M_2$ be avoided?

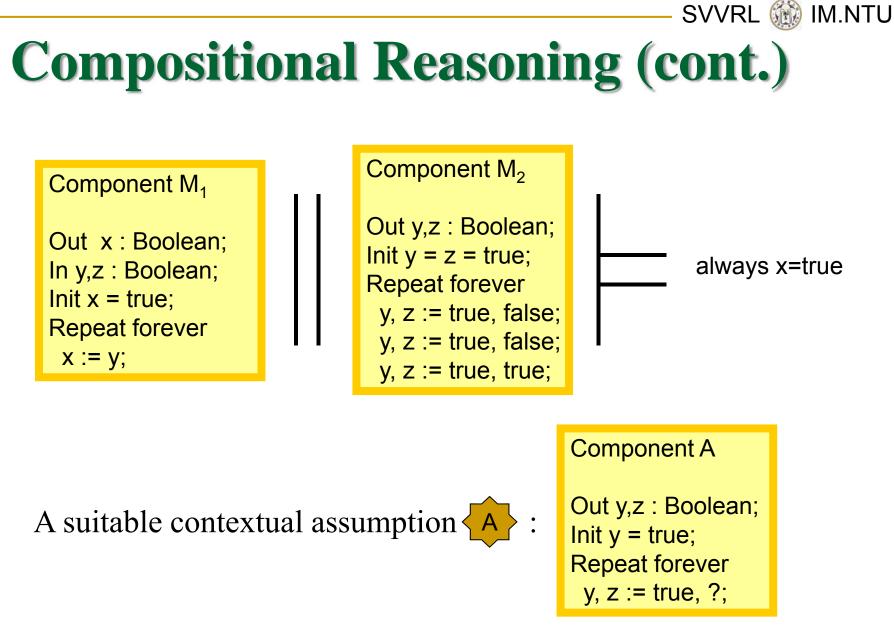
Compositional Reasoning

An Assume-Guarantee (A-G) rule:



If a small *contextual assumption* A (an abstraction of M₂) exists, then the overall verification task may become easier.

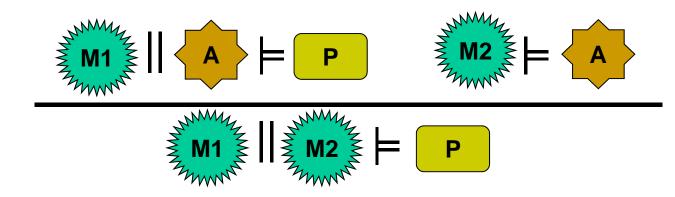
• It is possible when M_1 , M_2 , A, and P are finite automata.



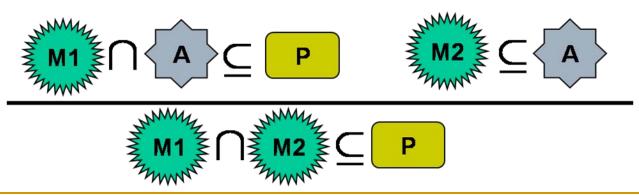
Component A has fewer states (automaton locations) than M_2 .

Automatic Verification 2019: Compositional Reasoning

Setting the Stage



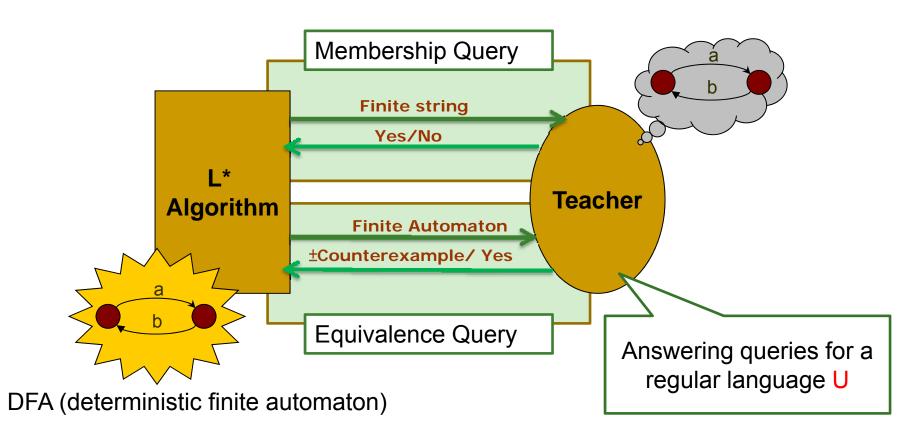
The behaviors of components and properties are described as regular languages.
Parallel composition is presented by the intersection of the languages.
A system satisfies a property if the language of the system is a subset of the language of the property.



