
Data Structures [Compiled on November 21, 2016] Fall 2016

Suggested Solutions to Midterm Problems

1. The following is a recursive, but simplified, variant of Euclid’s algorithm for computing
the greatest common divisor of two positive integers.

int gcd(int a, int b)

{

if (a == 0)

return b;

if (b == 0)

return a;

if (a > b)

return gcd(a - b, b);

else

return gcd(a, b - a);

}

(a) (4 points) What are the base cases? Why are they appropriate?

Solution. The base cases are when a = 0 or b = 0. They are appropriate, as under
either of the conditions, the computation may stop with the correct greatest common
divisor (represented by the other non-zero argument). This means that the algorithm
terminates correctly if it ever will.

Further details: when a > b > 0, gcd(a, b) = gcd(a − b, b); and when b ≥ a > 0,
gcd(a, b) = gcd(a, b− a). Reasoning inductively, the final returned result equals the
gcd of the original two input numbers. 2

(b) (6 points) Will the base cases always be reached? Why? What precondition should
be stated?

Solution. Yes, one of the base cases will eventually be reached, assuming that both
of the original input numbers are positive. This means that the algorithm will ter-
minate.

When a > b > 0, gcd is invoked with a−b and b, and when b ≥ a > 0, gcd is invoked
with a and b − a. In either case, one of the two numbers becomes strictly smaller,
yet still greater than or equals to 0. Eventually, one of them will become 0.

Precondition: a ≥ 0 and b ≥ 0 and (a 6= 0 or b 6= 0). 2

2. Consider the array-based implementation of the ADT bag, the C++ class ArrayBag. We
have implemented the function remove() with a static array as follows:

template<typename ItemType>

bool ArrayBag::remove(const typename& anEntry)

{

int locatedIndex = getIndexOf(anEntry);

bool canRemoveItem = (locatedIndex > -1);

if(canRemoveItem)

{

1



itemCount--;

items[locatedIndex] = items[itemCount];

}

return canRemoveItem;

}

Suppose that we now want to implement ArrayBag with dynamic memory allocation. The
class definition has been changed to

template<typename ItemType>

class ArrayBag: public BagInterface

{

private:

static const int DEFAULT_CAPACITY = 6;

ItemType* items;

int itemCount;

int maxItems;

int getIndexOf(const ItemType& target) const;

public:

// public member functions are omitted

};

where items is a pointer pointing to the dynamic array. We now want to modify remove()

and add the following feature: When the number of items is less than half of the current
bag capacity, cut the bag capacity by a half. Rewrite remove() to add this feature.

(Note: you may decide to round up or down when the capacity happens to be odd. The
function getIndexOf() returns the array index of a given item if it exists or −1 otherwise.)

Solution. See the slides for TA Session #3 on 11/21. 2

3. Convert the infix expression a * (b / c - d) - e * f to the postfix form. Please
follow the conversion algorithm discussed in class (see the appendix), and show the status
of the stack and the current postfix expression after each character of the infix expression
is processed. (Note: you may ignore the blank spaces.)

Solution. See the slides for TA Session #3 on 11/21. 2

4. Consider again the infix to postfix conversion algorithm, which assumes all operators are
associated to the left. Suppose we want to allow the unary - (negation), which has higher
precedence than * and / and is associated to the right, i.e., - - a equals - (- a). Please
modify the conversion algorithm to allow the additional unary -. Is it necessary to use a
new symbol to represent the unary - in the postfix expression?

Solution. Below is the modified algorithm that also allows the unary -. We use ~ to
represent the unary - internally and in the postfix expression, assuming that the semantics
and the precedence level of ~ are appropriately defined. Though not absolutely necessary
(a get-around is possible, e.g., −a = 0−a), a new symbol for the unary - makes it possible
to preserve the structure of the original expression.

lastCh = undefined;

2



for (each character ch in the infix expression) {

switch (ch) {

case operand: // Append operand to the end of postfixExp

postfixExp = postfixExp + ch

lastCh = operand;

break

case ’(’: // Save ’(’ on the stack aStack

aStack.push(ch);

lastCh = ’(’;

break

case operator: // Process operators of higher precedence

if (ch==’-’ and ((lastCh == undefined) or (lastCh == ’(’) or

(lastCh is an operator)) {

a.Stack.push(’~’);

lastCh = operator;

break

}

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch); // Save the operator

lastCh = operator;

break

case ’)’: // Pop the stack until matching ’(’

while (aStack.peek() is not a ’(’) {

postfixExp = postfixEP + aStack.peek()

aStack.pop()

}

aStack.pop(); // Remove the matching ’(’

lastCh = ‘)’;

break

}

}

// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

2

5. How are stacks and recursion related? Please explain the relationship by considering
solutions to the task of determining the existence of a path on a directed graph. You
should use an example graph to make your explanation more concrete.

Solution. The activities of invocation and return during the execution of a recursive
function may be emulated by operations a stack, as the activities exhibit a last-in-first-out

3



property just like a stack. (In fact, the invocation and return of any function, recursive or
non-recursive, is implemented with the help of a stack.) A recursive call can be emulated
by a push and a return by a pop.

To be completed. 2

6. Design an algorithm (in pseudocode) to sort a stack of integers in increasing order with
the smallest element on the top. You may use additional stacks and integer variables,
but no other data structures (including arrays). You should try to use as few additional
stacks as possible.

Solution. See the slides for TA Session #3 on 11/21. 2

7. Compare array-based (probably with dynamic memory allocation) and link-based imple-
mentations of the ADT list.

Solution. To be completed. 2

8. Below is the merge sort algorithm that we discussed in class.

void merge(ItemType theArray[], int first, int mid, int last)

{

ItemType tempArray[MAX_SIZE];

int first1 = first;

int last1 = mid;

int first2 = mid + 1;

int last2 = last;

int index = first1;

while ((first1 <= last1) && (first2 <= last2))

if (theArray[first1] <= theArray[first2])

tempArray[index++] = theArray[first1++];

else

tempArray[index++] = theArray[first2++];

while (first1 <= last1)

tempArray[index++] = theArray[first1++];

while (first2 <= last2)

tempArray[index++] = theArray[first2++];

for (index = first; index <= last; index++)

theArray[index] = tempArray[index];

}

void mergeSort(ItemType theArray[], int first, int last)

{

if (first < last) {

int mid = first + (last - first) / 2;

mergeSort(theArray, first, mid);

mergeSort(theArray, mid + 1, last);

merge(theArray, first, mid, last);

4



}

}

Apply the algorithm to the following array. Show the contents of the array after each
merge operation.

1 2 3 4 5 6 7 8 9 10 11 12

9 4 10 6 12 7 5 1 2 11 3 8

Solution. See the slides for TA Session #3 on 11/21. 2

9. A sorting algorithm is stable if it does not exchange the items that have the same sort
key. Among the four sorting algorithms: selection sort, bubble sort, merge sort, and quick
sort, which are stable and which are not? Please give a brief explanation for each case.
For those that are not stable, propose one single uniform adaptation to turn them into
stable ones.

Solution. See the slides for TA Session #3 on 11/21. 2

10. Design an algorithm that, given an array of positive and negative numbers, rearranges
the array entries so that all negative numbers appear before the positive numbers. Please
present your algorithm in suitable pseudocode. Give a performance analysis of your algo-
rithm. The more efficient your algorithm is the more points you will be credited for this
problem.

Solution. See the slides for TA Session #3 on 11/21. 2

5


