
Symbolic Model Checking
(Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay
(with help from Ming-Hsien Tsai and Jinn-Shu Chang)

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 1 / 78



Introduction

We have studied

the operations on OBDDs and
the encoding of a transition system in OBDDs.

How does one use OBDDs in model checking?

Symbolic CTL model checking
Symbolic LTL model checking

The model checking algorithms are symbolic, because they are
based on the manipulation of Boolean functions (rather than
state transition graphs).

Boolean functions (OBDDs) represent sets of states and
transitions.

We can operate on entire sets rather than on individual states
and transitions.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 2 / 78



Fixpoints

Let S be the set of all states of a system.

A set Z ∈ P(S) is called a fixpoint of a function
τ : P(S)→ P(S) if τ(Z ) = Z .

A temporal formula f can be viewed as a set Z of states such
that

Z ∈ P(S) and
f is true exactly on the states in Z .

Each temporal logic operator can be characterized by a fixpoint.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 3 / 78



Complete Lattices

Recall that a complete lattice is a partially ordered set in which
every subset of elements has a least upper bound (supremum)
and a greatest lower bound (infimum).

For a given set S , 〈P(S),⊆〉 forms a complete lattice.

Let S ′ ⊆ P(S), then

the supremum of S ′, usually denoted sup(S ′), equals
⋃
S ′ and

the infimum of S ′, denoted inf (S ′), equals
⋂
S ′.

The least element in P(S) is the empty set ∅, which we refer to
as False.

The greatest element in P(S) is the set S , which we refer to as
True.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 4 / 78



Predicate Transformer

A predicate transformer on P(S) is a function τ : P(S)→ P(S).

τ i(Z ) is used to denote i applications of τ to Z :

τ0(Z ) = Z
τ i+1(Z ) = τ(τ i (Z ))

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 5 / 78



Predicate Transformer (cont.)

Let τ be a predicate transformer.

τ is monotonic (order-preserving) provided that

P ⊆ Q implies τ(P) ⊆ τ(Q).

τ is ∪-continuous provided that

P1 ⊆ P2 ⊆ · · · implies τ(∪iPi) = ∪iτ(Pi).

τ is ∩-continuous provided that

P1 ⊇ P2 ⊇ · · · implies τ(∩iPi) = ∩iτ(Pi).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 6 / 78



LFP and GFP

We have seen the following results in a separate lecture.

P(S) is a complete lattice and hence also a CPO.

Consequently, a monotonic predicate transformer τ on P(S)
always has

a least fixpoint, denoted µZ . τ(Z ), and
a greatest fixpoint, denoted νZ . τ(Z ).

More precisely,

µZ . τ(Z ) =

{
∩{Z | τ(Z ) ⊆ Z} whenever τ is monotonic
∪iτ i(False) whenever τ is also ∪-continuous

νZ . τ(Z ) =

{
∪{Z | τ(Z ) ⊇ Z} whenever τ is monotonic
∩iτ

i(True) whenever τ is also ∩-continuous

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 7 / 78



Continuity of Predicate Transformers

Lemma (Lemma 5)

If S is finite and τ is monotonic, then τ is also ∪-continuous and
∩-continuous.

Proof:

Because S is finite, there is j0 such that

for every j ≥ j0, Pj = Pj0 , and
for every j < j0, Pj ⊆ Pj0 .

Thus, ∪iPi = Pj0 and τ(∪iPi) = τ(Pj0).

Because τ is monotonic,

τ(P1) ⊆ τ(P2) ⊆ . . ., and thus
for every j ≥ j0, τ(Pj) = τ(Pj0) and
for every j < j0, τ(Pj) ⊆ τ(Pj0).

As a result, ∪iτ(Pi) = τ(Pj0) = τ(∪iPi).

The proof that τ is ∩-continuous is similar.
Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 8 / 78



Iterative Approximation

Lemma (Lemma 6)

If τ is monotonic, then for every i (≥ 0)

τ i(False) ⊆ τ i+1(False), and

τ i(True) ⊇ τ i+1(True).

Proof:

By induction on i .

Base case: τ 0(False) = False ⊆ τ(False).

Inductive step: since τ is monotonic, τ k(False) ⊆ τ k+1(False)
implies τ(τ k(False)) ⊆ τ(τ k+1(False)) and hence
τ (k+1)(False) ⊆ τ (k+1)+1(False), for k ≥ 0.