Outline

- Learning-Based Compositional Model Checking:
 - Automation by Learning
 - □ The L* Algorithm
 - □ The Problem of L*-Based Approaches
- Learning Minimal Separating DFA's:
 - □ The L^{SEP} Algorithm
 - Comparison with Another Algorithm
 - Adapt L^{SEP} for Compositional Model Checking

Overview of the L* Algorithm



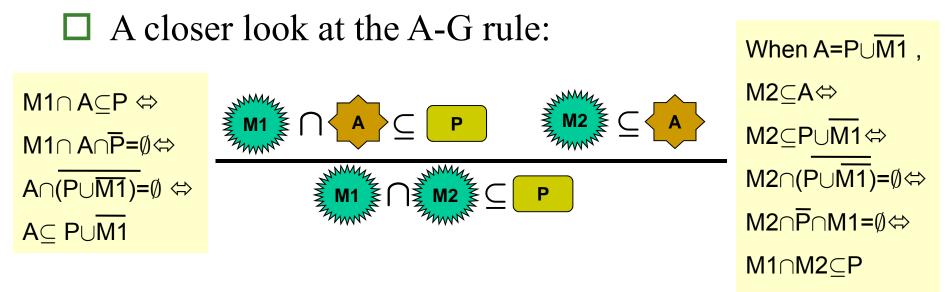
If such a teacher is provided, L^* guarantees to produce a DFA that recognizes U using a polynomial number of queries.

Automation by Learning

- First developed by Cobleigh, Giannakopoulou, and Păsăreanu [TACAS 2003]
- Apply the L* learning algorithm for regular languages to find an A for the A-G rule:

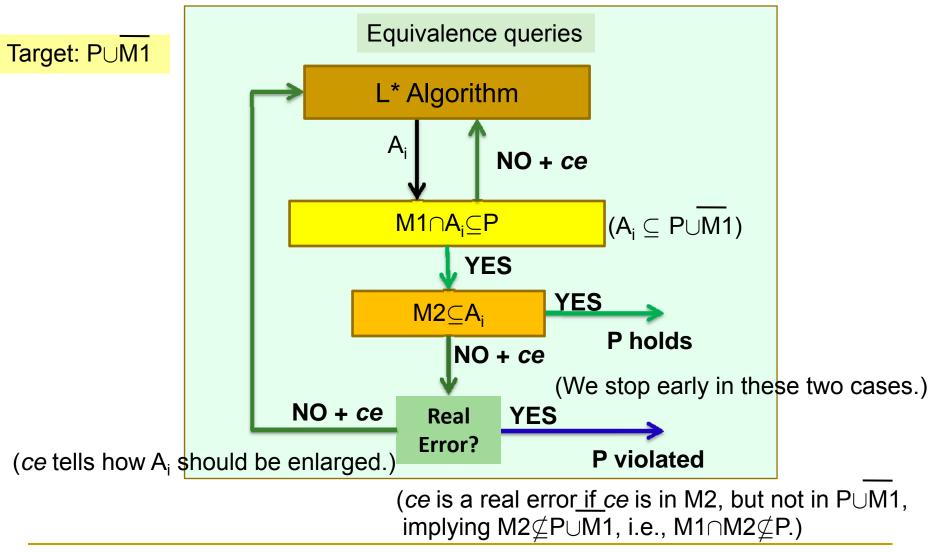
$$M_{1} = \bigcap_{u \in U} \bigcap_{u \in$$

Basic Understanding



- □ Conceptually, the target language is $P \cup M1$, the *weakest assumption* for the premise $M1 \cap A \subseteq P$.
- □ Actually reaching the target would be even worse than checking $M1 \cap M2 \subseteq P$ directly.
- \Box It really pays off when we can stop earlier ...

