

Symbolic Model Checking (Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay (with help from Ming-Hsien Tsai and Jinn-Shu Chang)

> Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 1 / 78

(日) (周) (三) (三)

Introduction

😚 We have studied

- the operations on OBDDs and
- the encoding of a transition system in OBDDs.
- How does one use OBDDs in model checking?
 - 🌻 Symbolic CTL model checking
 - 🌻 Symbolic LTL model checking
- The model checking algorithms are symbolic, because they are based on the manipulation of Boolean functions (rather than state transition graphs).
- Boolean functions (OBDDs) represent sets of states and transitions.
- We can operate on entire sets rather than on individual states and transitions.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

(日) (周) (三) (三)

Fixpoints

- \bigcirc Let S be the set of all states of a system.
- A set $Z \in \mathcal{P}(S)$ is called a fixpoint of a function $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ if $\tau(Z) = Z$.
- A temporal formula f can be viewed as a set Z of states such that
 - $\circledast Z \in \mathcal{P}(S)$ and
 - $\stackrel{\text{\tiny (b)}}{=} f$ is true exactly on the states in Z.
- Each temporal logic operator can be characterized by a fixpoint.

Complete Lattices

- Recall that a complete lattice is a partially ordered set in which every subset of elements has a *least upper bound* (supremum) and a *greatest lower bound* (infimum).
- 📀 For a given set ${\mathcal S}$, $\langle {\mathcal P}({\mathcal S}),\subseteq
 angle$ forms a complete lattice.

$$\red{S}$$
 Let $\mathcal{S}'\subseteq \mathcal{P}(\mathcal{S})$, then

- * the supremum of S', usually denoted sup(S'), equals $\bigcup S'$ and the infimum of S', denoted inf(S'), equals $\bigcap S'$.
- The least element in $\mathcal{P}(S)$ is the empty set \emptyset , which we refer to as *False*.
- The greatest element in $\mathcal{P}(S)$ is the set S, which we refer to as *True*.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Predicate Transformer

Symbolic Model Checking

Predicate Transformer (cont.)

📀 Let au be a predicate transformer.

📀 au is monotonic (order-preserving) provided that

$$P \subseteq Q$$
 implies $\tau(P) \subseteq \tau(Q)$.

 $\bigcirc au$ is U-continuous provided that

$$P_1 \subseteq P_2 \subseteq \cdots$$
 implies $\tau(\cup_i P_i) = \cup_i \tau(P_i)$.

 $\bigcirc au$ is \cap -continuous provided that

$$P_1 \supseteq P_2 \supseteq \cdots$$
 implies $\tau(\cap_i P_i) = \cap_i \tau(P_i)$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 6 / 78

4 2 5 4 2 5

LFP and GFP

- We have seen the following results in a separate lecture.
- $\mathcal{P}(S)$ is a complete lattice and hence also a CPO.
- Consequently, a monotonic predicate transformer au on $\mathcal{P}(S)$ always has
 - otin a least fixpoint, denoted μZ . au(Z), and
 - s a greatest fixpoint, denoted νZ . $\tau(Z)$.

🖻 More precisely,

 $\mu Z \, . \, \tau(Z) = \begin{cases} \cap \{Z \mid \tau(Z) \subseteq Z\} \text{ whenever } \tau \text{ is monotonic} \\ \cup_i \tau^i(False) \text{ whenever } \tau \text{ is also } \cup \text{-continuous} \end{cases}$

 $\nu Z \, . \, \tau(Z) = \begin{cases} \cup \{Z \mid \tau(Z) \supseteq Z\} \text{ whenever } \tau \text{ is monotonic} \\ \cap_i \tau^i(\mathit{True}) \text{ whenever } \tau \text{ is also } \cap \text{-continuous} \end{cases}$

Yih-Kuen Tsay (IM.NTU)

Continuity of Predicate Transformers

Lemma (Lemma 5)

If S is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous.

Proof:

Because S is finite, there is i_0 such that \bigcirc Thus, $\cup_i P_i = P_{i_0}$ and $\tau(\cup_i P_i) = \tau(P_{i_0})$. Because τ is monotonic. $\stackrel{\scriptstyle{(1)}}{=} \tau(P_1) \subseteq \tau(P_2) \subseteq \ldots$, and thus $\overset{\text{\tiny{(0)}}}{=}$ for every $j \geq j_0$, $\tau(P_i) = \tau(P_{i_0})$ and for every $j < j_0$, $\tau(P_i) \subseteq \tau(P_{i_0})$. • As a result, $\bigcup_i \tau(P_i) = \tau(P_{i_0}) = \tau(\bigcup_i P_i)$. The proof that τ is \cap -continuous is similar.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Iterative Approximation

Lemma (Lemma 6)

If
$$\tau$$
 is monotonic, then for every $i \ (\geq 0)$
 $\tau^{i}(False) \subseteq \tau^{i+1}(False)$, and
 $\tau^{i}(True) \supseteq \tau^{i+1}(True)$.

Proof:

- By induction on i.
- Base case: $\tau^0(False) = False \subseteq \tau(False)$.
- Inductive step: since *τ* is monotonic, $τ^k(False) ⊆ τ^{k+1}(False)$ implies $τ(τ^k(False)) ⊆ τ(τ^{k+1}(False))$ and hence $τ^{(k+1)}(False) ⊆ τ^{(k+1)+1}(False)$, for k ≥ 0.
- 😚 The other case is similar.

Yih-Kuen Tsay (IM.NTU)

Convergence of Iterative Approximation

Lemma (Lemma 7)

If τ is monotonic and S is finite, then

• there is an integer i_0 such that for every $j \ge i_0$, τ^j (False) = τ^{i_0} (False), and

Similarly, there is some j_0 such that for every $j \ge j_0$, $\tau^j(True) = \tau^{j_0}(True)$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 10 / 78

Convergence of Iterative Approximation (cont.)