The other case is similar.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 9 / 78



Convergence of Iterative Approximation

Lemma (Lemma 7)

If τ is monotonic and S is finite, then

there is an integer i0 such that for every j ≥ i0,
τ j(False) = τ i0(False), and

similarly, there is some j0 such that for every j ≥ j0,
τ j(True) = τ j0(True).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 10 / 78



Convergence of Iterative Approximation (cont.)

Lemma (Lemma 8)

If τ is monotonic and S is finite, then

there is an integer i0 such that µZ . τ(Z ) = τ i0(False), and

similarly, there is an integer j0 such that νZ . τ(Z ) = τ j0(True).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 11 / 78



LFP Procedure

In a Kripke structure, if τ is monotonic, its least fixpoint can be
computed by the following program.

function Lfp(τ : PredicateTransformer) : Predicate
Q := False;
Q ′ := τ(Q);
while (Q 6= Q ′) do

Q := Q ′;
Q ′ := τ(Q);

end while;
return(Q);

end function

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 12 / 78



Correctness of LFP Procedure

The invariant of the while loop is

(Q ′ = τ(Q)) ∧ (Q ⊆ µZ . τ(Z ))

(cf. (Q ′ = τ(Q)) ∧ (Q ′ ⊆ µZ . τ(Z )))

The number of iterations before the while loop terminates is
bounded by |S |.
When the loop does terminate, we will have

Q = τ(Q) (Q is a fixpoint) and
Q ⊆ µZ . τ(Z ).

Since Q is also a fixpoint, µZ . τ(Z ) ⊆ Q.

Hence Q = µZ . τ(Z ).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 13 / 78



GFP Procedure

We can also see that, if τ is monotonic, its greatest fixpoint can
be computed by the following program.

function Gfp(τ : PredicateTransformer) : Predicate
Q := True;
Q ′ := τ(Q);
while (Q 6= Q ′) do

Q := Q ′;
Q ′ := τ(Q);

end while;
return(Q);

end function

An analogous argument can be used to show that the procedure
terminates and the value returns is νZ . τ(Z ).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 14 / 78



Characterization of CTL Operators

Each CTL formula f is identified with the predicate
{s | M , s |= f } in P(S).

It turns out that each of the basic CTL operators may be
characterized as the least or greatest fixpoint of an appropriate
predicate transformer.

Least fixpoints correspond to eventualities.

Greatest fixpoints correspond to properties that should hold
forever.

We will take a closer look at two cases:

EG f = νZ . f ∧ EXZ
E[f1 U f2] = µZ . f2 ∨ (f1 ∧ EXZ )

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 15 / 78



Characterization of EG

To see why EG f = νZ . f ∧ EXZ intuitively ...

Let τ(Z ) = f ∧ EXZ .

τ(True) = f ∧ EX True = f .

τ 2(True) = f ∧ EX f .

τ 3(True) = f ∧ EX (f ∧ EX f ).

· · ·
τ i(True) = f ∧ EX (f ∧ EX (· · · (f ∧ EX f ) · · ·))
(EX is applied i − 1 times to the inner most f ).

So, states in the limit of τ i(True) satisfy EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 16 / 78



About τ(Z ) = f ∧ EXZ

Lemma (Lemma 9)

τ(Z ) = f ∧ EXZ is monotonic.

Proof:

Let P1 ⊆ P2. We need to show that τ(P1) ⊆ τ(P2).

Given an arbitrary state s ∈ τ(P1), it suffices to show that
s ∈ τ(P2), namely

s |= f and
s |= EXP2, i.e., there is a successor of state s in P2.

Because s ∈ τ(P1),

s |= f and
s |= EXP1, i.e., there exists a successor s ′ of state s in P1,
which implies that s ′ is in P2 (since P1 ⊆ P2).

Thus, s ∈ τ(P2).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 17 / 78



About τ(Z ) = f ∧ EXZ (cont.)

Lemma (Lemma 10)

Let τ(Z ) = f ∧ EXZ and let τ i0(True) be the limit of the sequence
True ⊇ τ(True) ⊇ · · · . For every s ∈ S , if s ∈ τ i0(True) then s |= f ,
and there is a state s ′ such that (s, s ′) ∈ R and s ′ ∈ τ i0(True).

Proof:

Let s ∈ τ i0(True).

Because τ i0(True) is a fixpoint of τ , τ i0(True) = τ(τ i0(True)).

Thus s ∈ τ(τ i0(True)).

By definition of τ we get that s |= f and there is a state s ′, such
that (s, s ′) ∈ R and s ′ ∈ τ i0(True).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 18 / 78



About τ(Z ) = f ∧ EXZ (cont.)

