
Data Structures [January 9, 2017] Fall 2016

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider the infix to postfix conversion algorithm discussed in class (see the ap-
pendix), which assumes all operators are associated to the left. Suppose we want
to allow the unary - (negation), which has higher precedence than * and / and is
associated to the right, i.e., - - a equals - (- a). Please modify the conversion
algorithm to allow the additional unary -. Is it necessary to use a new symbol to
represent the unary - in the postfix expression? Please explain.

2. Below is a binary tree with 9 nodes, each storing an integer key value.

6

8

97

2

4

53

1

For each of the following orders of traversal, write the sequence of nodes (represented
by their key values) visited in that order.

(a) preorder

(b) postorder

3. This problem concerns the notion of “inorder successor” in a binary search tree.

(a) If the inorder successor of a node with two children is an internal (or non-leaf)
node, then that inorder successor must not have a left child. Why?

(b) Give an algorithm (in suitable pseudocode) that finds the inorder successor of
a given node.

4. Given a binary search tree, you may save the key values in a file using the preorder
traversal and later restore the original tree by inserting the key values in the order
saved into an empty tree.

(a) Prove by induction (or give convincing arguments) that the statement above
indeed is true.

1



(b) Given a sequence of key values, if we insert the key values into an empty tree
and then traverse the tree in preorder, will we get the original sequence of key
values? Please justify your answer.

5. Rearrange the entries in the following array so that it becomes a (max) heap. You
may proceed in either a “top-down” or a “bottom-up” fashion. Show the contents
of the intermediate array after an entry is added to the processed region.

1 2 3 4 5 6 7 8 9 10 11 12

6 2 4 8 11 1 5 7 9 10 3 12

6. Describe the two main approaches to resolving collisions in hashing. Please be
succinct, yet to the point.

7. Below is a 2-3 tree with 8 nodes, storing 10 key values totally.

40

60 80

907050

20

30 3510

Suppose we now want to delete 20, 70, 80, and 90 (in this order) from the tree.
Please show the resulting tree after the completion of each deletion.

8. Below is a 2-3-4 tree with 4 nodes, storing 9 key values totally.

40 80

9050 60 7010 20 30

Suppose we now want to insert 85, 55, and 25 (in this order) into the tree. Please
show the resulting tree after the completion of each insertion. (Note: Recall that
the insertion algorithm for a 2-3-4 tree splits every 4-node encountered on the way
down the tree from the root to the leaf where the input data item is to be placed.)

9. Consider the 2-3-4 tree again in the preceding problem. Give a sequence of key
values such that insertions of the key values result in the tree as shown above.
Please show the intermediate tree after the insertion of each key value.

10. Below is the algorithm we discussed in class for the BFS traversal of a graph.

bfs(v: Vertex)

q = a new empty queue

q.enqueue(v)

Mark v as visited

2



while (!q.isEmpty()) {

w = q.peekFront()

q.dequeue()

for (each unvisited vertex u adjacent to w) {

Mark u as visited

q.enqueue(u)

}

}

(a) Modify the code to use a stack so that it becomes an algorithm for the DFS
traversal of a graph. Be careful about when the marking of an unvisited node
should be done.

(b) Modify the code further so that each node is assigned a DFS number.

Appendix

• Below is the algorithm discussed in class for converting an infix expression to a
postfix expression.

for (each character ch in the infix expression) {

switch (ch) {

case operand: // Append operand to the end of postfixExp

postfixExp = postfixExp + ch

break

case ’(’: // Save ’(’ on the stack aStack

aStack.push(ch)

break

case operator: // Process operators of higher precedence

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch) // Save the operator

break

case ’)’: // Pop the stack until matching ’(’

while (aStack.peek() is not a ’(’) {

postfixExp = postfixEP + aStack.peek()

aStack.pop()

}

aStack.pop() // Remove the matching ’(’

break

}

}

3



// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

4