The Algorithm of Cobleigh et al.

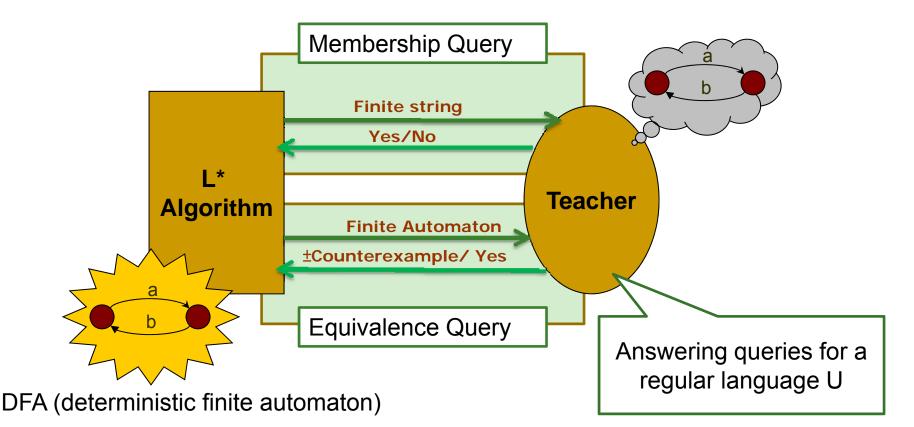


Automatic Verification 2019: Compositional Reasoning

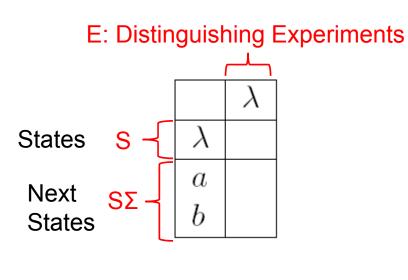
SVVRL 🛞 IM.NTU

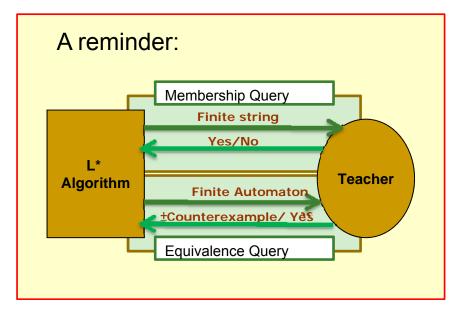
The L* Learning Algorithm

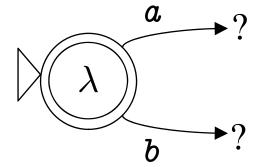
 Proposed by D. Angluin [Info.&Comp. 1987] and improved by Rivest and Schapire [Info.&Comp. 1993]



L*: Initial Setting

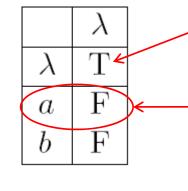






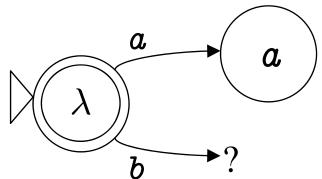
Target: (*ab*+*aab*)*

L*: Fill Up the Table by Membership Queries



- Fill up the table using **membership queries**.

a represents a new equivalence class, because its **row** is different from all of those in the current S set.

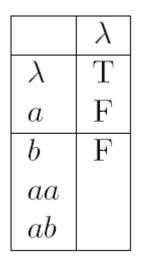


Target: (*ab*+*aab*)*

SVVRL 🛞 IM.NTU

L*: Table Expansion

Move *a* to the S set and expand the table with elements *aa* and *ab*.