Lemma (Lemma 11)

EG f is a fixpoint of the function τ(Z ) = f ∧ EXZ .

Proof:

We first show EG f ⊆ f ∧ EX EG f and then
f ∧ EX EG f ⊆ EG f .

Suppose s0 |= EG f .

By the definition of |=, there is a path s0, s1, · · · in M such that
for all k , sk |= f .

This implies that s0 |= f and s1 |= EG f .

In other words, s0 |= f and s0 |= EX EG f .

Thus, EG f ⊆ f ∧ EX EG f .

Similarly, if s0 |= f ∧ EX EG f , then s0 |= EG f .

Thus, f ∧ EX EG f ⊆ EG f .
Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 19 / 78



About τ(Z ) = f ∧ EXZ (cont.)

Lemma (Lemma 12)

EG f is the greatest fixpoint of the function τ(Z ) = f ∧ EXZ .

Proof:

Because τ is monotonic (Lemma 9), by Lemma 5 it is also
∩-continuous.

In order to show that EG f is the greatest fixpoint of τ , it is
sufficient to prove that EG f = ∩iτ i(True), i.e.,

EG f ⊆ ∩iτ i (True) and
∩iτ i (True) ⊆ EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 20 / 78



About τ(Z ) = f ∧ EXZ (cont.)

Proof of EG f ⊆ ∩iτ i(True):

It suffices to show that EG f ⊆ τ i(True), for all i .

The proof is by induction on i .

Base case: clearly, EG f ⊆ True = τ 0(True).

Inductive step:

Assume that EG f ⊆ τk(True), for an arbitrary k .
Because τ is monotonic, τ(EG f ) ⊆ τ(τk(True)) = τk+1(True).
By Lemma 11 (EG f is a fixpoint of τ), τ(EG f ) = EG f .
Hence, EG f ⊆ τk+1(True).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 21 / 78



About τ(Z ) = f ∧ EXZ (cont.)

Proof of ∩iτ i(True) ⊆ EG f :

Consider some state s ∈ ∩iτ i(True).

The state s is included in every τ i(True).

Hence, it is also in the fixpoint τ i0(True).

By Lemma 10, s is the start of an infinite sequence of states in
which each state is related to the previous one by the relation R .

Furthermore, each state in the sequence satisfies f .

Thus s |= EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 22 / 78



Characterization of EU

To see why E[f1 U f2] = µZ . f2 ∨ (f1 ∧ EXZ ) intuitively ...

Let τ(Z ) = f2 ∨ (f1 ∧ EXZ ).

τ(False) = f2 ∨ (f1 ∧ EX False) = f2.

τ 2(False) = f2 ∨ (f1 ∧ EX f2).

τ 3(False) = f2 ∨ (f1 ∧ EX (f2 ∨ (f1 ∧ EX f2))).

· · ·
τ i(False) = f2∨(f1∧EX (f2∨(f1∧EX (· · · (f2∨(f1∧EX f2)) · · · ))))
(EX is applied i − 1 times to the inner most f2).

f2 will eventually become true on some path; Before then, f1
remains true.

So, states in the limit of τ i(False) satisfy E[f1 U f2].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 23 / 78



About τ(Z ) = f2 ∨ (f1 ∧ EXZ )

Lemma (Lemma 13)

E[f1 U f2] is the least fixpoint function of the function
τ(Z ) = f2 ∨ (f1 ∧ EXZ ).

Proof:

τ(Z ) = f2 ∨ (f1 ∧ EXZ ) is monotonic, hence τ is ∪-continuous.

E[f1 U f2] is a fixpoint of τ(Z ), proof similar to that for EG f .

We still need to prove that E[f1 U f2] is the least fixpoint of τ(Z ).

It is sufficient to show that E[f1 U f2] = ∪iτ i(False), i.e.,

∪iτ i (False) ⊆ E[f1 U f2] and
E[f1 U f2] ⊆ ∪iτ i (False).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 24 / 78



About τ(Z ) = f2 ∨ (f1 ∧ EXZ ) (cont.)

Proof of ∪iτ i(False) ⊆ E[f1 U f2]:

It suffices to show that τ i(False) ⊆ E[f1 U f2] for all i .

We prove this by induction on i .

Base case: τ 0(False) = False ⊆ E[f1 U f2].

