
Data Structures [Compiled on November 15, 2017] Fall 2017

Suggested Solutions to Midterm Problems

1. The following is a recursive variant of Euclid’s algorithm (using the simpler - rather than
%) for computing the greatest common divisor of two positive integers.

int gcd(int a, int b)

{

if (a == b)

return b;

if (a > b)

return gcd(b, a - b);

else

return gcd(a, b - a);

}

(a) (4 points) What are the base cases? Why are they appropriate?

Solution. The base case is when a = b (for a, b > 0). It is appropriate, as when
a = b the computation may stop with the correct greatest common divisor (which is
either of the two equal positive integers). This means that the algorithm terminates
correctly if it ever will.

Further details: when a > b > 0, gcd(a, b) = gcd(b, a − b); and when b > a > 0,
gcd(a, b) = gcd(a, b− a). Reasoning inductively, the final returned result equals the
gcd of the original two input numbers. 2

(b) (6 points) Will the base cases always be reached? Why? What precondition should
be stated?

Solution. Yes, the base case will eventually be reached, assuming that both of the
original input numbers are positive. This means that the algorithm will terminate.

When a > b > 0, gcd is invoked with b and a−b , and when b > a > 0, gcd is invoked
with a and b−a. In either case, one of the two numbers and hence their sum become
strictly smaller, yet both still greater than 0. As long as the two positive integers are
not equal, the above recursive invocation will continue and their sum will decrease
in each invocation. The finite sum may decrement for only a finite number of times,
and eventually the two numbers will become equal.

Precondition: a > 0 and b > 0. 2

2. The Fibonacci sequence (starting with 1) may be defined by the following recurrence
relation: 

F1 = 1
F2 = 1
Fn = Fn−2 + Fn−1 for n > 2

Below is a closed-form representation of the same sequence:

Fn =
1√
5

(
1 +
√

5

2
)n − 1√

5
(
1−
√

5

2
)n, for n ≥ 1.

1

Prove by induction that the closed-form representation is indeed correct.

Solution. The proof is by induction on n.

Base cases (n = 1 or n = 2): When n = 1, 1√
5
(1+
√
5

2) − 1√
5
(1−
√
5

2) = (1+
√
5

2
√
5

) − (1−
√
5

2
√
5

) =
√
5

2
√
5

+
√
5

2
√
5

= 1 = F1, and when n = 2, 1√
5
(1+
√
5

2)2 − 1√
5
(1−
√
5

2)2 = 1√
5
(1+2

√
5+5

4) −
1√
5
(1−2

√
5+5

4) = 2
√
5

4
√
5

+ 2
√
5

4
√
5

= 1 = F2.

Inductive step (n > 2):

1√
5
(1+
√
5

2)n − 1√
5
(1−
√
5

2)n

= 1√
5
(1+
√
5

2)(1+
√
5

2)n−1 − 1√
5
(1−
√
5

2)(1−
√
5

2)n−1

= [1√
5
(1+
√
5

2)n−1 + 1√
5
(−1+

√
5

2)(1+
√
5

2)n−1]− [1√
5
(1−
√
5

2)n−1 + 1√
5
(−1−

√
5

2)(1−
√
5

2)n−1]

= [1√
5
(1+
√
5

2)n−1 − 1√
5
(1−
√
5

2)n−1] + [1√
5
(−1+

√
5

2)(1+
√
5

2)n−1 − 1√
5
(−1−

√
5

2)(1−
√
5

2)n−1]

= {from the induction hypothesis}
Fn−1 + [1√

5
(−1+

√
5

2)(1+
√
5

2)(1+
√
5

2)n−2 − 1√
5
(−1−

√
5

2)(1−
√
5

2)(1−
√
5

2)n−2]

= Fn−1 + [1√
5
(−1+5

4)(1+
√
5

2)n−2 − 1√
5
(−1+5

4)(1−
√
5

2)n−2]

= Fn−1 + [1√
5
(1+
√
5

2)n−2 − 1√
5
(1−
√
5

2)n−2]

= {from the induction hypothesis}
Fn−1 + Fn−2

= {by the recursive definition}
Fn

2

3. Consider the array-based implementation of the ADT bag, the C++ class ArrayBag. We
have implemented the function remove() with a static array as follows:

template<typename ItemType>

bool ArrayBag::remove(const typename& anEntry)