Lemma (Lemma 8)

If τ is monotonic and S is finite, then

- \red{P} there is an integer i_0 such that μZ . $au(Z)= au^{i_0}(extsf{False})$, and
- similarly, there is an integer j_0 such that u Z . $au(Z) = au^{j_0}(True)$.

LFP Procedure


```
function Lfp(\tau : PredicateTransformer) : Predicate

Q := False;

Q' := \tau(Q);

while (Q \neq Q') do

Q := Q';

Q' := \tau(Q);

end while;

return(Q);

end function
```

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 12 / 78

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Correctness of LFP Procedure

😚 The invariant of the while loop is

$$(\mathcal{Q}'= au(\mathcal{Q}))\wedge (\mathcal{Q}\subseteq \mu \mathcal{Z} \ . \ au(\mathcal{Z}))$$

(cf.
$$(Q' = \tau(Q)) \land (Q' \subseteq \mu Z \ . \ \tau(Z)))$$

The number of iterations before the while loop terminates is bounded by |S|.

When the loop does terminate, we will have

$$Q = \tau(Q)$$
 (Q is a fixpoint) and
 $Q \subseteq \mu Z$. $\tau(Z)$.

 \bigcirc Since Q is also a fixpoint, μZ . $\tau(Z) \subseteq Q$.

😚 Hence
$${\it Q}=\mu Z$$
 . $au(Z)$.

Yih-Kuen Tsay (IM.NTU)

(日) (周) (三) (三)

GFP Procedure

We can also see that, if \(\tau\) is monotonic, its greatest fixpoint can be computed by the following program.

function $Gfp(\tau : PredicateTransformer) : Predicate$ <math>Q := True; $Q' := \tau(Q);$ while $(Q \neq Q')$ do Q := Q'; $Q' := \tau(Q);$ end while; return(Q); end function

• An analogous argument can be used to show that the procedure terminates and the value returns is $\nu Z \cdot \tau(Z)$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

イロト イポト イヨト イヨト 二日

Characterization of CTL Operators

- Solution Each CTL formula f is identified with the predicate $\{s \mid M, s \models f\}$ in $\mathcal{P}(S)$.
- It turns out that each of the basic CTL operators may be characterized as the least or greatest fixpoint of an appropriate predicate transformer.
- Least fixpoints correspond to eventualities.
- Greatest fixpoints correspond to properties that should hold forever.
- We will take a closer look at two cases:

EG
$$f = \nu Z$$
 . $f \wedge \mathbf{EX} Z$

 $\stackrel{\text{\tiny{\bullet}}}{=} \mathbf{E}[f_1 \mathbf{U} f_2] = \mu Z \ . \ f_2 \lor (f_1 \land \mathbf{EX} Z)$

Yih-Kuen Tsay (IM.NTU)

- 4 目 ト - 4 日 ト - 4 日 ト

Characterization of EG

• To see why **EG**
$$f = \nu Z$$
 . $f \wedge \mathbf{EX} Z$ intuitively ...

😚 Let
$$au(Z) = f \wedge \mathsf{EX} Z$$
.

📀
$$au(\mathit{True}) = \mathit{f} \land \mathsf{EX} \mathit{True} = \mathit{f}$$
 .

$$\bullet \tau^2(True) = f \wedge \mathbf{EX} f.$$

•
$$\tau^3(True) = f \wedge \mathsf{EX}(f \wedge \mathsf{EX} f).$$

•
$$\tau^{i}(True) = f \wedge \mathsf{EX}(f \wedge \mathsf{EX}(\cdots (f \wedge \mathsf{EX} f) \cdots))$$

(**EX** is applied $i - 1$ times to the inner most f).

So, states in the limit of
$$\tau^i(True)$$
 satisfy **EG** f .

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

3

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

About $\tau(Z) = f \wedge \mathbf{EX} Z$

Lemma (Lemma 9)

 $au(Z) = f \wedge \mathsf{EX} Z$ is monotonic.

Proof:

- Let $P_1 \subseteq P_2$. We need to show that $\tau(P_1) \subseteq \tau(P_2)$.
- Given an arbitrary state $s \in \tau(P_1)$, it suffices to show that $s \in \tau(P_2)$, namely
 - $* s \models f and$

ightharpoints $s \models \mathsf{EX} P_2$, i.e., there is a successor of state s in P_2 .

- 📀 Because $s \in au(P_1)$,
 - $\circledast s \models f$ and
 - S ⊨ EX P₁, i.e., there exists a successor s' of state s in P₁, which implies that s' is in P₂ (since P₁ ⊆ P₂).
- Thus, $s \in \tau(P_2)$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

IM

Lemma (Lemma 10)

Let $\tau(Z) = f \land \mathbf{EX} Z$ and let $\tau^{i_0}(True)$ be the limit of the sequence $True \supseteq \tau(True) \supseteq \cdots$. For every $s \in S$, if $s \in \tau^{i_0}(True)$ then $s \models f$, and there is a state s' such that $(s, s') \in R$ and $s' \in \tau^{i_0}(True)$.

Proof:

• Let
$$s \in \tau^{i_0}(True)$$
.

Secause $\tau^{i_0}(True)$ is a fixpoint of τ , $\tau^{i_0}(True) = \tau(\tau^{i_0}(True))$.

• Thus $s \in \tau(\tau^{i_0}(True))$.

Solution f we get that $s \models f$ and there is a state s', such that $(s, s') \in R$ and $s' \in \tau^{i_0}(True)$.

Yih-Kuen Tsay (IM.NTU)

Lemma (Lemma 11)

EG f is a fixpoint of the function $\tau(Z) = f \wedge \mathbf{EX} Z$.

