
Satisfiability Solving and Tools
Originally created by Chun-Nan Chou and Ko-Lung Yuan

Revised by Chiao Hsieh

Shao-Wei Chu

Graduate Institute of Electronics Engineering
National Taiwan University

Fall 2019

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 1 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 2 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 3 / 106

Boolean Satisfiability Problem(SAT Problem)

Given a Boolean formula, find a assignment such that the function
evaluates to 1, or prove that no such assignment exists (UNSAT).

EX. F = (a ∨ b) ∧ (ā ∨ b̄ ∨ c)
This function is SAT when a = 1, b = 1, c = 1
EX. F = (a) ∧ (ā ∨ b) ∧ (ā ∨ b̄)
This function is UNSAT

For n variables, there are 2n possible truth assignments to be checked.

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

First proved NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures,
Proceedings, Third Annual ACM Symp. on the Theory of Computing,
1971.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 4 / 106

Bolean Reasoning

The central idea in Boolean reasoning, first given by Boole, is to
reduce a given system of logical equations, and then to carry out the
desired reasoning on that equation.

e.g. Model checking A |= f : L(A) ∩ L(B¬f) = ∅
Fundamental tradeoff

canonical data structure (e.g. truth table, ROBDD)

data structure uniquely represents function
decision procedure is trivial(pointer comparison, DFS)
size of data structure is in general exponential

item non-canonical data structure (e.g. AIG, CNF)

size of data structure is in general linear
systematic search for for satisfying assignment
decision may take an exponential amount of time

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 5 / 106

Boolean Satisfiability Solvers

Boolean SAT solvers have been very successful recent years in the
verification area, due to various nice heuristics

Support up to 10k variables, much more scalable than BDDs
Applications: equivalence checking and model checking
Applicable even for million-gate designs in EDA

Popular SAT Solvers

MiniSat (2008 winner, the most popular one)
CryptoMiniSat (2011 winner)
glucose

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 6 / 106

Conjunctive Normal Form (CNF)

A Boolean formula is represented as a CNF (i.e. Product of Sum).

Linear structure for lots of variables and easy to add extra constraints

Literal is a variable or its negation.

CNF formula is a conjunction of clauses, where a clause is a
disjunction of literals.

For example:
(a ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c)

Variable: a, b, c in this CNF formula.
Literals: ā, b̄, c are literals in (ā ∨ b̄ ∨ c).
Clauses: (a ∨ b ∨ c), (ā ∨ b̄ ∨ c) are clauses in this CNF formula.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 7 / 106

The Timeline of the SAT Solver

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 8 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems
Davis-Putnam Algorithm
DPLL Algorithm
GRASP Algorithm
zChaff Algorithm

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 9 / 106

CNF-Based SAT Algorithms

Davis-Putnam (DP), 1960.

Explicit resolution based
May explode in memory

Davis-Putnam-Logemann-Loveland (DPLL), 1962.

Search based
Most successful, basis for almost all modern SAT solvers

GRASP, 1996

Conflict driven learning and non-chronological backtracking

zChaff, 2001.

Efficient Boolean constraint propagation (BCP) algorithm
(two watched literals)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 10 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems
Davis-Putnam Algorithm
DPLL Algorithm
GRASP Algorithm
zChaff Algorithm

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 11 / 106

Davis-Putnam Algorithm

M.Davis, H.Putnam, ”A computing procedure for quantification
theory” J. of ACM, 1960

By repeating three satisfiability-preserving rules:

Unit propagation rule
Pure literal rule
Resolution rule

eventually obtain:

⊥ ∈ F indicates UNSAT
F = > (a formula with no clauses indicates SAT)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 12 / 106

DP Algorithm

DP Pseudo Code

Function DP(F , A)
forever

if ⊥ ∈ F then

return UNSAT;

if F = > then

return SAT;

A ← Unit − Propagation(F , A);
A ← Pure − Literal(F , A);
A ← Resolution(F , A);

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 13 / 106

Unit Propagation Rule

Suppose (a) is a unit clause, i.e. a clause contains only one literal.

Remove any instances of ā from the formula.
Remove all clauses containing a.