Inductive step:

We assume τk(False) ⊆ E[f1 U f2] for an arbitrary k.
By the monotonicity of τ , τ(τk(False)) ⊆ τ(E[f1 U f2]).
Since E[f1 U f2] is a fixpoint of τ(Z ), τ(E[f1 U f2]) = E[f1 U f2].
It follows that τk+1(False) ⊆ E[f1 U f2].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 25 / 78



About τ(Z ) = f2 ∨ (f1 ∧ EXZ ) (cont.)

Proof of E[f1 U f2] ⊆ ∪iτ i(False):

We prove this direction by induction on the length of the prefix
of the path along which f1 U f2 is satisfied.

If s ∈ E[f1 U f2] (i.e., s |= E[f1 U f2]), then there exists a path
π = s1, s2, . . . with s = s1 such that, for some j ≥ 1, sj |= f2
and, for all l < j , sl |= f1.

We claim the following:
For every π = s1, s2, . . ., if π |= f1 U f2, then for every j such that
sj |= f2 and, for all l < j , sl |= f1, s1 ∈ τ j(False) holds.

From the claim, it follows that s ∈ E[f1 U f2] implies
s ∈ τ j(False) for some j .

Therefore, E[f1 U f2] ⊆ ∪iτ i(False).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 26 / 78



About τ(Z ) = f2 ∨ (f1 ∧ EXZ ) (cont.)

Proof of E[f1 U f2] ⊆ ∪iτ i(False) (continued):

We now prove the claim by induction on j .

Base case (j = 1):

s1 |= f2 and therefore s1 ∈ f2 ∨ (f1 ∧ EXFalse) = τ(False).

Inductive step:

Let π be a path s1, s2, . . . , sk , . . . with k > 1 such that sk |= f2
and for all l < k, sl |= f1 (so, π |= f1 U f2).
Since k > 1, s2, s3, . . . also satisfies f1 U f2. More precisely, s2 is
the start of a sequence π′ = s ′1, s

′
2, . . . (=s2, s3, . . .) such that

s ′k−1(= sk) |= f2 and for all l < k − 1, s ′l |= f1.

From the induction hypothesis, s ′1 ∈ τk−1(False), i.e.,
s2 ∈ τk−1(False).
With s1 |= f1, (s1, s2) ∈ R, and s2 ∈ τk−1(False), we have
s1 ∈ f1 ∧ EX (τk−1(False)) ⊆ f2 ∨ (f1 ∧ EX (τk−1(False))) =
τk(False).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 27 / 78



An Example

Source: [Clarke et al. 1999]. Names of states (clockwise): s0, s1, s2, s3.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 28 / 78



An Example (cont.)

Sequence of approximations for E[p U q] = µZ . q ∨ (p ∧ EXZ ):

τ 1(False) = q ∨ (p ∧ EX False)
= q

τ 2(False) = q ∨ (p ∧ EX τ(False))
= q ∨ (p ∧ EX q)
= q ∨ (p ∧ {s1, s3})
= q ∨ {s1}

τ 3(Fasle) = q ∨ (p ∧ EX τ 2(Fasle))
= q ∨ (p ∧ EX (q ∨ {s1}))
= q ∨ (p ∧ {s0, s1, s2, s3})
= q ∨ p

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 29 / 78



Characterization of CTL Operators (cont.)

AF f = µZ . f ∨ AXZ

EF f = µZ . f ∨ EXZ

AG f = νZ . f ∧ AXZ

EG f = νZ . f ∧ EXZ

A[f U g ] = µZ . g ∨ (f ∧ AXZ )

E[f U g ] = µZ . g ∨ (f ∧ EXZ )

A[f R g ] = νZ . g ∧ (f ∨ AXZ )

E[f R g ] = νZ . g ∧ (f ∨ EXZ )

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 30 / 78



Symbolic Model Checking for CTL

There is a quite fast explicit state model checking algorithm for
CTL, but a state explosion problem may occur.

In the following, we will present a Symbolic Model Checking
(SMC) algorithm for CTL which operates on Kripke structures
represented symbolically using OBDDs.

For this, the logic of Quantified Boolean Formulae (QBF) will be
used.

QBF formulae are as expressive as the usual Boolean formulae.
However, they allow a more succinct notation for complex
operations on Boolean formulae.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 31 / 78



Quantified Boolean Formulae (QBF)

Let V be a set {v0, . . . , vn−1} of propositional variables.