Proof:

- We first show $\mathbf{EG} f \subseteq f \land \mathbf{EX} \mathbf{EG} f$ and then $f \land \mathbf{EX} \mathbf{EG} f \subseteq \mathbf{EG} f$.
- Suppose $s_0 \models \mathbf{EG} f$.
- By the definition of \models , there is a path s_0, s_1, \cdots in M such that for all $k, s_k \models f$.
- 📀 This implies that $s_0 \models f$ and $s_1 \models \mathsf{EG}\, f$.
- 😚 In other words, $s_0 \models f$ and $s_0 \models \mathsf{EX} \operatorname{\mathsf{EG}} f$.
- Thus, EG $f \subseteq f \land EX EG f$.
- Similarly, if $s_0 \models f \land \mathsf{EX} \operatorname{EG} f$, then $s_0 \models \mathsf{EG} f$.
- Thus, $f \wedge \mathsf{EX} \operatorname{EG} f \subseteq \operatorname{EG} f$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

IM

Lemma (Lemma 12)

EG f is the greatest fixpoint of the function $\tau(Z) = f \wedge \mathbf{EX} Z$.

Proof:

- Because τ is monotonic (Lemma 9), by Lemma 5 it is also \cap -continuous.
- In order to show that **EG** f is the greatest fixpoint of τ , it is sufficient to prove that **EG** $f = \bigcap_i \tau^i (True)$, i.e.,

EG $f \subseteq \cap_i \tau^i$ (*True*) and $(i = i)_i \tau^i$ (*True*) \subseteq **EG** f.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

<ロ → < 団 → < 国 → < 国 → < 国 → 目 → ○ Q (? Automatic Verification 2019 20 / 78

Proof of **EG** $f \subseteq \cap_i \tau^i$ (*True*):

- It suffices to show that **EG** $f \subseteq \tau^i$ (*True*), for all *i*.
- The proof is by induction on *i*.
- Sector Base case: clearly, **EG** $f \subseteq True = \tau^0(True)$.

Inductive step:

- Sume that **EG** $f \subseteq \tau^k$ (*True*), for an arbitrary k.
- Because τ is monotonic, $\tau(\mathbf{EG} f) \subseteq \tau(\tau^k(True)) = \tau^{k+1}(True)$.
- By Lemma 11 (EG f is a fixpoint of τ), τ (EG f) = EG f.
- Whence, **EG** $f \subseteq \tau^{k+1}(True)$.

Proof of $\cap_i \tau^i$ (*True*) \subseteq **EG** *f*:

- Consider some state $s \in \cap_i \tau^i$ (*True*).
- The state s is included in every $\tau^i(True)$.
- 😚 Hence, it is also in the fixpoint $au^{i_0}(\mathit{True})$.
- By Lemma 10, s is the start of an infinite sequence of states in which each state is related to the previous one by the relation R.
- 😚 Furthermore, each state in the sequence satisfies f.
- Solution Thus $s \models \mathbf{EG} f$.

Characterization of EU

• To see why
$$\mathbf{E}[f_1 \mathbf{U} f_2] = \mu Z$$
. $f_2 \lor (f_1 \land \mathbf{EX} Z)$ intuitively ...
• Let $\tau(Z) = f_2 \lor (f_1 \land \mathbf{EX} Z)$.
• $\tau(False) = f_2 \lor (f_1 \land \mathbf{EX} False) = f_2$.
• $\tau^2(False) = f_2 \lor (f_1 \land \mathbf{EX} f_2)$.
• $\tau^3(False) = f_2 \lor (f_1 \land \mathbf{EX} (f_2 \lor (f_1 \land \mathbf{EX} f_2)))$.
• ...

- $\tau^i(False) = f_2 \vee (f_1 \wedge \mathsf{EX} (f_2 \vee (f_1 \wedge \mathsf{EX} (\cdots (f_2 \vee (f_1 \wedge \mathsf{EX} f_2)) \cdots))))$ (**EX** is applied i - 1 times to the inner most f_2).
- f_2 will eventually become true on some path; Before then, f_1 remains true.
- So, states in the limit of $\tau^i(False)$ satisfy $\mathbf{E}[f_1 \mathbf{U} f_2]$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX} Z)$

Lemma (Lemma 13)

 $\mathbf{E}[f_1 \mathbf{U} f_2]$ is the least fixpoint function of the function $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX} Z)$.

Proof:

- $\tau(Z) = f_2 \lor (f_1 \land \mathbf{EX} Z)$ is monotonic, hence τ is \cup -continuous.
- $\mathbf{E}[f_1 \mathbf{U} f_2]$ is a fixpoint of $\tau(Z)$, proof similar to that for $\mathbf{EG} f$.
- We still need to prove that $\mathbf{E}[f_1 \mathbf{U} f_2]$ is the least fixpoint of $\tau(Z)$.
- It is sufficient to show that $\mathbf{E}[f_1 \cup f_2] = \bigcup_i \tau^i (False)$, i.e., • $\bigcup_i \tau^i (False) \subset \mathbf{E}[f_1 \cup f_2]$ and

$$\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \cup_i \tau^i (False).$$

Yih-Kuen Tsay (IM.NTU)

Proof of $\cup_i \tau^i$ (*False*) $\subseteq \mathbf{E}[f_1 \mathbf{U} f_2]$:

- It suffices to show that $\tau^i(False) \subseteq \mathbf{E}[f_1 \cup f_2]$ for all *i*.
- We prove this by induction on *i*.
- Base case: $au^0(False) = False \subseteq \mathbf{E}[f_1 \, \mathbf{U} \, f_2].$

Inductive step:

- We assume $\tau^k(False) \subseteq \mathbf{E}[f_1 \, \mathbf{U} \, f_2]$ for an arbitrary k.
- By the monotonicity of au, $au(au^k(False)) \subseteq au(\mathbf{E}[f_1 \cup f_2]).$
- Since $\mathbf{E}[f_1 \mathbf{U} f_2]$ is a fixpoint of $\tau(Z)$, $\tau(\mathbf{E}[f_1 \mathbf{U} f_2]) = \mathbf{E}[f_1 \mathbf{U} f_2]$.
- It follows that $au^{k+1}(False) \subseteq \mathbf{E}[f_1 \cup f_2].$

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX} Z)$ (cont.)