Example:

(a) ∧ (ā ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄ ∨ d)
≈ (b ∨ c) ∧ (c̄ ∨ d)
(a) ∧ (a ∨ b) ≈ satisfiable
(a) ∧ (ā) ≈ () unsatisfiable

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 14 / 106

Pure Literal Rule

If a literal appears only positively or only negatively, delete all clauses
containing that literal.

Example:
(ā ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c) ∧ (b̄ ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄)
≈ (b̄ ∨ c ∨ d)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 15 / 106

Resolution Rule

For a single pair of clauses, (a ∨ l1 ∨ · · · ∨ lm) and (ā ∨ k1 ∨ · · · ∨ kn),
resolution on a forms the new clause (l1 ∨ · · · ∨ lm ∨ k1 ∨ · · · ∨ kn).

Example:
(a ∨ b) ∧ (ā ∨ c) ≈ (b ∨ c)

If a is True, then for the formula to be True, c must be True.
If a is False, then for the formula to be True, b must be True.
So regardless of a, for the formula to be True, b ∨ c must be True.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 16 / 106

Resolution Rule (cont.)

Choose a propositional variable p which occurs positively in at least
one clause and negatively in at least one other clause.

Let P be the set of all clauses in which p occurs positively.

Let N be the set of all clauses in which p occurs negatively.

Replace the clauses in P and N with those obtained by resolving each
clause in P with each clause in N.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 17 / 106

Example 1

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (c ∨ d) ∧ (ā ∨ c̄) ∧ (d)

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(a) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(c) ∧ (c̄)

()

KS
Unit Propagation Rule
��

%%
Resolution Rule

zz

KS
Unit Propagation Rule
��

��
Resolution Rule

��
Unsatisfiable

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 18 / 106

Example 2

Solve (a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

Wrong resolution:
(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄) Use resolution rule
≈ (b ∨ c) ∧ (b̄ ∨ c̄) Use resolution rule
≈ (c ∨ c̄) No rule can be used and no clause is empty!
≈ SAT → Wrong result!

We have to resolve each clause in P with each clause in N.

Correct resolution:

Choose a to do resolution
P = {(a ∨ b), (a ∨ b̄)}
N = {(ā ∨ c), (ā ∨ c̄)}
R = {(b ∨ c), (b ∨ c̄), (b̄ ∨ c), (b̄ ∨ c̄)}
(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)
≈ (b ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄) Replace P, N with R!
≈ ...

Potential memory explosion problem (n → n2/4)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 19 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems
Davis-Putnam Algorithm
DPLL Algorithm
GRASP Algorithm
zChaff Algorithm

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 20 / 106

DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving”, Communications of ACM, 1962. (New York
Univ.)

The basic framework for many modern SAT solvers.

Main strategy

Decision Making
Unit Clause Rule
Implication
Conflict Detection
Backtracking

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 21 / 106

DPLL Algorithm

DPLL Pseudo Code

Function DPLL(F, A)

A ← Unit − Propagation(F , A);
if A is inconsistent then

return UNSAT;

if A assigns a value to every variable then

return SAT;

v ← a variable not assigned a value by A;
if DPLL(F , A ∪ { v = False }) = SAT

return SAT;

else

return DPLL(F , A ∪ { v = True });

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 22 / 106

Boolean Constraint Propagation(a.k.a. Unit Propagation)

Iteratively apply the unit clause rule until there is no unit clause
available.

Unit clause rule

A rule for elimination of one-literal clauses
An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.
The only unassigned literal, e.g. c̄ , is implied.

Workhorse of DPLL based algorithms.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 23 / 106

Basic DPLL Procedure - DFS
Caution: The graph on the right is drawn for the purpose of lecture. It is
not seen in the algorithm implementation.