Target: $(ab+aab)^*$

L*: A Closed Table

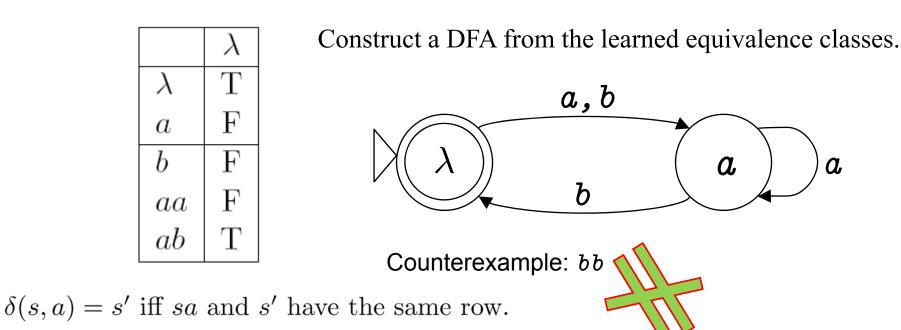


We say that the table is **closed** because every row in the S Σ set appears somewhere in the S set.

Target: $(ab+aab)^*$

a

L*: Making a Conjecture



A suffix b is extracted from bb as a valid distinguishing experiment

Target: $(ab+aab)^*$

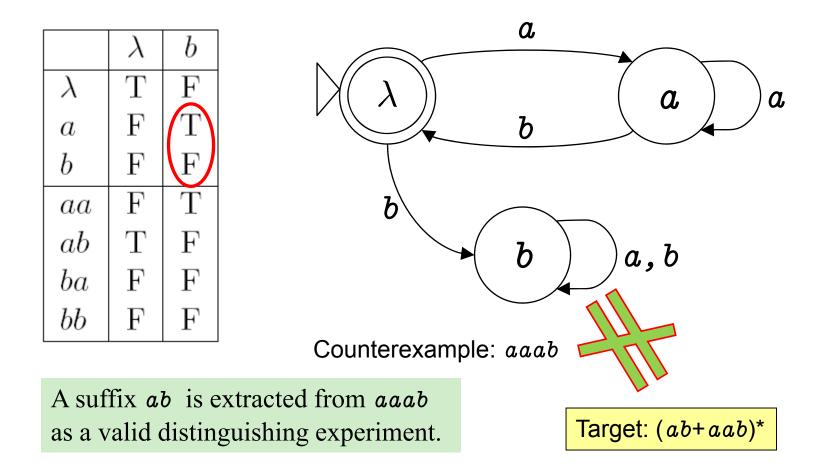
a

Theorem:

At least one suffix of the counterexample is a valid distinguishing experiment.

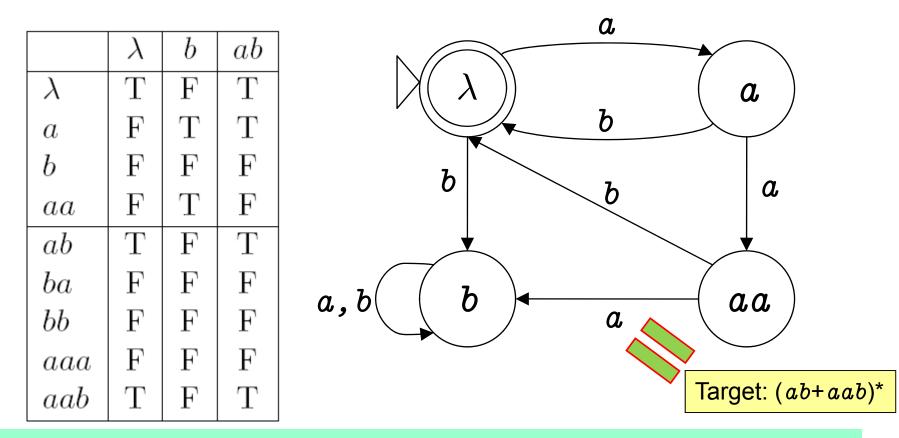
L*: 2nd Iteration

Add b to the E set, fill up and expand the table following the same procedure.



L*: 3rd Iteration (Completed)

Add *ab* to the E set, fill up and expand the table following the same procedure.



Theorem:

The DFA produced by L* is the minimal DFA that recognizes that target language.