Proof of $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \bigcup_i \tau^i (False)$:

- We prove this direction by induction on the length of the prefix of the path along which $f_1 \mathbf{U} f_2$ is satisfied.
- If s ∈ E[f₁ U f₂] (i.e., s ⊨ E[f₁ U f₂]), then there exists a path $\pi = s_1, s_2, \ldots$ with s = s₁ such that, for some j ≥ 1, s_j ⊨ f₂ and, for all l < j, s_l ⊨ f₁.
- 📀 We claim the following:

For every $\pi = s_1, s_2, \ldots$, if $\pi \models f_1 \cup f_2$, then for every j such that $s_j \models f_2$ and, for all l < j, $s_l \models f_1$, $s_1 \in \tau^j(False)$ holds.

- From the claim, it follows that s ∈ E[f₁ U f₂] implies s ∈ τ^j(False) for some j.
- Therefore, $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \bigcup_i \tau^i (False)$.

Yih-Kuen Tsay (IM.NTU)

About $\tau(Z) = f_2 \vee (f_1 \wedge \mathsf{EX} Z)$ (cont.)

Proof of $\mathbf{E}[f_1 \mathbf{U} f_2] \subseteq \bigcup_i \tau^i(False)$ (continued):

• We now prove the claim by induction on *j*.

Sase case
$$(j = 1)$$
:

 $ilde{s}_1\models f_2$ and therefore $s_1\in f_2\lor (f_1\wedge \mathsf{EX}\ \mathit{False})= au(\mathit{False}).$

📀 Inductive step:

- Solution Let π be a path $s_1, s_2, \ldots, s_k, \ldots$ with k > 1 such that $s_k \models f_2$ and for all l < k, $s_l \models f_1$ (so, $\pi \models f_1 \cup f_2$).
- Since k > 1, s_2, s_3, \ldots also satisfies $f_1 \cup f_2$. More precisely, s_2 is the start of a sequence $\pi' = s'_1, s'_2, \ldots$ (= s_2, s_3, \ldots) such that $s'_{k-1}(=s_k) \models f_2$ and for all l < k-1, $s'_l \models f_1$.
- From the induction hypothesis, s₁' ∈ τ^{k-1}(False), i.e., s₂ ∈ τ^{k-1}(False).
- With $s_1 \models f_1$, $(s_1, s_2) \in R$, and $s_2 \in \tau^{k-1}(False)$, we have $s_1 \in f_1 \land \mathsf{EX}(\tau^{k-1}(False)) \subseteq f_2 \lor (f_1 \land \mathsf{EX}(\tau^{k-1}(False))) = \tau^k(False)$.

Yih-Kuen Tsay (IM.NTU)

An Example

Source: [Clarke et al. 1999]. Names of states (clockwise): s₀, s₁, s₂, s₃.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 28 / 78

- 34

<ロ> (日) (日) (日) (日) (日)

An Example (cont.)

Sequence of approximations for $\mathbf{E}[p \mathbf{U} q] = \mu Z$. $q \lor (p \land \mathbf{EX} Z)$:

$$\begin{aligned} \tau^{1}(False) &= q \lor (p \land \mathsf{EX} \ False) \\ &= q \\ \tau^{2}(False) &= q \lor (p \land \mathsf{EX} \ \tau(False)) \\ &= q \lor (p \land \mathsf{EX} \ q) \\ &= q \lor (p \land \mathsf{EX} \ q) \\ &= q \lor (p \land \mathsf{EX} \ q) \\ &= q \lor (p \land \mathsf{EX} \ \tau^{2}(Fasle)) \\ &= q \lor (p \land \mathsf{EX} \ \tau^{2}(Fasle)) \\ &= q \lor (p \land \mathsf{EX} \ (q \lor \{s_{1}\})) \\ &= q \lor (p \land \mathsf{EX} \ (q \lor \{s_{1}\})) \\ &= q \lor (p \land \mathsf{EX} \ (q \lor \{s_{1}\})) \\ &= q \lor (p \land \{s_{0}, s_{1}, s_{2}, s_{3}\}) \\ &= q \lor p \end{aligned}$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

ペロト 《□ ト 《□ ト 《三 ト 《三 ト 《三 ト ② へ ○ Automatic Verification 2019 29 / 78

Characterization of CTL Operators (cont.)

- AF $f = \mu Z$. $f \lor AX Z$
- \bigcirc EF $f = \mu Z$. $f \lor$ EX Z
- \bigcirc AG $f = \nu Z$. $f \wedge$ AX Z
- \bigcirc EG $f = \nu Z$. $f \wedge$ EX Z
- $\mathbf{A}[f \mathbf{U} g] = \mu Z \cdot g \lor (f \land \mathbf{AX} Z)$
- $\mathbf{E}[f \mathbf{U} g] = \mu Z \cdot g \lor (f \land \mathbf{EX} Z)$
- $\mathbf{A}[f \mathbf{R} g] = \nu Z \cdot g \wedge (f \vee \mathbf{AX} Z)$
- $\mathbf{E}[f \mathbf{R} g] = \nu Z \cdot g \wedge (f \vee \mathbf{EX} Z)$

(日) (周) (三) (三)

Symbolic Model Checking for CTL

- There is a quite fast explicit state model checking algorithm for CTL, but a state explosion problem may occur.
- In the following, we will present a Symbolic Model Checking (SMC) algorithm for CTL which operates on Kripke structures represented symbolically using OBDDs.
- For this, the logic of Quantified Boolean Formulae (QBF) will be used.
 - QBF formulae are as expressive as the usual Boolean formulae.
 - However, they allow a more succinct notation for complex operations on Boolean formulae.