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 24 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a
0

⇐Decision
zz

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 25 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

0

⇐Decision
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 26 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

0
⇐Decision

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 27 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 28 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c ⇐ Backtrack

0

��

⊥
0
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 29 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1⇐Forced Decision
��

a = 0

c = 1

d = 1

d = 0

(a∨c̄∨d) //

$$(a∨c̄∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 30 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b ⇐ Backtrack

0

zz

c

0

��

⊥
0
��
⊥
1
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 31 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1⇐Forced Decision

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 32 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
⇐Decision��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 33 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c ⇐ Backtrack

1

��

⊥
0
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 34 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1⇐Forced Decision
��

a = 0

c = 1

d = 1

d = 0

(a∨c̄∨d) //

$$(a∨c̄∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 35 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a ⇐ Backtrack

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 36 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

1⇐Forced Decision
$$

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 37 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

0

⇐Decision
��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 38 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

⊥

0

��

a = 1

b = 0

c = 1

c = 0

(ā∨b∨c) //

$$(ā∨b∨c̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 39 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b ⇐ Backtrack

1

$$

⊥

0

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 40 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

⊥

0

��
1⇐Forced Decision

��

a = 1

b = 1

c = 1
(ā∨b̄∨c) //

::

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 41 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

⊥

0

��
1⇐Forced Decision

��

a = 1

b = 1

c = 1
(ā∨b̄∨c) //

::

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 42 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

⊥

0

��
1⇐Forced Decision

��

a = 1

b = 1

c = 1 d = 1
(ā∨b̄∨c) //

::
(b̄∨c̄∨d) //

44

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 43 / 106

Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

SAT

a

b

0

zz

c

0

��

⊥
0
��
⊥
1
��

c

1

��

⊥
0
��
⊥
1
��

b

1

$$

⊥

0

��
> ⇐ SAT

1

��

a = 1

b = 1

c = 1 d = 1
(ā∨b̄∨c) //

::
(b̄∨c̄∨d) //

44
ks

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 44 / 106

Features of DPLL

Eliminate the potential memory explosion of DP

Exponential time is still a problem

Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (about 1300 clauses)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 45 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems
Davis-Putnam Algorithm
DPLL Algorithm
GRASP Algorithm
zChaff Algorithm

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 46 / 106

GRASP

Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)

J. P. Marques-Silva and K. A. Sakallah, ”GRASP – A New Search
Algorithm for Satisfiability”, Proc.ICCAD, 1996.
J. P. Marques-Silva and Karem A. Sakallah, ”GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Trans. Computers,
1999.

Incorporate conflict driven learning and non-chronological
backtracking.

Practical SAT problem instances can be solved in reasonable time.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 47 / 106

SAT Improvements

Conflict driven learning

Once we encounter a conflict, figure out the cause(s) of this conflict
and prevent to see this conflict again.
Add learned clause (conflict clause) which is the negative proposition of
the conflict source.

Non-chronological backtracking

After getting a learned clause from the conflict analysis, we backtrack
to the “next-to-the-last” variable in the learned clause.
Instead of backtracking one decision at a time.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 48 / 106

Conflict Driven Learning

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 49 / 106

Conflict Driven Learning

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c) Learned clause

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 50 / 106

Non-Chronological Backtracking
(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c) Learned clause

a

b

0

zz

c

0

��

⊥
0
��

⇐ Backtrack

‘a’ is the next-to-the-last variable in the (current) learned clause.
c is the last (assigned) variable in this learned clause so a is called the
next-to-the-last variable
Because of this learned clause, when a is assigned 0 then c will be
implied and we don’t have to make decision for c

After doing non-chronological backtracking, we will not forgive the
path a = 0, b = 0... if needed.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 51 / 106

Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

Conflict source

a
0

zz

a = 0 c = 1

d = 1

d = 0

(a∨c) //

a∨c̄∨d
++

a∨c̄∨d̄ 33

44

**

KS

Conflict

��

+3

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 52 / 106

Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a) Learned clause

Since there is only one variable in the learned clause, no one is the
next-to-the-last variable.

Backtrack all decisions

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 53 / 106

Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a)

Conflict source

b
0

⇐Decision
zz

a = 1

b = 0

c = 1

c = 0

(ā∨b∨c) //

$$(ā∨b∨c̄) //

:: KS

Conflict

�� (

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 54 / 106

Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a)

(b) Learned clause

SATa = 1

b = 1

c = 1 d = 1
(ā∨b̄∨c) //

::
(b̄∨c̄∨d) //

44
ks

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 55 / 106

More on Implication Graph

How to determine the conflict source?

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 56 / 106

More on Implication Graph (cont.)

How to determine the conflict source?

We need to find a Cut on the Implication Graph, such that every path
from the decision nodes to the conflict nodes must pass through it.