QBF (V ) is the smallest set of formulae such that

every variable in V is a formula,
if f and g are formulae, then ¬f , f ∨ g , and f ∧ g are formulae,
and
if f is a formula and v ∈ V , then ∃vf and ∀vf are formulae.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 32 / 78



Truth Assignment

A truth assignment for QBF (V ) is a function σ : V → {0, 1}.
If a ∈ {0, 1}, then the notation σ〈v ← a〉 is used for the truth
assignment defined by

σ〈v ← a〉(w) =

{
a if v = w
σ(w) otherwise

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 33 / 78



Models of QBF

σ |= f denotes that the QBF formula f is true under the
assignment σ.

The |= (satisfaction) relation is defined inductively as follows:

σ |= v iff σ(v) = 1
σ |= ¬f iff σ 6|= f
σ |= f ∨ g iff σ |= f or σ |= g
σ |= f ∧ g iff σ |= f and σ |= g
σ |= ∃vf iff σ〈v ← 0〉 |= f or σ〈v ← 1〉 |= f
σ |= ∀vf iff σ〈v ← 0〉 |= f and σ〈v ← 1〉 |= f

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 34 / 78



Quantification

The quantifiers in QBF can be implemented as combinations of
the restrict and apply operators.

∃xf = f |x←0 ∨ f |x←1

∀xf = f |x←0 ∧ f |x←1

So, like Boolean formulae, QBF formulae can be represented by
OBDDs.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 35 / 78



SMC Algorithm

The SMC algorithm is implemented by a procedure Check .

Argument: a CTL formula
Return: an OBDD that represents exactly those states of the
system that satisfy the formula

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 36 / 78



SMC Algorithm (cont.)

Check(a) = the OBDD representing the set of states
satisfying the atomic proposition a

Check(f ∧ g) = Check(f ) ∧ Check(g)
Check(¬f ) = ¬Check(f )
Check(EX f ) = CheckEX (Check(f ))
Check(E[f U g ]) = CheckEU(Check(f ),Check(g))
Check(EG f ) = CheckEG (Check(f ))

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 37 / 78



CheckEX

The formula EX f is true in a state if the state has a successor
in which f is true.

CheckEX (f (v̄)) = ∃v̄ ′[f (v̄ ′) ∧ R(v̄ , v̄ ′)],

where R(v̄ , v̄ ′) is the OBDD representation of the transition
relation.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 38 / 78



CheckEU

CheckEU is based on the least fixpoint characterization for the
CTL operator EU.

E[f U g ] = µZ . g ∨ (f ∧ EXZ )

The function Lfp is used to compute a sequence of
approximations

Q0,Q1, . . . ,Qi , . . .

that converges to E[f U g ] in a finite number of steps.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 39 / 78



CheckEU (cont.)

If we have OBDDs for f , g , and the current approximation Qi ,
then we can compute an OBDD for the next approximation Qi+1.

When Qi = Qi+1 (it is easy to test because OBDDs provide a
canonical form of Boolean functions), the function Lfp
terminates.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 40 / 78



CheckEG

CheckEG is based on the greatest fixpoint characterization for
the CTL operator EG.

EG f = νZ . f ∧ EXZ

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 41 / 78



Fairness in SMC

Assume the fairness constraints are given by a set of CTL
formulae F = {P1, . . . ,Pn}.
A fair path is a path on which each formula in F holds infinitely
often.

We define a new procedure CheckFair for checking CTL
formulae relative to the fairness constructions in F .

We do this by defining new intermediate procedures
CheckFairEX , CheckFairEU , and CheckFairEG , which
correspond to the intermediate procedures used to define Check .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 42 / 78



EG f with Fairness

Consider the formula EG f given fairness constraints F .

The formula means that there exists a fair path beginning with
the current state on which f holds globally.

The set of such states Z is the largest set with the following two
properties:

all of the states in Z satisfy f , and
for all Pk ∈ F and all s ∈ Z , there is a sequence of states of
length one or greater from s to a state in Z satisfying Pk such
that all states on the path satisfy f .
(cf. There exists a path in S ′, where f holds, that leads from s
to some node t in a nontrivial fair strongly connected
component of the graph (S ′,R ′).)

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 43 / 78



EG f with Fairness (cont.)

The characterization can be expressed by means of a fixpoint as
follows:

EG f = νZ . f ∧
n∧

k=1

EX E[f U (Z ∧ Pk)]

Note that the formula, using both CTL and fixpoint operators, is
not directly expressible in CTL.

We are going to prove the correctness of this equation.

We split it into two lemmas.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 44 / 78



Fair Version of EG f

Lemma (Lemma 14)

The fair version of EG f is a fixpoint of the equation

Z = f ∧
n∧

k=1

EX E[f U (Z ∧ Pk)].