Yih-Kuen Tsay

Automatic Verification 2019: Compositional Reasoning

SVVRL 🛞 IM.NTU

L*: Complexity

Complexity:

- Equivalence query: at most *n*
- Membership query: $O(|\Sigma|n^2 + n \log m)$

	λ	b	ab
λ	Т	F	Т
a	\mathbf{F}	Т	Т
b	\mathbf{F}	\mathbf{F}	\mathbf{F}
aa	F	Т	\mathbf{F}
ab	Т	F	Т
ba	\mathbf{F}	\mathbf{F}	\mathbf{F}
bb	\mathbf{F}	\mathbf{F}	\mathbf{F}
aaa	F	\mathbf{F}	\mathbf{F}
aab	Т	\mathbf{F}	Т

Note: n is the size of the minimal DFA that recognizes U, m is the length of the longest counterexample returned from the teacher.

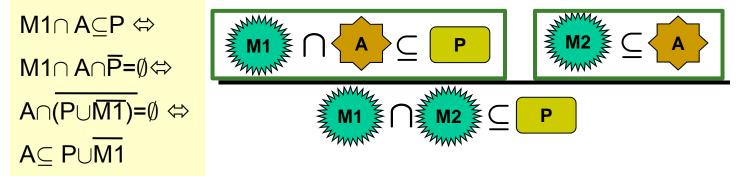
The Problem

□ The L*-based approaches cannot guarantee finding the **minimal assumption** (in size), even if there exists one.

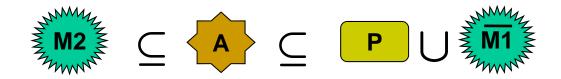
- The smaller the size of A is, the easier it is to check the correctness of the two premises.
- □ L* targets a single language, however, there exists a range of languages that satisfy the premises of an A-G rule.

Finding a Minimal Assumption

• A reminder: we use the following Assume-Guarantee rule for decomposition.



• The two premises can be rewritten as follows:



Finding a Minimal Assumption (cont.)

• To apply the A-G rule is to find an A satisfying the following constraint:

$$M2 = A \subseteq P \cup M1 = M1$$

- So, the problem of finding a minimal assumption for the A-G rule reduces to finding a minimal separating DFA that
 - accepts every string in M2 and
 - **rejects** every string not in $\mathbf{P} \cup \mathbf{M1}$.

First observed by Gupta, McMillan, and Fu

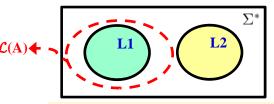
SVVRL 🛞 IM.NTU

Learning a Minimal Separating DFA

- Contribution of [Chen et al. TACAS 2009]: a polynomialquery learning algorithm, L^{Sep}, for minimal separating DFA's.
- Problem: given two disjoint regular languages L1 and L2, we want to find a minimal DFA A that satisfies

$$L1 \subseteq \mathcal{L}(A) \subseteq \overline{L2}$$

- **Assumption:** a teacher for L1 and L2:
 - Membership query: if a string **s** is in L1 (resp. L2)
 - Containment query: $?\subseteq L1$, $?\supseteq L1$, $?\subseteq L2$, and $?\supseteq L2$



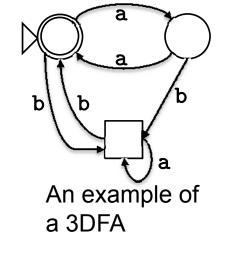
SVVRL

We say that **A** is a separating DFA for L1 and L2

IM.NTU

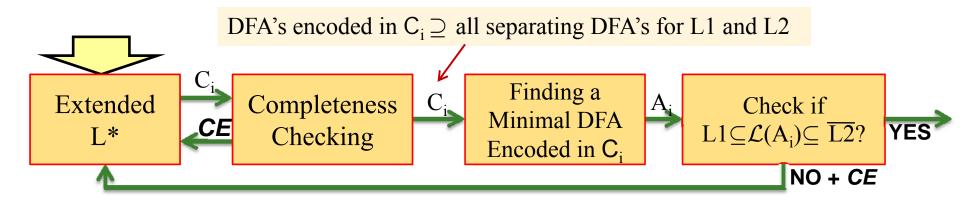
3-Value DFA (3DFA)

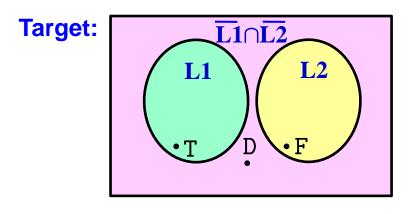
- A 3DFA is a tuple $C = (\Sigma, S, s_0, \delta, Acc, Rej, Dont).$
- A **DFA** *A* is **encoded in** a **3DFA** *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that C rejects.