Decision nodes are the variables assigned to value in each decision
process
Implication nodes are the variables assigned to value by implication
Conflict nodes are where the conflict shows up

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 57 / 106

More on Implication Graph(cont.)

Take all decision nodes to form a cut (technique used by Rel Sat, [R.
Bayardo R. Shrag, 1997])

In this case, the cut consists of a=0 c=0.

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 58 / 106

Unique Implication Point(UIP)

Taking all decision nodes to form a cut may result in less valuable
learnt clause.

How about learning a clause that is close related to the conflict?

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄)

(d̄ ∨ h ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 59 / 106

Unique Implication Point(UIP)

A UIP is any node at the current decision level (@4) such that any
path from decision variable (a=0@4) to the conflict nodes must pass
through it.

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄)

(d̄ ∨ h ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 60 / 106

Unique Implication Point(UIP)

First-UIP Learning Scheme: used by MiniSAT and zChaff

Set the cut right before the first UIP is encountered on the path
leading from the conflict nodes.

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄)

(d̄ ∨ h ∨ i)
(h ∨ d ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 61 / 106

What’s the big deal?

We can know learn the related clause to each conflict we encountered.

Significantly prune the search space because learned clause is useful
forever!

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 62 / 106

Search Completeness

With conflict driven learning, SAT search is still guaranteed to be
complete.

SAT search becomes a decision stack instead of a binary decision tree.

When encountering a conflict, the conflict analysis does the following
tasks:

Learned clause
Indicate where to backtrack
Learned implication

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 63 / 106

SAT Becomes Practical

Conflict driven learning greatly increases the capacity of SAT solvers
(several thousand variables) for structured problems.

Realistic applications became plausible.

Usually thousands and even millions of variables
Typical EDA applications can make use of SAT including circuit
verification, FPGA routing and many other applications

Research direction changes towards more efficient implementations.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 64 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems
Davis-Putnam Algorithm
DPLL Algorithm
GRASP Algorithm
zChaff Algorithm

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 65 / 106

zChaff

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,”Chaff:
Engineering an Efficient SAT Solver” Proc. DAC 2001. (UC Berkeley,
MIT and Princeton Univ.)

Make the core operations fast.

After profiling, the most time-consuming parts are Boolean Constraint
Propagation (BCP) and Decision.

As always, pruning search space (i.e. conflict driven learning) is
important.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 66 / 106

BCP Algorithm

When can BCP (Unit propagation, implication) occur ?

All literals but one are assigned to False in a clause.

The implied cases of (v1 ∨ v2 ∨ v3) :

(0 ∨ 0 ∨ v3) or (0 ∨ v2 ∨ 0) or (v1 ∨ 0 ∨ 0)

For an N-literal clause, this can only occur after N − 1 literals have
been assigned to False.
So, (theoretically) we could completely ignore the first N − 2
assignments to this clause.
Two watched Literals:
In reality, we pick two literals in each clause to ”watch” and thus can
ignore any assignments to the other literals in the clause.
This is not a pruning technique, but saves time while performing BCP.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 67 / 106

BCP Algorithm

Heuristically start with watching two unassigned literals in each
clause.

When one of the two watched literals is assigned True, this clause
becomes True.

When one of the two watched literals is assigned False, we send the
clause into an Update-Watch queue to do one of the followings:

1. Updating (there exists another unassigned literal)
2. BCP (only one watched literal unassigned)
3. Conflict handling (all literals are False)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 68 / 106

BCP Algorithm

Initially, pick any two literals in each clause as the watched literals.

Green: watched literals

Clauses with only one literal are detected at the mean time.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

We begin by processing the assignment v1 = F

Implied by the unit clause v1

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Need not process clauses where watched literals are set to True.

Because those clauses are now satisfied.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2

⇒ v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Need not process clauses where neither watched literal is assigned.

Because those clause are definitely not a unit clause.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Only examine clauses where a watched literal is set to False due to
the assignment.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒ v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3

⇒ v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

For the second clause, we replace v1 with v3 as a new watched literal
because v3 is not assigned to False.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒ v1 ∨ v2 ∨ v3 =⇒ v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒

Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

The third clause is a unit clause.

