
Data Structures [Compiled on December 28, 2015] Fall 2015

Suggested Solutions to Midterm Problems

1. Explain the following terms:

(a) abstract data type (ADT)

Solution. An ADT is a collection of data and a set of operations on the data. 2

(b) precondition and postcondition (of a function/method)

Solution. A precondition is a statement of the conditions on the input at the be-
ginning of a function. A postcondition is a statement of the conditions on the re-
sult/output at the end of a function. They form the most important part of the
contract for a function. A function is implemented correctly, if the following holds:
whenever the function is invoked with the precondition being true, it will terminate
and return a result that satisfies the postcondition. 2

2. Consider the ADT polynomial for integer polynomials over a single variable x, which
includes the following operations:

• +degree(): int

Returns the degree of a polynomial

• +coefficient(n: int): int

Returns the coefficient of xn.

• +changeCoefficient(newCoeff: int, n: int): bool

Replaces the coefficient of xn with newCoeff, and returns true if the operation is
carried out successfully and false otherwise.

(a) Using these operations, write statements (in pseudocode) to compute the sum of two
polynomials.

Solution. See the slides for TA Session #4 on 12/28. 2

(b) Can one find out the highest possible degree of a polynomial supported by a particular
implementation of the ADT? How?

Solution. See the slides for TA Session #4 on 12/28. 2

3. The following is a recursive, but simplified, variant of Euclid’s algorithm for computing
the greatest common divisor of two positive integers.

int gcd(int a, int b)

{

if (a == 0)

return b;

if (b == 0)

return a;

if (a > b)

return gcd(a - b, b);

else

return gcd(a, b - a);

}

1



(a) What are the base cases? Why are they appropriate?

Solution. The base cases are when a = 0 or b = 0. They are appropriate, as under
either of the conditions, the computation may stop with the correct greatest common
divisor (represented by the other non-zero argument). This means that the algorithm
terminates correctly if it ever will.

To be completed. 2

(b) Will the base cases always be reached? Why?

Solution. Yes, one of the base cases will eventually be reached, assuming that both
of the original input numbers are positive. This means that the algorithm will ter-
minate.

To be completed. 2

4. Consider the array-based implementation of the ADT bag, the C++ class ArrayBag. We
have implemented the function remove() with a static array as follows:

template<typename ItemType>

bool ArrayBag::remove(const typename& anEntry)

{

int locatedIndex = getIndexOf(anEntry);

bool canRemoveItem = (locatedIndex > -1);

if(canRemoveItem)

{

itemCount--;

items[locatedIndex] = items[itemCount];

}

return canRemoveItem;

}

Suppose that we now want to implement ArrayBag with dynamic memory allocation. The
class definition has been changed to

template<typename ItemType>

class ArrayBag: public BagInterface

{

private:

static const int DEFAULT_CAPACITY = 6;

ItemType* items;

int itemCount;

int maxItems;

int getIndexOf(const ItemType& target) const;

public:

// public member functions are omitted

};

where items is a pointer pointing to the dynamic array. We now want to modify remove()

and add the following feature: When the number of items is no greater than half of the
current bag capacity, cut down the bag capacity to its half. Rewrite remove() to add this
feature.

2



Note. You may (1) assume that the bag capacity will always be an odd number, and
(2) use the function getIndexOf() to obtain the array index of a given item if it exists or
−1 otherwise.

Solution. See the slides for TA Session #4 on 12/28. 2

5. Consider the link-based implementation of the ADT bag, the C++ class LinkedBag. We
have implemented the function add(), which adds an item at the beginning position of
our bag, as follows:

template<class ItemType>

bool LinkedBag<ItemType>::add(const ItemType& newEntry)

{

Node<ItemType>* newNodePtr = new Node<ItemType>();

newNodePtr->setItem(newEntry);

newNodePtr->setNext(headPtr);

headPtr = newNodePtr;

itemCount++;

return true;

}

Rewrite this function to add an item at the ending position of our bag.

Solution. See the slides for TA Session #4 on 12/28. 2

6. When we implemented the classes LinkedBag, we used C++ templates to make our classes
capable of storing all types of items. With this in mind, please answer the following
questions.

(a) What will be the output of the following program?

#include <iostream>

using namespace std;

template<typename A, typename B>

void f(A a, B b)

{

cout << a + b << endl;

}

int main()

{

f<double, double>(1.23, 10.3);

f<double, int>(1.23, 10.3);

f<int, double>(1.23, 10.3);

f<char, char>(1.23, 10.3);

return 0;

}

Solution. See the slides for TA Session #4 on 12/28. 2

3



(b) Suppose that we have two classes A and B, and want to use one bag to store items of
both classes. Propose a way to modify LinkedBag or A and B to complete the task.

Solution. See the slides for TA Session #4 on 12/28. 2

7. Convert the infix expression (a / (b / c)) + d - e * f to the postfix form. Please
follow the conversion algorithm discussed in class (see the appendix), and show the status
of the stack and the current postfix expression after each character of the infix expression
is processed.

Solution. See the slides for TA Session #4 on 12/28. 2

8. Consider again the infix to postfix conversion algorithm. Suppose we want to allow the
exponent operator ^, which has higher precedence than * and / and is associated to the
right, i.e., a ^ b ^ c equals a ^ (b ^ c). Please modify the conversion algorithm to
allow the additional ^.

Solution.

for (each character ch in the infix expression) {

switch (ch) {

...

case ’+’, ’*’: // These are left-associative operators

// Process operators of higher or equal precedence

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch) // Save the operator

break

case ’^’: // ^ is right-associative

aStack.push(ch) // Save, to be processed later

break

...

}

}

// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

The exponentiation operator ^ is right-associative and has the highest precedence, so we
always push it on to the stack whenever we encounter one. For example, we would push
three ^’s if we do encounter three of them consecutively. They will be popped out when
another operator of lower precedence or a ’)’ is encountered.

2

9. How are stacks and recursion related? Please explain the relationship by considering
solutions to the task of determining the existence of a path on a directed graph.

4



Solution. The activities of invocation and return during the execution of a recursive
function may be emulated by operations a stack, as the activities exhibit a last-in-first-out
property just like a stack. (In fact, the invocation and return of any function, recursive or
non-recursive, is implemented with the help of a stack.) A recursive call can be emulated
by a push and a return by a pop.

To be completed. 2

10. Design an algorithm (in pseudocode) to sort a stack of integers in increasing order with
the smallest element on the top. You may use additional stacks and integer variables,
but no other data structures (including arrays). You should try to use as few additional
stacks as possible.

Solution. See the slides for TA Session #4 on 12/28. 2

Appendix

• Below is the algorithm discussed in class for converting an infix expression to a postfix
expression.

for (each character ch in the infix expression) {

switch (ch) {

case operand: // Append operand to the end of postfixExp

postfixExp = postfixExp + ch

break

case ’(’: // Save ’(’ on the stack aStack

aStack.push(ch)

break

case operator: // Process operators of higher precedence

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch) // Save the operator

break

case ’)’: // Pop the stack until matching ’(’

while (aStack.peek() is not a ’(’) {

postfixExp = postfixEP + aStack.peek()

aStack.pop()

}

aStack.pop() // Remove the matching ’(’

break

}

}

// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

5