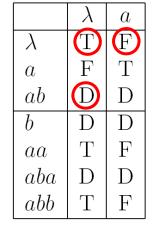


• A don't care string in C can be either accepted or rejected by A.

The L^{Sep} Algorithm: Overview







Extend the L* algorithm to allow don't care values.

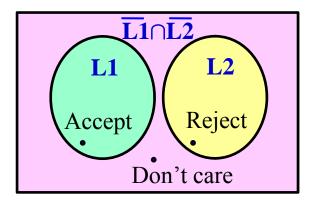
The Target 3DFA

The target 3DFA C

- accepts every string in L1, and
- **rejects** every string in **L2**.

DFA's encoded in C = all separating DFA's for L1 and L2

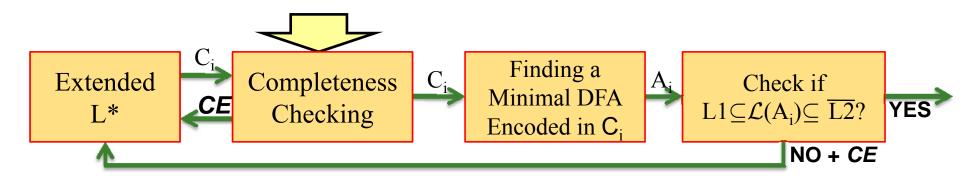
Strings in $\overline{\mathbf{L1}} \cap \overline{\mathbf{L2}}$ are **don't care** strings.



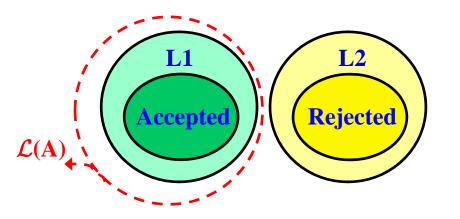
Definition:

- A **DFA** *A* is **encoded in** a **3DFA** *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that *C* rejects.
- A DFA A separates L1 and L2 iff A
 - accepts all strings in L1 and
 - rejects all strings in **L2**.

A minimal DFA encoded in *C* is a minimal separating DFA of L1 and L2.

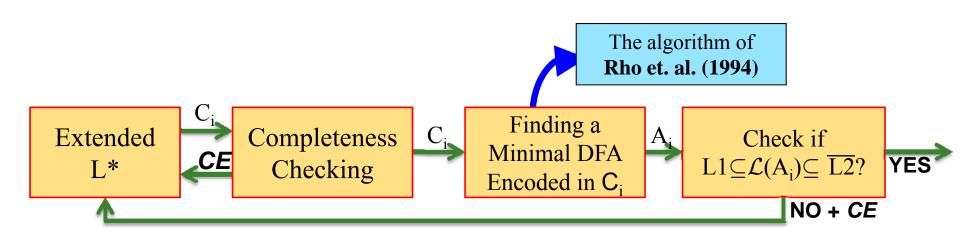


Check if all of the **separating** DFA's of L1 and L2 are **encoded** in C_i , which can be done by checking the following conditions:

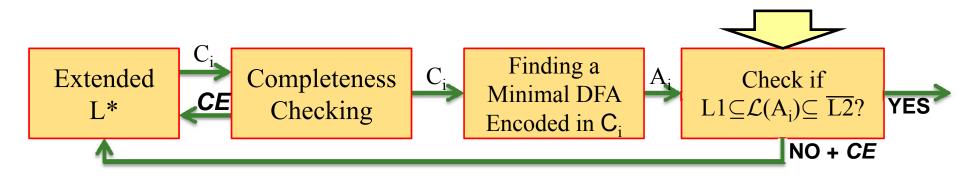


Definition:

- A DFA *A* is encoded in a 3DFA *C* iff *A*
 - accepts all strings that *C* accepts and
 - rejects all strings that *C* rejects.
- A **DFA** *A* **separates L1** and **L2** iff *A*
 - accepts all strings in **L1** and
 - rejects all strings in L2.