We record the new implication of v2, and add it to the queue of
assignments to process.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒

v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3
⇒ v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending : (v2 = F)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Next, for v2, only the first two clauses are examined.

For the first clause, replace v2 with v4 as a new watched literal.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5 =⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒ v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F

,

v3 = F

, v4 = T

State : v1 = F , v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending : (v3 = F)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Next, for v3, only the first clause is examined.

For the first clause, replace v3 with v5 as a new watched literal.
Since there are no pending assignments, and no conflict,
BCP terminates and we make a decision. Both v4 and v5 are
unassigned. Let’s say we assign v4 = True and proceed.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5 =⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒

v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F ,

v3 = F

, v4 = T

State : v1 = F , v2 = F ,

v3 = F

, v4 = T

Pending :

=⇒

Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm

Next, for v4, all clauses are satisfied.

Depend on implementation, it may continue and assign value to v5.

The instance is SAT, and we are done.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F ,

v3 = F , v4 = T

State : v1 = F , v2 = F ,

v3 = F , v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106

BCP Algorithm Summary

During forward progress: Decisions and Implications

Only need to examine clauses where watched literal is set to F
Can ignore any assignments of literals to T
Can ignore any assignments of non-watched literals

During backtrack: Unwind Assignment Stack

No action is required at all to unassigned variables
But it is computation-intensive part in SATO (SATO: an Efficient
Propositional Prover. Hantao Zhang*. Department of Computer
Science. The University of Iowa. Iowa City, IA 52242-1419, USA)

Overall minimize clause access

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 70 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics
Decision heuristics
Restart mechanism

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 71 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics
Decision heuristics
Restart mechanism

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 72 / 106

Make Decision

Because we want to prove that the target Boolean formula is
satisfiable or not, we should start with guessing the state (True or
False) of a variable until the proof is done.

Some strategy:

Random
Dynamic Largest Individual Sum (DLIS)
Variable State Independent Decaying Sum (VSIDS)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 73 / 106

RAND and DLIS

Random

Simply select an unassigned variable and a value randomly
for the next decision.

Dynamic Largest Individual Sum (DLIS)

At each decision simply choose the assignment that satisfies
the most unsatisfied clauses.
Simple and intuitive.
However, considerable work is required to maintain the statistics.
The total effort required is much more than the effort for the BCP
algorithm in zChaff.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 74 / 106

VSIDS

Variable State Independent Decaying Sum (VSIDS)

Each variable in each polarity has a counter which is initialized to zero.
When a new clause is added to the database, the counter associated
with each literal in this clause is incremented.
The (unassigned) variable and polarity with the highest counter is
chosen at each decision.
Ties are broken randomly by default configuration.
Periodically, all the counters are divided by a constant.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 75 / 106

VSIDS (cont.)

VSIDS attempts to satisfy the conflict clauses but particularly
attempts to satisfy recent learned clauses.

Difficult problems generate many conflicts (and therefore many
conflict clauses), the conflict clauses dominate the problem in terms
of literal count.

Since it is independent of the variable state, it has very low overhead.

The average rum time overhead in zChaff:

BCP: about 80%
Decision: about 10%
Conflict analysis: about 10%

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 76 / 106

BerkMin

E. Goldberg, and Y. Novikov, ”BerkMin: A Fast and Robust
Sat-Solver”, Proc. DATE 2002. (Cadence Berkeley Labs and
Academy of Sciences in Belarus)

BerkMin tries to satisfy the most recent clause.

The clause database is organized as a stack.

The clauses of the original Boolean formula are located at the bottom
of the stack and each new conflict clause is added to the top of the
stack.

The current top clause is the an unsatisfied clause which is the closest
to the top of the stack.

When making decision, choose the most active unassigned variable in
the current top clause by using VSIDS.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 77 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics
Decision heuristics
Restart mechanism

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 78 / 106

Restart Motivation

Best time to restart:
when algorithm spends too much time under a wrong branch

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 79 / 106

Restart

Motivation: avoid spending too much time in “bad” branches.

no easy-to-find satisfying assignment
no opportunity for fast learning of strong clauses.

All modern SAT solvers use a restart policy.

Following various criteria, the solver is forced to backtrack to level 0.
Abandon the current search tree and reconstruct a new one.
The clauses learned prior to the restart are still there after the restart
and can help pruning the search space.