{

int locatedIndex = getIndexOf(anEntry);

bool canRemoveItem = (locatedIndex > -1);

if(canRemoveItem)

{

itemCount--;

items[locatedIndex] = items[itemCount];

}

return canRemoveItem;

}

Suppose that we now want to implement ArrayBag with dynamic memory allocation. The
class definition has been changed to

template<typename ItemType>

class ArrayBag: public BagInterface

{

private:

2

static const int DEFAULT_CAPACITY = 6;

ItemType* items;

int itemCount;

int maxItems;

int getIndexOf(const ItemType& target) const;

public:

// public member functions are omitted

};

where items is a pointer pointing to the dynamic array. We now want to modify remove()

and add the following feature: When the number of items is less than half of the current
bag capacity, cut the bag capacity by a half. Rewrite remove() to add this feature.

(Note: you may decide to round up or down when the capacity happens to be odd. The
function getIndexOf() returns the array index of a given item if it exists or −1 otherwise.)

Solution. See the slides for TA Session #3 on 11/20. 2

4. Convert the infix expression a * (b - c / d * e) - f to the postfix form. Please
follow the conversion algorithm discussed in class (see the appendix), and show the status
of the stack and the current postfix expression after each character of the infix expression
is processed. (Note: you may ignore the blank spaces.)

Solution. See the slides for TA Session #3 on 11/20. 2

5. Consider again the infix to postfix conversion algorithm, which assumes all operators are
associated to the left. Suppose we want to allow the unary - (negation), which has higher
precedence than * and / and is associated to the right, i.e., - - a equals - (- a). Please
modify the conversion algorithm to allow the additional unary -. Please use a new symbol,
say ~ (tilt), to represent the unary - in the postfix expression.

Solution. Below is the modified algorithm that also allows the unary -. The algorithm
uses ~ to represent the unary - internally and in the postfix expression, assuming that the
precedence level of ~ is appropriately defined.

lastCh = undefined;

for (each character ch in the infix expression) {

switch (ch) {

case operand: // Append operand to the end of postfixExp

postfixExp = postfixExp + ch

lastCh = operand;

break

case ’(’: // Save ’(’ on the stack aStack

aStack.push(ch);

lastCh = ’(’;

break

case operator: // Process operators of higher precedence

if (ch==’-’ and ((lastCh == undefined) or (lastCh == ’(’) or

(lastCh is an operator)) {

a.Stack.push(’~’);

lastCh = operator;

break

3

}

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch); // Save the operator

lastCh = operator;

break

case ’)’: // Pop the stack until matching ’(’

while (aStack.peek() is not a ’(’) {

postfixExp = postfixEP + aStack.peek()

aStack.pop()

}

aStack.pop(); // Remove the matching ’(’

lastCh = ‘)’;

break

}

}

// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

2

6. Consider the link-based implementation of a stack. Below are relevant details of the files
StackInterface.h, Node.h, LinkedStack.h, and LinkedStack.cpp.

/** @file StackInterface.h */

#ifndef _STACK_INTERFACE

#define _STACK_INTERFACE

template<class ItemType>

class StackInterface {

{

public:

...

/** @file Node.h */

...

template<class ItemType>

class Node

{

private:

ItemType item;

Node<ItemType>* next;

public:

4

Node();

Node(const ItemType& anItem);

Node(const ItemType& anItem, Node<ItemType>* nextNodePtr);

void setItem(const ItemType& anItem);

void setNext(Node<ItemType>* nextNodePtr);

ItemType getItem() const ;

Node<ItemType>* getNext() const ;

};

...

/** ADT stack: Link-based implementation.

@file LinkedStack.h */

...

#include "StackInterface.h"

#include "Node.h

template<class ItemType>

class LinkedStack: public StackInterface<ItemType>

{

private:

Node<ItemType>* topPtr; // Pointer to first node in the chain;

// this node contains the stacks top

public:

...

#include "LinkedStack.cpp"

#endif

/** @file LinkedStack.cpp */

#include <cassert> // For assert

#include "LinkedStack.h" // Header file

...

Suppose we now want to add an additional operation called reverse that reverses the
order of the entries in a stack. Please provide the necessary changes, including implemen-
tation, to the files. Try to make your code as efficient as possible.