LEMMA: The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**_i.



If $L1 \subseteq \mathcal{L}(A_i) \subseteq \overline{L2}$: A_i is a minimal separating DFA.

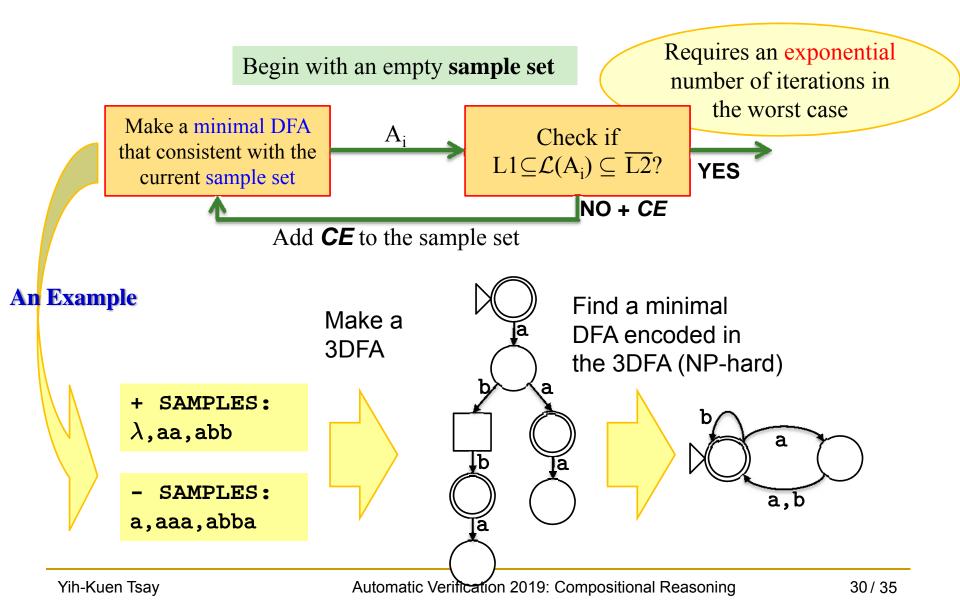
If $L1 \nsubseteq \mathcal{L}(A_i)$ or $\mathcal{L}(A_i) \nsubseteq \overline{L2}$:

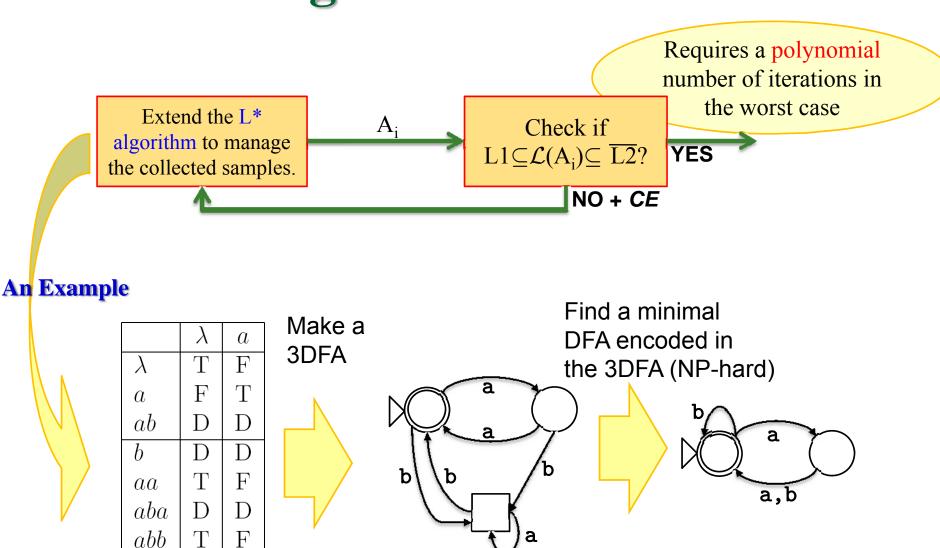
Counterexample CE is a witness for C_i not being the target 3DFA.