Restarts have crucial impact on performance.

Reduce variance - increase robustness in the solver.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 80 / 106

The Basic Measure for Restarts

All existing techniques use the number of conflicts learned as of the
previous restart.

The difference is only in the method of calculating the threshold.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 81 / 106

Restarts strategies
Arithmetic (or fixed) series

Used in Berkmin, Eureka, zChaff, Siege

Geometric series
Used in Minisat 2007

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 82 / 106

Restarts strategies

Inner-Outer Geometric series

Used in Picosat

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 83 / 106

Other Issues

Incremental SAT
Take apart the clause database.

Solve the first part and record the learned information.
If it is UNSAT, then stop.
If it is SAT, then add the next part to solve.
And so on...

Add Constraints according to the previous results

Since relevant learnt clauses are preserved, we speed up the later
exploration.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 84 / 106

Other Issues

Reducing Learnt Clause

Large CNF can result in large amount of learnt clauses, and some of
them may not be useful until later
They slow down BCP

Remove learnt clauses periodically

Keep a certain number of learnt clauses
Minisat removes half of the learnt clauses if the number of clauses
reaches threshold (which grows geometrically)
Glucose keeps short learnt clauses forever, but removes long ones if if
the number of clauses reaches threshold (which grows arithmetically)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 85 / 106

Other Issues

Refutation proof, i.e., proof of UNSAT (Ex.Resolution Proof)

Parallel computation

Memory management

etc...

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 86 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 87 / 106

SAT competitions

From March to June

The international SAT Competitions (Starting from 2002)
http://www.satcompetition.org/

Three main categories of benchmarks:
Application(Industrial), Hard Combinatorial(Crafted), Random
Three Evaluation in each category:
SAT, UNSAT, ALL(SAT + UNSAT)
Separate sequential and parallel since 2011

SAT-Race (2015, 2010, 2008, 2006)
http://baldur.iti.kit.edu/sat-race-2015/

SAT Challenge 2012
http://baldur.iti.kit.edu/SAT-Challenge-2012/

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 88 / 106

Famous SAT Solvers

MiniSat, http://minisat.se/

Silver in 2005, Gold in 2006 and 2008
Well-known for its compact and simple implementation
Originally only 600 lines of C code in total
but contains most algorithms mentioned in the slide!!
A category since 2009 called Minisat Hack

SATzilla, http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

Gold in 2007, 2009, and 2012
Evaluate the problem instance first
Select an appropriate solver to solve

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 89 / 106

Famous SAT Solvers

ppfolio, http://www.cril.univ-artois.fr/˜roussel/ppfolio/

Win a total of 16 medals in 2011
Assign cores to the five solvers in use.

Winners of recent years

glucose, http://www.labri.fr/perso/lsimon/glucose/
Lingeling, http://fmv.jku.at/lingeling

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 90 / 106

Outline

1 Fundamental Concepts

2 Core algorithms of satisfiability problems

3 Heuristics

4 SAT competitions

5 Applications

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 91 / 106

The Usage of the MiniSat (Static Build)

MiniSat Page: http://minisat.se/

The newest version: 2.2.0

Use MiniSat to find a solution of F = (x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2).

Go to MiniSat Page to download it.
Tar the .gz file tar -zxvf minisat-2.2.0.tar.gz
Change to directory “core” cd core
Modify path export MROOT=../
Make and compile in directory “core” make
Build DIMACS CNF file for problem you want to solve
http://www.satcompetition.org/2009/format-benchmarks2009.html
Run the minisat to solve problem ./minisat CnfFileName
ResultFileName

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 92 / 106

DIMACS CNF Format

It is a standard format for the input files (CNF files) of SAT solvers.