Quantified Boolean Formulae (QBF)

- Let V be a set $\{v_0, \ldots, v_{n-1}\}$ of propositional variables.
- P QBF(V) is the smallest set of formulae such that
 - otin every variable in V is a formula,
 - if f and g are formulae, then $\neg f$, $f \lor g$, and $f \land g$ are formulae, and

Truth Assignment

A truth assignment for QBF(V) is a function σ : V → {0,1}.
If a ∈ {0,1}, then the notation σ⟨v ← a⟩ is used for the truth assignment defined by

$$\sigma \langle \mathbf{v} \leftarrow \mathbf{a} \rangle (\mathbf{w}) = \begin{cases} \mathbf{a} & \text{if } \mathbf{v} = \mathbf{w} \\ \sigma(\mathbf{w}) & \text{otherwise} \end{cases}$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 33 / 78

Models of **QBF**

- $\sigma \models f$ denotes that the QBF formula f is true under the assignment σ .
- The \models (satisfaction) relation is defined inductively as follows:

$$\sigma \models v \qquad \text{iff} \quad \sigma(v) = 1$$

$$\sigma \models \neg f \qquad \text{iff} \quad \sigma \not\models f$$

$$\sigma \models f \lor g \qquad \text{iff} \quad \sigma \models f \text{ or } \sigma \models g$$

$$\sigma \models f \land g \qquad \text{iff} \quad \sigma \models f \text{ and } \sigma \models g$$

$$\sigma \models \exists vf \qquad \text{iff} \quad \sigma \langle v \leftarrow 0 \rangle \models f \text{ or } \sigma \langle v \leftarrow 1 \rangle \models f$$

$$\sigma \models \forall vf \qquad \text{iff} \quad \sigma \langle v \leftarrow 0 \rangle \models f \text{ and } \sigma \langle v \leftarrow 1 \rangle \models f$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 34 / 78

The quantifiers in QBF can be implemented as combinations of the restrict and apply operators.

$$\exists xf = f |_{x \leftarrow 0} \lor f |_{x \leftarrow 1} \forall xf = f |_{x \leftarrow 0} \land f |_{x \leftarrow 1}$$

So, like Boolean formulae, QBF formulae can be represented by OBDDs.

Symbolic Model Checking

(日) (同) (三) (三)

The SMC algorithm is implemented by a procedure *Check*.

- 🌻 Argument: a CTL formula
- Return: an OBDD that represents exactly those states of the system that satisfy the formula

(日) (周) (三) (三)
SMC Algorithm (cont.)

Check(a)

 $Check(f \land g)$ $Check(\neg f)$ Check(EX f)Check(E[f U g])Check(EG f)

 the OBDD representing the set of states satisfying the atomic proposition a

$$check(f) \wedge Check(g)$$

$$\neg Check(f)$$

=

=

_

=

= CheckEU(Check(f), Check(g))

Symbolic Model Checking

The formula EX f is true in a state if the state has a successor in which f is true.

$$CheckEX(f(\bar{v})) = \exists \bar{v}'[f(\bar{v}') \land R(\bar{v}, \bar{v}')],$$

where $R(\bar{v}, \bar{v}')$ is the OBDD representation of the transition relation.

(日) (同) (三) (三)

CheckEU

CheckEU is based on the least fixpoint characterization for the CTL operator EU.

$$\mathbf{E}[f \, \mathbf{U} \, g] = \mu Z \, . \, g \lor (f \land \mathbf{EX} \, Z)$$

The function Lfp is used to compute a sequence of approximations

$$Q_0, Q_1, \ldots, Q_i, \ldots$$

that converges to $\mathbf{E}[f \mathbf{U}g]$ in a finite number of steps.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 39 / 78

(日) (周) (三) (三)

- If we have OBDDs for f, g, and the current approximation Q_i , then we can compute an OBDD for the next approximation Q_{i+1} .
- When $Q_i = Q_{i+1}$ (it is easy to test because OBDDs provide a canonical form of Boolean functions), the function Lfp terminates.

Symbolic Model Checking

Automatic Verification 2019 40 / 78

イロト イポト イヨト イヨト

EG $f = \nu Z$. $f \wedge \mathbf{EX} Z$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 41 / 78

3

(日) (周) (三) (三)

Fairness in SMC

- Assume the fairness constraints are given by a set of CTL formulae $F = \{P_1, \ldots, P_n\}$.
- A fair path is a path on which each formula in F holds infinitely often.
- We define a new procedure CheckFair for checking CTL formulae relative to the fairness constructions in F.
- We do this by defining new intermediate procedures CheckFairEX, CheckFairEU, and CheckFairEG, which correspond to the intermediate procedures used to define Check.

EG *f* with Fairness

- Consider the formula **EG** *f* given fairness constraints *F*.
- The formula means that there exists a fair path beginning with the current state on which f holds globally.
- The set of such states Z is the largest set with the following two properties:
 - all of the states in Z satisfy f, and
 - for all P_k ∈ F and all s ∈ Z, there is a sequence of states of length one or greater from s to a state in Z satisfying P_k such that all states on the path satisfy f.
 (cf. There exists a path in S', where f holds, that leads from s to some node t in a nontrivial fair strongly connected

component of the graph (S', R').)

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 43 / 78

イロト 不得 トイヨト イヨト 二日

EG *f* with Fairness (cont.)