Proof: It suffices to show that

EG f ⊆ f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)]

and

f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)] ⊆ EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 45 / 78



Fair Version of EG f (cont.)

Case 1: EG f ⊆ f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)].

Let s |= EG f , then s is the start of a fair path π, all of whose
states satisfy f .
Let si be the first state on π such that si ∈ Pi and si 6= s.
The state si is also a start of a fair path along which all states
satisfy f .
Thus, si ∈ EG f .
It follows that for every i , s |= f ∧ EX E[f U (EG f ∧ Pi )].

Therefore, s |= f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 46 / 78



Fair Version of EG f (cont.)

Case 2: f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)] ⊆ EG f .

If s |= f ∧
n∧

k=1

EX E[f U (EG f ∧ Pk)], then there is a finite path

starting from s to a state s ′ such that s ′ |= (EG f ∧ Pk).
Every state on the path from s to s ′ satisfies f .
s ′ is the beginning of a fair path such that each state on the
path satisfies f .
Thus, s |= EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 47 / 78



Fair Version of EG f (cont.)

Lemma (Lemma 15)

The greatest fixpoint of the following equation is included in EG f .

Z = f ∧
n∧

k=1

EX E[f U (Z ∧ Pk)]

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 48 / 78



Fair Version of EG f (cont.)

Proof of Lemma 15:

Let Z be an arbitrary fixpoint of the formula.

Assume that s ∈ Z . Then s |= f .

s has a successor s ′ that is a start of a path to a state s1 such
that

all states on this path satisfy f and
s1 satisfies Z ∧ P1.

Because s1 ∈ Z we can conclude by the same argument that
there is a path from s1 to a state s2 in P2.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 49 / 78



Fair Version of EG f (cont.)

Proof of Lemma 15 (continued):

Using this argument n times we conclude that s is the start of a
path along which all states satisfy f and which passes through
P1, . . . ,Pk .

The last state on the path is in Z , and thus there is a path from
this state back to some state in P1.

Induction can be used to show that there exists a fair path
starting at s such that f is satisfied along the path, i.e.,
s |= EG f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 50 / 78



CheckFairEG

CheckFairEG (f (v̄)) is based on the following fixpoint
characterization:

νZ (v̄) . f (v̄) ∧
n∧

k=1

EX E[f (v̄) U (Z (v̄) ∧ Pk)].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 51 / 78



CheckFair

The set of all states which are the start of some fair
computation is

fair(v̄) = CheckFair(EG True).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 52 / 78



CheckFairEX

The formula EX f under fairness constraints is equivalent to the
formula EX f ∧ fair without fairness constraints.

CheckFairEX (f (v̄)) = CheckEX (f (v̄) ∧ fair(v̄))

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 53 / 78



CheckFairEU

The formula E[f U g ] under fairness constraints is equivalent to
the formula E[f U g ∧ fair ] without fairness constraints.

CheckFairEU(f (v̄), g(v̄)) = CheckEU(f (v̄), g(v̄) ∧ fair(v̄))

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 54 / 78



LTL Model Checking

Let A f be a linear temporal logic formula where f is a restricted
path formula.

A formula f is a restricted path formula if all state subformulae
in f are atomic propositions.

The problem is to determine all of those states s ∈ S such that
M , s |= A f .

Since M , s |= A f iff M , s |= ¬E¬f , it is sufficient to check the
truth of formulae of the form E f .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 55 / 78



LTL Model Checking (cont.)

Given a formula E f and a Kripke structure M , the procedure of
LTL model checking is:

Construct a tableau T for the path formula f .
Compose T with M.
Find a path in the composition.

The tableau can be represented by OBDDs.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 56 / 78



States of the Tableau

Each state in the tableau is a set of elementary formulae
obtained from f .

The set of elementary subformulae of f is denoted by el(f ) and
is defined recursively as follows.

el(p) = {p} if p ∈ APf

el(¬g) = el(g)
el(g ∨ h) = el(g) ∪ el(h)
el(Xg) = {Xg} ∪ el(g)
el(g U h) = {X(g U h)} ∪ el(g) ∪ el(h)

The set of states ST of T is P(el(f )).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 57 / 78



Transition Relation of the Tableau

An additional function sat is defined recursively as follows.

sat(g) = {s | g ∈ s} where g ∈ el(f )
sat(¬g) = {s | s 6∈ sat(g)}
sat(g ∨ h) = sat(g) ∪ sat(h)
sat(g U h) = sat(h) ∪ (sat(g) ∩ sat(X(g U h)))

The transition relation RT of T is defined as

RT (s, s ′) =
∧

Xg∈el(f )

s ∈ sat(Xg)⇔ s ′ ∈ sat(g)

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 58 / 78



Transition Relation of the Tableau (cont.)