Use c to write comments
Start with p cnf VarialbeNumber ClauseNumber
Write the clause with integer(with/without “-”) for representing the
literals
Use “0” to mark the end of a clause

Example: (x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2)
c this is a simple DIMACS cnf, use 1, 2, 3 for x0, x1, x2 respectively
p cnf 3 2
1 2 3 0
-2 3 0

What if we want yet another solution?
Add block clauses and solve again!
Problem: starting from scratch, file I/O

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 93 / 106

The Usage of the MiniSat (C++ API)

MiniSat Page: http://minisat.se/

MiniSat fork with CMake Integration:
https://github.com/master-keying/minisat/

MiniSat provides elegant c++ API

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 94 / 106

The Usage of the MiniSat (C++ API)

Usage

Unzip the package unzip minisat-master.zip
Build minisat to target directory (If you would like a static build of
MiniSat, do not build under the recent directory because of naming
alias) cmake -S . -B path
Make and compile minisat build make
Write your code(details in later slides) vim main.cpp
Provide CMakeLists.txt(details in later slides vim CMakeLists.txt
Make and compile your program cmake; make; ./demo

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 95 / 106

API Usage

Solver.h class Solver

newVar(bool polarity, bool dvar)
addClause(vec< Lit > ps)
addClause(Lit p)
addEmptyClause()
simplify()
solve()

Your program

Construct Solver Solver s;
Add all constraints(clauses) s.addClause(ps)
solve s.solve();

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 96 / 106

CMake Guide

Trivial CMakeList.txt

Identify CMake version
cmake minimum required(VERSION 3.5)
Project name
project (projectname LANGUAGES CXX)
Include all codes
add executable(exename main.cpp)
Add subdirectory
add subdirectory(dir)
Link to libminisat.a
target link libraries(exename MiniSat::libminisat)

Of course, you can build on your own, but the previous five lines is
enough for now.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 97 / 106

Demo 1 - Simple case

Solve (A ∨ B ∨ C) ∧ (Ā ∨ B ∨ C) ∧ (A ∨ B̄ ∨ C) ∧ (A ∨ B ∨ C̄)

What if we need more than one solution? Add code!

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 98 / 106

Demo 2 - Equivalence Checking

Check if the two circuits in the yellow boxes are equivalent?

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 99 / 106

How to write CNF for circuits?
Tseytin transformation

A→ B (Ā ∨ B)

A↔ B (Ā ∨ B) ∧ (A ∨ B̄)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 100 / 106

Equivalence Checking

Miter: Link the output of the two circuits with an XOR

If the circuits are equivalent, signal O should always be False.

By asserting O as a unit clause, the CNF formula should be UNSAT if
the circuits are equivalent.

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 101 / 106

Optional: Bounded Model Checking

We want to check property AG(p) for a given sequential circuit. See
whether it has bugs!

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 102 / 106

Optional: Timeframe Expansion Model

Iterative timeframe expansion model: sequential SAT becomes a
combinational problem.

Comb.
ckt

Comb.
ckt

Comb.
ckt

FF FF

PI PI PI

PO PO PO

Initial
States

P P !P

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 103 / 106

Optional: BMC Algorithm

Let C be the set of constraints on the combinational circuit

For an iterative model that unfolds the circuit for n times, let Ci

correspond to the i-th iteration of the circuit constraint(0 5 i 5 k−1)

Let I0 be the initial state value

Let P be the property to prove

Following is the BMC algorithm:

BMC(P)

Let k=1
loop:

if (SAT(I0 ∧ C0 ∧ ... ∧ Ck−1∧!Pk−1))
return Find a counter-example at time (k-1)

k=k+1
go to loop

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 104 / 106

Optional: BMC Algorithm

In other words ...

Comb.
ckt

Comb.
ckt

Comb.
ckt

FF FF

PI PI PI

PO PO PO

Initial
States

P P !P

Comb.
ckt

FF

PI

PO

Initial
States

!P

SAT
Cex @ t0

Comb.
ckt

Comb.
ckt

FF FF

PI PI

PO PO

Initial
States

P !P

UNSAT

SAT
Cex @ t1

UNSAT
UNSAT

SAT
Cex @ t2

Continued for t3

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 105 / 106

Solving Various Problems

We now know how to use SAT.

For many NP problems, SAT is a powerful tool. All you need is to
develop proper SAT formulation, i.e. encoding your constraints into
CNF formula

Small Toy: online CNF generators

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 106 / 106

	Fundamental Concepts
	Core algorithms of satisfiability problems
	Davis-Putnam Algorithm
	DPLL Algorithm
	GRASP Algorithm
	zChaff Algorithm

	Heuristics
	Decision heuristics
	Restart mechanism

	SAT competitions
	Applications