The characterization can be expressed by means of a fixpoint as follows:

$$\mathbf{EG} f = \nu Z \cdot f \wedge \bigwedge_{k=1}^{n} \mathbf{EX} \mathbf{E}[f \mathbf{U} (Z \wedge P_{k})]$$

- Note that the formula, using both CTL and fixpoint operators, is not directly expressible in CTL.
- We are going to prove the correctness of this equation.
- 📀 We split it into two lemmas.

Symbolic Model Checking

(日) (周) (三) (三)

Fair Version of EG f

Lemma (Lemma 14)

The fair version of $\mathbf{EG} f$ is a fixpoint of the equation

$$Z = f \wedge \bigwedge_{k=1}^{n} \mathbf{EX} \, \mathbf{E}[f \, \mathbf{U} \, (Z \wedge P_k)].$$

Proof: It suffices to show that

$$\mathbf{EG}\,f\subseteq f\wedge\bigwedge_{k=1}^{n}\mathbf{EX}\,\mathbf{E}[f\,\mathbf{U}\,(\mathbf{EG}\,f\wedge P_{k})]$$

and

$$f \wedge \bigwedge_{k=1}^{n} \mathbf{EX} \, \mathbf{E}[f \, \mathbf{U} \, (\mathbf{EG} \, f \wedge P_k)] \subseteq \mathbf{EG} \, f.$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 45 / 78

Fair Version of EG f (cont.)

• Case 1: **EG**
$$f \subseteq f \land \bigwedge_{k=1}^{n}$$
 EX E[f **U** (**EG** $f \land P_{k}$)].

- Let $s \models \mathbf{EG} f$, then s is the start of a fair path π , all of whose states satisfy f.
- Solution by the first state on π such that $s_i \in P_i$ and $s_i \neq s$.
- The state s_i is also a start of a fair path along which all states satisfy f.
- \bullet Thus, $s_i \in \mathbf{EG} f$.
- Solution is that for every $i, s \models f \land \mathsf{EX} \mathsf{E}[f \mathsf{U}(\mathsf{EG} f \land P_i)]$.

• Therefore,
$$s \models f \land \bigwedge_{k=1}^{n} \mathsf{EX} \mathsf{E}[f \mathsf{U} (\mathsf{EG} f \land P_k)].$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 46 / 78

- 4 同 6 4 日 6 4 日 6

Fair Version of EG f (cont.)

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 47 / 78

3

(日) (周) (日) (日)

Lemma (Lemma 15)

The greatest fixpoint of the following equation is included in $\mathbf{EG} f$.

$$Z = f \wedge \bigwedge_{k=1}^{n} \mathsf{EX}\,\mathsf{E}[f\,\mathsf{U}\,(Z \wedge P_{k})]$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 48 / 78

イロト 不得下 イヨト イヨト 二日

Fair Version of EG f (cont.)

Proof of Lemma 15:

- 📀 Let Z be an arbitrary fixpoint of the formula.
- 😚 Assume that $s \in Z$. Then $s \models f$.
- s has a successor s' that is a start of a path to a state s₁ such that
 - e all states on this path satisfy f and
 - i satisfies $Z \wedge P_1$.
- Secause $s_1 \in Z$ we can conclude by the same argument that there is a path from s_1 to a state s_2 in P_2 .

イロト 不得下 イヨト イヨト 二日

Proof of Lemma 15 (continued):

- Using this argument *n* times we conclude that *s* is the start of a path along which all states satisfy *f* and which passes through P_1, \ldots, P_k .
- The last state on the path is in Z, and thus there is a path from this state back to some state in P_1 .
- Induction can be used to show that there exists a fair path starting at *s* such that *f* is satisfied along the path, i.e., $s \models \mathbf{EG} f$.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CheckFairEG(f(v)) is based on the following fixpoint characterization:

$$\nu Z(\bar{v}) \cdot f(\bar{v}) \wedge \bigwedge_{k=1}^{n} \mathsf{EX} \, \mathsf{E}[f(\bar{v}) \, \mathsf{U} \, (Z(\bar{v}) \wedge P_{k})].$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 51 / 78

3

イロト イポト イヨト イヨト

The set of all states which are the start of some fair computation is

$$fair(\bar{v}) = CheckFair(\mathbf{EG} \ True).$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 52 / 78

3

イロト イポト イヨト イヨト

 $CheckFairEX(f(\bar{v})) = CheckEX(f(\bar{v}) \land fair(\bar{v}))$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 53 / 78

イロン 不問と イヨン イヨン

The formula $\mathbf{E}[f \mathbf{U}g]$ under fairness constraints is equivalent to the formula $\mathbf{E}[f \mathbf{U}g \wedge fair]$ without fairness constraints.

 $\mathit{CheckFairEU}(f(\bar{v}), g(\bar{v})) = \mathit{CheckEU}(f(\bar{v}), g(\bar{v}) \land \mathit{fair}(\bar{v}))$

Symbolic Model Checking

Automatic Verification 2019 54 / 78

イロト イポト イヨト イヨト 二日

LTL Model Checking

- Let A f be a linear temporal logic formula where f is a restricted path formula.
- A formula f is a restricted path formula if all state subformulae in f are atomic propositions.
- In the problem is to determine all of those states *s* ∈ *S* such that $M, s \models A f$.
- Since $M, s \models \mathbf{A} f$ iff $M, s \models \neg \mathbf{E} \neg f$, it is sufficient to check the truth of formulae of the form $\mathbf{E} f$.

イロト 不得下 イヨト イヨト 二日

LTL Model Checking (cont.)

- Given a formula E f and a Kripke structure M, the procedure of LTL model checking is:
 - Construct a tableau T for the path formula f.
 - Compose T with M.
 - Find a path in the composition.
- 📀 The tableau can be represented by OBDDs.

States of the Tableau

- Each state in the tableau is a set of elementary formulae obtained from f.
- The set of elementary subformulae of f is denoted by el(f) and is defined recursively as follows.