An additional condition is necessary in order to identify those
paths along which f holds.

A path π that starts from a state s ∈ sat(f ) will satisfy f iff

for every subformula g U h and for every state s on π, if
s ∈ sat(g U h) then either s ∈ sat(h) or there is a later state t
on π such that t ∈ sat(h).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 59 / 78



The Microwave Oven Example

¬Start
¬Close
¬Heat
¬Error

Start
¬Close
¬Heat
Error

¬Start
Close
¬Heat
¬Error

¬Start
Close
Heat
¬Error

Start
Close
¬Heat
Error

Start
Close
¬Heat
¬Error

Start
Close
Heat
¬Error

start
oven close

door

close
door

open
door

start
oven

open
door

done

cook

open
door

reset

warmup

start
cooking

1

2 3 4

5 6 7

Source: redrawn from [Clarke et al. 1999, Fig. 4.3].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 60 / 78



The Microwave Oven Example (cont.)

Tableau for ¬g = ¬(¬heat U close):

Source: [Clarke et al. 1999].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 61 / 78



Eventuality

The definition of RT does not guarantee that eventuality
properties are fulfilled.

A path π that starts from a state s ∈ sat(f ) will satisfy f if and
only if

for every subformulae g U h and for every state s on π, if
s ∈ sat(g U h) then either s ∈ sat(h) or there is a later state t
on π such that t ∈ sat(h).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 62 / 78



Additional Notations

π′ = s ′0, s
′
1, . . . represents a path in M .

For the suffix π′i = s ′i , s
′
i+1, . . . of π, we define

si = {ψ | ψ ∈ el(f ) and M , π′ |= ψ}

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 63 / 78



Correctness

Lemma (Lemma 16)

Let sub(f ) be the set of all subformulae of f . For all
g ∈ sub(f ) ∪ el(f ), M , π′i |= g if and only if si ∈ sat(g).

Proof:
Case 1: Let g ∈ el(f ).

M, π′i |= g iff g ∈ si .
g ∈ si iff si ∈ sat(g).

Case 2: Let g = ¬g1 or g = g1 ∨ g2.
Case 3: Let g = g1 U g2.

M, π′i |= g1 U g2 iff M, π′i |= g2 or (M, π′i |= g1 and
M, π′i |= X(g1 U g2)).
M, π′i |= g2 or (M, π′i |= g1 and M, π′i |= X(g1 U g2)) iff
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))).
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))) iff
si ∈ sat(g1 U g2).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 64 / 78



Correctness (cont.)

Lemma (Lemma 17)

Let π′ = s ′0s
′
1 . . . be a path in M . For all i ≥ 0, let si be the tableau

state. Then π = s0s1 . . . is a path in T .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 65 / 78



Correctness (cont.)

Theorem (Theorem 4)

Let T be the tableau for the path formula f . Then, for every Kripke
structure M and every path π′ of M , if M , π′ |= f then there is a
path π in T that starts in a state in sat(f ), such that
label(π′) |APf

= label(π).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 66 / 78



Composition of T and M

P = (S ,R , L) is the product of the tableau T = (ST ,RT , LT )
and the Kripke structure M = (SM ,RM , LM).

S = {(s, s ′) | s ∈ ST , s
′ ∈ SM and LM(s ′) |APf

= LT (s)}.
R((s, s ′), (t, t ′)) iff RT (s, t) and RM(s ′, t ′).
L((s, s ′)) = LT (s).

The function sat is extended to be defined over S by
(s, s ′) ∈ sat(g) if and only if s ∈ sat(g).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 67 / 78



The Microwave Oven Example (cont.)

Product of the microwave and the tableau for ¬(¬heat U close):

¬h
¬c
Xg

¬h
¬c
Xg

¬h c
Xg

h c
Xg

¬h c
Xg

¬h c
Xg

h c
Xg

1

2 3 4

5 6 7

Source: adapted from [Clarke et al. 1999, Fig. 6.10].

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 68 / 78



Correctness

Lemma (Lemma 18)

π′′ = (s0, s
′
0), (s1, s

′
1), . . . is a path in P with LP((si , s

′
i )) = LT (si) for

all i ≥ 0 if and only if there exists a path π = s0, s1, . . . in T , and a
path π′ = s ′0, s

′
1, . . . in M with LT (si) = LM(si) |APf

for all i ≥ 0.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 69 / 78



Correctness (cont.)

