Data Structures TA Session \#2

By Po-Chuan \& Pei-Hsuan

104/11/02

Preface

Few things before we start

When doing you homework

1. Always write in nice \& clear format.
2. Please DO indent your code, and use monospaced fonts.
3. Answer all requirements one by one. Don't skip them!
4. Read the problems carefully. Answer what they want! (Not all problems ask you to write code.)

Assignment \#2

Problem 2-1

Recursive function: getSum()

What does this problem want?

- List the criteria of a recursive function
- State how the function meets the criteria
- Refer to your textbook for more information
- This problem doesn't ask you to write code, nor does it ask to draw a demonstration graph

Criterion A.

- Define the problem in terms of a smaller problem of the same type
- One action of getSum() is to call itself
- Calculation of sum is made by adding the first element to the sum of the remaining array, which is smaller than the current array

Criterion B.

- How does each recursive call diminish the size of the problem?
- At each recursive call to getSum(), the size of the array you need to compute is diminished by 1

Criterion C.

- What instance of the problem can serve as the base case?
- The function handles the sum of x differently from all the other ones: It does not generate a recursive call. Rather, you know that getSum (x) is the element itself (x[lower]). Thus, the base case occurs when lower=upper.

Criterion D.

- As the problem size diminishes, will you reach this base case?
- Given that 0 <= Lower <= upper, criterion B assures you that you will always reach the base case.

Grading policy

- There are 4 questions you need to ask when writing a recursive function
- Each accounts for 5 points

Problem 2-9

Digit sum of a given positive integer

Let's think about recursion

- What's the base case?
- When $\mathrm{N}<10$, or $\mathrm{N}=0$
- What's the answer of that?
- The sum is the digit itself
- What's the recursion formula?
- N \% $10+\operatorname{getSum}(\mathrm{N} / 10$)
int getSum(int n)
\{
if ($\mathrm{n}<10$) // or if ($\mathrm{n}==0$) return n;
else
return $\mathrm{n} \% 10$ + getSum($\mathrm{n} / 10$);
\}
int getSum(int n)
\{

$$
\text { return } \mathrm{n}<10 \text { ? } \mathrm{n}: \mathrm{n} \% 10+\operatorname{getSum}(\mathrm{n} / 10 \text {); }
$$

\}

Grading policy

- The base case 5
- The answer for the base case 5
- Other cases 5
- The answer for other cases 5

Problem 2-16

Box trace of binary search

Box trace

- Please refer to your textbook
- Shows the information during each iteration of the process

PartA. Box 1 \& 2

- Target $=5$
- First $=0$
- Last = 7
- $\operatorname{Mid}=3$
- Target < x[3]
- Search the left part
- Target $=5$
- First = 0
- Last $=2$
- Mid=1
- Target $=x[1]$
- Return 1

Part B. Box 1 \& 2

- Target $=13$
- First $=0$
- Last = 7
- $\operatorname{Mid}=3$
- Target >x[3]
- Search the right part
- Target $=13$
- First = 4
- Last $=7$
- $\operatorname{Mid}=5$
- Target < x[5]
- Search the left part

Part B. Box 2 \& 3

- Target $=13$
- First $=4$
- Last = 7
- $\operatorname{Mid}=5$
- Target < x[5]
- Search the left part
- Target $=13$
- First = 4
- Last $=4$
- $\operatorname{Mid}=4$
- Target < x[4]
- Search the left part!

Part B. Box 3 \& 4

- Target $=13$
- First $=4$
- Last $=4$
- $\operatorname{Mid}=4$
- Target < x[4]
- Search the left part!
- Target $=13$
- First = 4
- Last $=3$
- $\operatorname{Mid}=3$
- First > Last
- Return -1 (not found)

Grading policy

- Part A: 2 boxes, 5 points each
- Part B: 4 boxes, 2.5 points each (your score is rounded up to the nearest integer)

Problem 2-19

Indent the rabbit function

How to solve this problem?

- Keep the recursion depth, either as a parameter or as a global variable
- Print the information of each function call after tabs
int rabbit(int n, string prefix = "")
\{

$$
\text { int child }=n<=2 \text {; }
$$

cout << prefix << "Enter rabbit: $\mathrm{n}=$ " << n << endl;
if($n>2$)
child += rabbit(n - 1, prefix + '\t') + rabbit(n - 2, prefix + '\t');
cout << prefix << "Leave rabbit: $\mathrm{n}=$ " << n << " value = " << child << endl;

Grading policy

- Function prototype

2

- Indention 4
- The "enter" statement 3
- The "leave" statement 3
- Base case 1
- Recursive call 3
- Return the answer of rabbit() 3
- Syntax correctness 1

Problem 2-23

Euclidean algorithm

Part A. the proof

To prove $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$, given $a b!=0$
Let $X=\operatorname{gcd}(a, b)$, then let $a=m X, b=n X$.
Let $\mathrm{a}=\mathrm{bq}+\mathrm{r}, \mathrm{q}$ and r are integers, $\mathrm{o}<=\mathrm{r}<\mathrm{b}$
$a-b q=r$

By Common Divisor Divides Integer Combination,

1. all common divisors of a and b divide r (from $a-b q=r$)
2. all common divisors of b and r divide $a(f r o m ~ b q+r=a$)

Part A. the proof (cont.)

1. all common divisors of a and b divide r (from $a-b q=r$)
2. all common divisors of b and r divide a (from $b q+r=a$)

Every common factor of (a, b) will appear in common factors of (b, r), or (b, a mod b). (The reverse also holds.)

Therefore, these 2 sets are equal. $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$

Part B. when $b>a .$.