• The set of states S_T of T is $\mathcal{P}(el(f))$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 57 / 78

- 4 同 6 4 日 6 4 日 6

Transition Relation of the Tableau

• An additional function *sat* is defined recursively as follows.

$$\begin{array}{lll} sat(g) &= \{s \mid g \in s\} \text{ where } g \in el(f) \\ sat(\neg g) &= \{s \mid s \notin sat(g)\} \\ sat(g \lor h) &= sat(g) \cup sat(h) \\ sat(g \mathbf{U} h) &= sat(h) \cup (sat(g) \cap sat(\mathbf{X}(g \mathbf{U} h))) \end{array}$$

📀 The transition relation R_T of T is defined as

$${\sf R}_{{\sf T}}(s,s') = igwedge_{{\sf X}_{{\sf g}}\in {\it el}(f)} s \in {\it sat}({\sf X}_{{\sf g}}) \Leftrightarrow s' \in {\it sat}(g)$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 58 / 78

(日) (同) (三) (三)

- An additional condition is necessary in order to identify those paths along which f holds.
- $\ref{eq: the starts}$ A path π that starts from a state $s \in sat(f)$ will satisfy f iff
 - for every subformula $g \mathbf{U} h$ and for every state s on π , if $s \in sat(g \mathbf{U} h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

(日) (周) (三) (三)

The Microwave Oven Example

Source: redrawn from [Clarke et al. 1999, Fig. 4.3].

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 60 / 78

- 34

イロト イポト イヨト イヨト

The Microwave Oven Example (cont.)

Tableau for $\neg g = \neg(\neg heat \mathbf{U} close)$:

Source: [Clarke et al. 1999].

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 61 / 78

イロト 不得下 イヨト イヨト 二日

Eventuality

- The definition of R_T does not guarantee that eventuality properties are fulfilled.
- A path π that starts from a state s ∈ sat(f) will satisfy f if and only if
 - for every subformulae $g \mathbf{U} h$ and for every state s on π , if $s \in sat(g \mathbf{U} h)$ then either $s \in sat(h)$ or there is a later state t on π such that $t \in sat(h)$.

(日) (周) (三) (三)

Additional Notations

$$s_i = \{\psi \mid \psi \in el(f) \text{ and } M, \pi' \models \psi\}$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 63 / 78

3

<ロ> (日) (日) (日) (日) (日)

Correctness

Lemma (Lemma 16)

Let sub(f) be the set of all subformulae of f. For all $g \in sub(f) \cup el(f)$, $M, \pi'_i \models g$ if and only if $s_i \in sat(g)$.

Proof:

```
Section 2: Let g \in el(f).
       \circledast M, \pi'_i \models g iff g \in s_i.
       \circledast g \in s_i iff s_i \in sat(g).
• Case 2: Let g = \neg g_1 or g = g_1 \lor g_2.
• Case 3: Let g = g_1 \bigcup g_2.
       \circledast M, \pi'_i \models g_1 \cup g_2 iff M, \pi'_i \models g_2 or (M, \pi'_i \models g_1 and
            M, \pi'_i \models \mathbf{X}(g_1 \cup g_2)).
       \overset{\bullet}{=} M, \pi'_i \models g_2 or (M, \pi'_i \models g_1 and M, \pi'_i \models X(g_1 \cup g_2)) iff
            s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(\mathbf{X}(g_1 \cup g_2))).
       \circledast s_i \in sat(g_2) \lor (s_i \in sat(g_1) \land s_i \in sat(X(g_1 \cup g_2))) iff
            s_i \in sat(g_1 \mathbf{U} g_2).
```

Yih-Kuen Tsay (IM.NTU)

64 / 78

Correctness (cont.)

Lemma (Lemma 17)

Let $\pi' = s'_0 s'_1 \dots$ be a path in M. For all $i \ge 0$, let s_i be the tableau state. Then $\pi = s_0 s_1 \dots$ is a path in T.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

◆□ → < 団 → < Ξ → < Ξ → Ξ → ○ Q ○ Automatic Verification 2019 65 / 78

Correctness (cont.)

Theorem (Theorem 4)

Let T be the tableau for the path formula f. Then, for every Kripke structure M and every path π' of M, if $M, \pi' \models f$ then there is a path π in T that starts in a state in sat(f), such that $label(\pi')|_{AP_f} = label(\pi)$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 66 / 78

イロト 不得下 イヨト イヨト 二日

Composition of T and M

- P = (S, R, L) is the product of the tableau $T = (S_T, R_T, L_T)$ and the Kripke structure $M = (S_M, R_M, L_M)$.
 - S = {(s,s') | s ∈ S_T, s' ∈ S_M and L_M(s') |_{AP_f} = L_T(s)}.
 R((s,s'), (t,t')) iff R_T(s,t) and R_M(s',t').
 L((s,s')) = L_T(s).
- The function *sat* is extended to be defined over *S* by $(s, s') \in sat(g)$ if and only if $s \in sat(g)$.

The Microwave Oven Example (cont.)

Product of the microwave and the tableau for $\neg(\neg heat \mathbf{U} close)$:

Source: adapted from [Clarke et al. 1999, Fig. 6.10].

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 68 / 78

Correctness

Lemma (Lemma 18)

 $\pi'' = (s_0, s'_0), (s_1, s'_1), \dots$ is a path in P with $L_P((s_i, s'_i)) = L_T(s_i)$ for all $i \ge 0$ if and only if there exists a path $\pi = s_0, s_1, \dots$ in T, and a path $\pi' = s'_0, s'_1, \dots$ in M with $L_T(s_i) = L_M(s_i) |_{AP_f}$ for all $i \ge 0$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

◆□ → < 団 → < Ξ → < Ξ → Ξ → ○ Q ○ Automatic Verification 2019 69 / 78

Correctness (cont.)