Solution. To accommodate an additional reverse, we add a line in the public section
of LinkedStack.h (extending the original template class StackInterface):

void reverse();

We then provide an implementation for the function in LinkedStack.cpp as follows.

template<class ItemType>

void LinkedStack<ItemType>::reverse()

{

if (topPtr != nullptr)

if (topPtr->getNext() != nullptr) {

Node<ItemType>* tailPtr = topPtr->getNext();

5

topPtr->setNext(nullptr);

// topPtr points to top of the reserved part of the stack

// tailPrt points to start of the part yet to be reversed

while (tailPtr != nullptr) {

Node<ItemType>* prevTopPtr = topPtr;

topPtr = tailPtr;

tailPtr = tailPtr->getNext();

topPtr->setNext(prevTopPtr);

}

}

}

2

7. Apply the merge sort algorithm to the following array. Show the contents of the array
after each merge operation.

1 2 3 4 5 6 7 8 9 10 11 12

10 3 11 6 12 7 5 4 2 9 1 8

Solution. See the slides for TA Session #3 on 11/20. 2

8. Below is a partition procedure that we discussed in class as part of the quick sort algorithm.

partition(theArray: ItemArray, first: integer, last: integer): integer

pivotIndex = last

pivot = theArray[pivotIndex]

indexFromLeft = first

indexFromRight = last - 1

done = false

while (not done) {

while (theArray[indexFromLeft] < pivot)

indexFromLeft = indexFromLeft + 1

while (theArray[indexFromRight] > pivot)

indexFromRight = indexFromRight - 1

if (indexFromLeft < indexFromFight) {

Interchange theArray[indexFromLeft] and

theArray[indexFromFight]

indexFromLeft = indexFromLeft + 1

indexFromRight = indexFromRight - 1

}

else

done = true

}

Interchange theArray[pivotIndex] and theArray[indexFromLeft]

6

pivotIndex = indexFromLeft

return pivotIndex

Suppose we now want to use as the pivot the first, instead of the last, entry of the array.
More specifically, let us change the line “pivotIndex = last” into “pivotIndex = first”.
(The option of interchanging the first and the last entries and then following the same
procedure is thus excluded.) What other changes should be made to the rest of the
procedure?

Solution.

partition(theArray: ItemArray, first: integer, last: integer): integer

pivotIndex = first

pivot = theArray[pivotIndex]

indexFromLeft = first + 1

indexFromRight = last

...

Interchange theArray[pivotIndex] and theArray[indexFromRight]

pivotIndex = indexFromRight

return pivotIndex

2

9. A sorting algorithm is stable if it does not exchange the items that have the same sort
key. Among the four sorting algorithms: selection sort, bubble sort, merge sort, and quick
sort, which are stable and which are not? Please give a brief explanation for each case.
For those that are not stable, propose one single uniform adaptation to turn them into
stable ones.

Solution. See the slides for TA Session #3 on 11/20. 2

10. Trace the execution of the bank-line simulation discussed in class, with the following data.
Show the state of the queue and the event list at each relevant time point (starting from
Time 0). Please use the forms (A,at,tl) and (D,dt,−), where at is the arrival time, tl is
the transaction length, and dt is the departure time, to represent an arrival event and a
departure event respectively. Note that the customer being served is not part of the queue
representing the waiting line.

Arrival time Transaction length

4 8
9 6
13 9
20 5
26 6
40 4

7

Solution.

Time bankQueue eventListQueue

0 (A,4,8) (A,9,6) (A,13,9) (A,20,5) (A,26,6) (A,40,4)
4 (A,9,6) (D,12,−) (A,13,9) (A,20,5) (A,26,6) (A,40,4)
9 (A,9,6) (D,12,−) (A,13,9) (A,20,5) (A,26,6) (A,40,4)

12 (A,13,9) (D,18,−) (A,20,5) (A,26,6) (A,40,4)
13 (A,13,9) (D,18,−) (A,20,5) (A,26,6) (A,40,4)
18 (A,20,5) (A,26,6) (D,27,−) (A,40,4)
20 (A,20,5) (A,26,6) (D,27,−) (A,40,4)
26 (A,20,5) (A,26,6) (D,27,−) (A,40,4)
27 (A,26,6) (D,32,−) (A,40,4)
32 (D,38,−) (A,40,4)
38 (A,40,4)
40 (D,44,−)
44

2

8