- Suppose b>aingcd(a, b)
- The next recursive call will be $\operatorname{gcd}(b, a \bmod b)=\operatorname{gcd}(b, a)$
- The recursion swaps these 2 numbers and continues as usual without a problem

Part C-1. Will it end?

- If $b \mid a$, then b is their GCD, and the function ends immediately (though the problem excludes such cases)
- Otherwise, the parameters a and b will get smaller each time
- Also assume that $\mathbf{a}>\mathbf{b}>\mathbf{0}$ (refer to part B when $\mathrm{b}>\mathrm{a}$)
- $\mathbf{a}>\mathbf{b}$, and $\mathbf{b}>\mathbf{a} \bmod \mathbf{b}$ (by definition)
- But a and b are both always greater than o, so termination of the process can be done in finite steps

Part C-2: Why the base case is appropriate?

- When a mod $b=0, b$ is the greatest common divisor of a and b (by definition.)
- Therefore, no further recursion calls are required, and the base case is appropriate.

Grading policy

- The proof 4
- When b > a 10
- Reach the base case 3
- Why is base case appropriate 3

Assignment \#3

Exercise 1.9

a.
cout << p.coefficient(p.degree());
b.
p.changeCoeffcient(p.coefficient(3) + 8, 3);

Exercise 1.9

c.
polynomial<double> add(polynomial<double> a, polynomial<double> b)
\{
polynomial<double> sum;
int high = max(a.degree(), b.degree());
for (int i = 0; i <= high; ++i)
sum.changeCoeffcient(a.coefficient(i)

+ b.coefficient(i), i);
return sum;

Exercise 1.9-Grading Policy

$a(5)$

- correctness 1, display result 2, using ADT operation 2
- b(5)
- correctness 3, using ADT operation 2
- c(10)
- correctness 4, syntax correctness 3, using ADT operation 3

Exercise 2.24(a)

$$
\begin{aligned}
& c(1)=0 \\
& c(2)=1 \\
& c(3)=3 \\
& c(4)=7 \\
& c(5)=15
\end{aligned}
$$

$$
\begin{aligned}
C(n) & =0, \text { when } n=1 \\
& =1, \text { when } n=2 \\
& =2 * C(n-1)+1, \text { otherwise }
\end{aligned}
$$

int C (int $n)$
\{
if($n==1$) return 0;
else if(n==2) return 1;
else return $2 * C(n-1)+1$;
\}

Exercise 2.24(b)

$$
\begin{aligned}
& c(1)=0 \\
& c(2)=1 \\
& c(3)=2 \\
& c(4)=4 \\
& c(5)=6 \\
& c(6)=10 \\
& c(7)=14 \\
& c(8)=21 \\
& c(9)=29
\end{aligned}
$$

$C(n)=b(n, n-1)$
$b(n, m)=0$, when $n<1$ or $m<1$
$=1$, when $n=1$ or $m=1$
$=1+b(n, n-1)$, when $n=m$
$=b(n-m, m)+b(n, m-1)$, otherwise
int b (int n, int m)
\{
if($n<1| | m<1$) return 0 ;
else $i f(n==1| | m==1)$ return 1;
else if(n==m) return 1+b(n,n-1);
else return $b(n-m, m)+b(n, m-1)$;
\}

Exercise 2.24(b)

- Some reference for you
- OEIS: online encyclopedia of integer sequences
- A000041 number of partitions of n
- A000065
$-1+$ number of partitions of n.

Exercise 2.24-Grading Policy

- Each has 10 points
- Recursion function, 4
- Definition correctness, 6

Exercise 3.1

```
Class ArrayBag: public BagInterface<ItemType>
{
public:
    double getAvg() const;
}
```

double ArrayBag::getAvg() const
\{
double avg = 0, sum = 0;
for (int I = 0; I < itemCount; i++)
sum += items[i];
avg = sum / itemCount;
return avg;

Exercise 3.1

- Reference: accumulate() in \#include<numeric>
- You can use it to sum up the values

Exercise 3.1-Grading Policy

- using client function, 4
- function correctness, 4
- syntax correctness, 2

Exercise 3.5

class Inventory \{
private:
string name;
int cost, quantity;
public:
Inventory(const string Name, const int Cost, const int Quantity): name(Name), cost(Cost), quantity(Quantity) \{\}
Inventory(): name(""), cost(0), quantity(0) \{\}

Exercise 3.5 (cont'd)

string getName() const \{ return name; \}
void setName(const string val) \{ name = val; \} int getCost() const \{ return cost; \}
void setCost(const int val) \{ cost = val; \} int getQuantity() const \{ return quantity; \} void setQuantity(const int val) \{ quantity = val; \}

Exercise 3.5-Grading Policy

- class, 4
- syntax correctness, 5
- operation (look at, change value), 16
- attribute (product, price, quantity, date, rating...), 15

Exercise 3.9

```
template<typename T>
ArrayBag<T>::ArrayBag( const int val[], int size )
{
itemCount = std::min( size, DEFAULT_CAPACITY );
maxItems = DEFAULT_CAPACITY;
for ( int i = 0; i < itemCount; ++i )
    items[ i ] = val[ i ];
}
```


Exercise 3.9

- Reference: copy() in \#include<algorithm>
- You can use it to copy the values into the bag

Exercise 3.9-Grading Policy

- template, 2
- constructor function, 2
- initializing itemCount and maxItems, 2
- create a bag, 3
- syntax correct, 1

The end~

Hope you did a good job in this assignment. Average score for assignment \#2 \& \#3 is 79.7

By the TAs
104/11/02