Theorem (Theorem 5)

 $M, s' \models \mathbf{E} f$ if and only if there is a state s in T such that $(s, s') \in sat(f)$ and $P, (s, s') \models \mathbf{EG}$ True under fairness constraints

 $\{sat(\neg(g \mathbf{U} h) \lor h) \mid g \mathbf{U} h \text{ occurs in } f\}.$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 70 / 78

Summary of LTL Model Checking

- Given a Kripke structure M, a state s' in M and a LTL formula f.
- Construct a symbolic representation of *M*.
- 😚 Construct a symbolic representation of $T_{\neg f}$.
- Construct the product P of M and $T_{\neg f}$.
- Use the symbolic CTL model checking algorithm to check if there is a state s in T_{¬f} such that

$$otin (s,s') \in sat(
eg f)$$
 and

 $P, (s, s') \models$ **EG** *True* under fairness constraints

 $\{sat(\neg(g \mathbf{U} h) \lor h) \mid g \mathbf{U} h \text{ occurs in } f\}.$

イロト 不得下 イヨト イヨト 二日

SMC for LTL [Kesten et al 1995]

- Here we slightly modify the definition of Kripke structures and the symbolic algorithm in [Kesten *et al.* 1995].
- A Kripke structure M is a tuple (V, S_0, R) where
 - V is a set of system variables and thus the set of states S is the set of all valuations for V,
 - $\stackrel{\scriptstyle ar{}}{}$ S_0 is the initial condition defined upon V, and
 - $\circledast R \subseteq S \times S$ is the transition relation which is total.
- The problem is to check, given a Kripke structure M and a formula f, whether $M \models f$ (all paths of M satisfy f).

イロト 不得下 イヨト イヨト 二日
SMC for LTL [Kesten et al 1995] (cont.)

- Let V_f be the set of all propositions in f. Without loss of generality, we assume $V_f = V$ (of the Kripke structure).
- For each elementary formula p ∈ el(f), a Boolean variable (elementary variable) x_p is associated.
- The set of elementary variables are represented by a vector $\bar{x} = x_1, x_2, \dots, x_m$ where m = |el(f)|.
- Note that a valuation for x̄ constitutes a state in M and a state in T_f.

イロト 不得下 イヨト イヨト 二日

Formulae in Elementary Formulae

• Let CL(f) denote the closure of the LTL formula f.

For each formula p ∈ CL(f), we define a Boolean function χ_p(x̄) which expresses p in terms of the elementary variables:

For
$$p \in el(f)$$
, $\chi_p(\bar{x}) = x_p$
For $p = \neg q$, $\chi_p = \neg \chi_q$
For $q \wedge r$, $\chi_p = \chi_q \wedge \chi_r$
For $p = q \mathbf{U} r$, $\chi_p = \chi_r \lor (\chi_q \wedge x_{\mathbf{X}(q \mathbf{U} r)})$
For $p = q \mathbf{S} r$, $\chi_p = \chi_r \lor (\chi_q \wedge x_{\mathbf{Y}(q \mathbf{S} r)})$

Note: \mathbf{Y} is the "previous" operator.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 74 / 78

(日) (周) (三) (三)

• There exists a computation in M satisfying f iff $sat_{M,f}$ as defined below is true.

$$sat_{M,f}$$
: $\exists \bar{x}, \bar{y} : init(\bar{x}) \land E^*(\bar{x}, \bar{y}) \land scf^E(\bar{y})$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 75 / 78

(日) (周) (三) (三)

- The following formula identifies an initial state in the product of M and T_f .
 - It is an initial state in M.
 - It is also an initial atom in T_f.

$$\mathit{init}(\bar{x}): \chi_f(\bar{x}) \land (\bigwedge_{\mathbf{Y}_p \in \mathit{CL}(f)} \neg x_{\mathbf{Y}_p}) \land S_0(\bar{x})$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 76 / 78

イロト イポト イヨト イヨト

Transition Relation

The following formula identifies the set of transitions in the product:

$$E(\bar{x},\bar{y}):e(\bar{x},\bar{y})\wedge R(\bar{x},\bar{y})$$

where

$$e(\bar{x}, \bar{y}) : \bigwedge_{\mathbf{X}_{p} \in e^{l}(f)} (x_{\mathbf{X}_{p}} \leftrightarrow \chi_{p}(\bar{y})) \land \bigwedge_{\mathbf{Y}_{p} \in e^{l}(f)} (\chi_{p}(\bar{x}) \leftrightarrow y_{\mathbf{Y}_{p}})$$

$$E^{+}(\bar{x}, \bar{y}) = E(\bar{x}, \bar{y}) \lor \exists \bar{z} : E^{+}(\bar{x}, \bar{z}) \land E(\bar{z}, \bar{y})$$

$$E^{*}(\bar{x}, \bar{y}) : (\bar{x} = \bar{y}) \lor E^{+}(\bar{x}, \bar{y})$$
The definitions of $e^{+}(\bar{x}, \bar{y})$ and $e^{*}(\bar{x}, \bar{y})$ are similar to $E^{+}(\bar{x}, \bar{y})$
and $E^{*}(\bar{x}, \bar{y})$.

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 77 / 78

3

(日) (周) (三) (三)

The following formula identifies fulfilling atoms.

$$scf^{E}(\bar{x}): E^{+}(\bar{x},\bar{x}) \wedge \bigwedge_{p \, \mathbf{U} \, q \in CL(f)} (\chi_{p \, \mathbf{U} \, q}(\bar{x}) \rightarrow \\ \exists \bar{z}: E^{*}(\bar{x},\bar{z}) \wedge \chi_{q}(\bar{z}) \wedge E^{*}(\bar{z},\bar{x}))$$

Yih-Kuen Tsay (IM.NTU)

Symbolic Model Checking

Automatic Verification 2019 78 / 78

3

イロト イポト イヨト イヨト