Theorem (Theorem 5)

M , s ′ |= E f if and only if there is a state s in T such that
(s, s ′) ∈ sat(f ) and P , (s, s ′) |= EG True under fairness constraints

{sat(¬(g U h) ∨ h) | g U h occurs in f }.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 70 / 78



Summary of LTL Model Checking

Given a Kripke structure M , a state s ′ in M and a LTL formula
f .

Construct a symbolic representation of M .

Construct a symbolic representation of T¬f .

Construct the product P of M and T¬f .

Use the symbolic CTL model checking algorithm to check if
there is a state s in T¬f such that

(s, s ′) ∈ sat(¬f ) and
P, (s, s ′) |= EGTrue under fairness constraints

{sat(¬(g U h) ∨ h) | g U h occurs in f }.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 71 / 78



SMC for LTL [Kesten et al 1995]

Here we slightly modify the definition of Kripke structures and
the symbolic algorithm in [Kesten et al. 1995].

A Kripke structure M is a tuple (V , S0,R) where

V is a set of system variables and thus the set of states S is the
set of all valuations for V ,
S0 is the initial condition defined upon V , and
R ⊆ S × S is the transition relation which is total.

The problem is to check, given a Kripke structure M and a
formula f , whether M |= f (all paths of M satisfy f ).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 72 / 78



SMC for LTL [Kesten et al 1995] (cont.)

Let Vf be the set of all propositions in f . Without loss of
generality, we assume Vf = V (of the Kripke structure).

For each elementary formula p ∈ el(f ), a Boolean variable
(elementary variable) xp is associated.

The set of elementary variables are represented by a vector
x̄ = x1, x2, . . . , xm where m = |el(f )|.
Note that a valuation for x̄ constitutes a state in M and a state
in Tf .

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 73 / 78



Formulae in Elementary Formulae

Let CL(f ) denote the closure of the LTL formula f .

For each formula p ∈ CL(f ), we define a Boolean function χp(x̄)
which expresses p in terms of the elementary variables:

For p ∈ el(f ), χp(x̄) = xp
For p = ¬q, χp = ¬χq

For q ∧ r , χp = χq ∧ χr

For p = q U r , χp = χr ∨ (χq ∧ xX(q U r))
For p = q S r , χp = χr ∨ (χq ∧ xY(q S r))

Note: Y is the “previous” operator.

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 74 / 78



LTL Model Checking

There exists a computation in M satisfying f iff satM,f as
defined below is true.

satM,f : ∃x̄ , ȳ : init(x̄) ∧ E ∗(x̄ , ȳ) ∧ scf E (ȳ)

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 75 / 78



Initial Condition

The following formula identifies an initial state in the product of
M and Tf .

It is an initial state in M.
It is also an initial atom in Tf .

init(x̄) : χf (x̄) ∧ (
∧

Yp∈CL(f )

¬xYp) ∧ S0(x̄)

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 76 / 78



Transition Relation

The following formula identifies the set of transitions in the
product:

E (x̄ , ȳ) : e(x̄ , ȳ) ∧ R(x̄ , ȳ)

where

e(x̄ , ȳ) :
∧

Xp∈el(f )

(xXp ↔ χp(ȳ)) ∧
∧

Yp∈el(f )

(χp(x̄)↔ yYp)

E+(x̄ , ȳ) = E (x̄ , ȳ) ∨ ∃z̄ : E+(x̄ , z̄) ∧ E (z̄ , ȳ)

E ∗(x̄ , ȳ) : (x̄ = ȳ) ∨ E+(x̄ , ȳ)

The definitions of e+(x̄ , ȳ) and e∗(x̄ , ȳ) are similar to E+(x̄ , ȳ)
and E ∗(x̄ , ȳ).

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 77 / 78



Fulfilling Atoms

The following formula identifies fulfilling atoms.

scf E (x̄) : E+(x̄ , x̄) ∧
∧

p U q∈CL(f )

(χp U q(x̄)→

∃z̄ : E ∗(x̄ , z̄) ∧ χq(z̄) ∧ E ∗(z̄ , x̄))

Yih-Kuen Tsay (IM.NTU) Symbolic Model Checking Automatic Verification 2019 78 / 78


	Introduction
	Fixpoints
	Fixpoint Characterization of CTL Operators
	Symbolic Model Checking for CTL
	Fairness in SMC
	Symbolic LTL Model Checking