LEMMA:

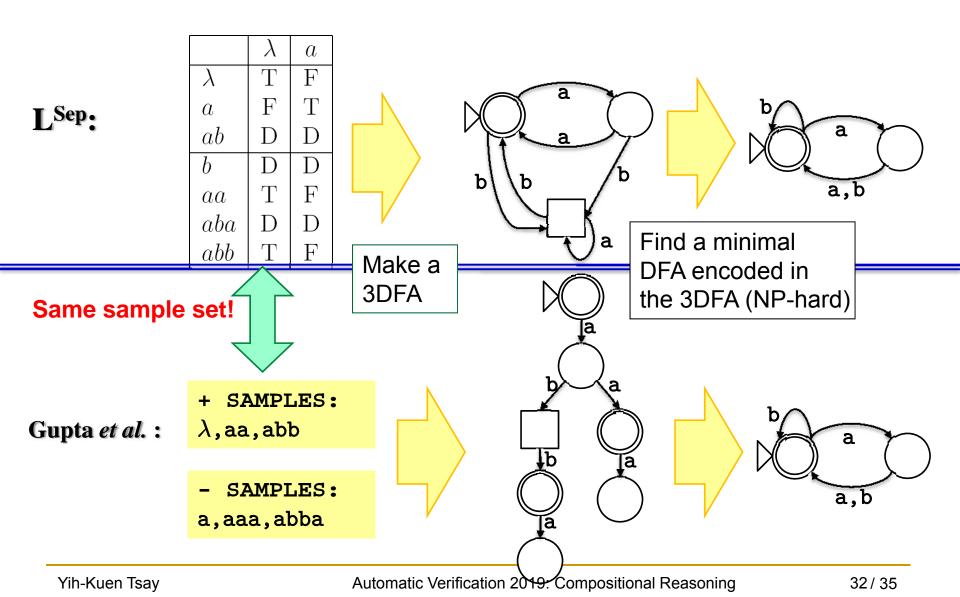
The size of **minimal separating DFA** of L1 and L2 \geq $|A_i|$, the size of the **minimal DFA encoded in C**_i.

The Algorithm of Gupta et al.





Comparing the Two Algorithms



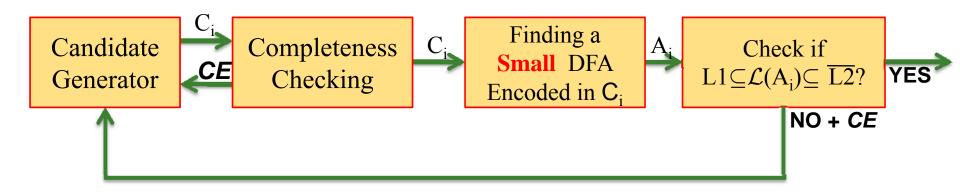
Adapt L^{Sep} for Compositional Verification

- Let L1 = M2 and $\overline{L2} = P \cup \overline{M1}$, use L^{Sep} to find a separating DFA for L1 and L2.
- When M2⊈P∪M1 (i.e., M1∩M2⊈P), L^{Sep} can be modified to guarantee finding a string in M2, but not in P∪M1(i.e., M1∩M2\P).

SVVRL 🗰 IM.NTU

Adapt L^{Sep} for Compositional Verification

Use heuristics to find a small consistent DFA:



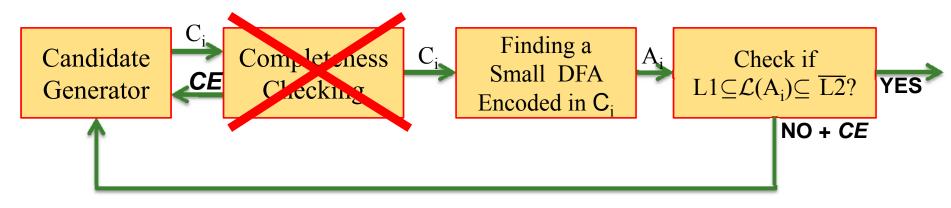
Minimality is no longer guaranteed!

Yih-Kuen Tsay

SVVRL 🕅 IM.NTU

Adapt L^{Sep} for Compositional Verification

Skip completeness checking:



Minimality is no longer guaranteed!

Yih-Kuen Tsay

SVVRL 🕅 IM.NTU