Data Structures [November 07, 2016 Fall 2016

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. The following is a recursive, but simplified, variant of Euclid’s algorithm for com-

puting the greatest common divisor of two positive integers.

int gcd(int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a > b)
return gcd(a - b, b);
else
return gcd(a, b - a);

b

(a) (4 points) What are the base cases? Why are they appropriate?

(b) (6 points) Will the base cases always be reached? Why? What precondition

should be stated?

2. Consider the array-based implementation of the ADT bag, the C++ class ArrayBag.

We have implemented the function remove () with a static array as follows:

template<typename ItemType>
bool ArrayBag::remove(const typename& anEntry)

{
int locatedIndex = getIndexOf (anEntry);
bool canRemovelItem = (locatedIndex > -1);
if (canRemovelItem)
{
itemCount—--;
items[locatedIndex] = items[itemCount];
}
return canRemoveltem;
+

Suppose that we now want to implement ArrayBag with dynamic memory alloca-
tion. The class definition has been changed to

template<typename ItemType>
class ArrayBag: public Baglnterface
{
private:
static const int DEFAULT_CAPACITY = 6;
ItemType* items;
int itemCount;
int maxItems;
int getIndex0f (const ItemType& target) const;
public:
// public member functions are omitted

}s

where items is a pointer pointing to the dynamic array. We now want to modify
remove () and add the following feature: When the number of items is less than
half of the current bag capacity, cut the bag capacity by a half. Rewrite remove ()
to add this feature.

(Note: you may decide to round up or down when the capacity happens to be odd.
The function getIndex0f () returns the array index of a given item if it exists or
—1 otherwise.)

. Convert the infix expressiona * (b / ¢ - d) - e * f to the postfix form. Please
follow the conversion algorithm discussed in class (see the appendix), and show the
status of the stack and the current postfix expression after each character of the
infix expression is processed. (Note: you may ignore the blank spaces.)

. Consider again the infix to postfix conversion algorithm, which assumes all operators
are associated to the left. Suppose we want to allow the unary - (negation), which
has higher precedence than * and / and is associated to the right, i.e., - - a equals
- (- a). Please modify the conversion algorithm to allow the additional unary
-. Is it necessary to use a new symbol to represent the unary - in the postfix
expression?

. How are stacks and recursion related? Please explain the relationship by considering
solutions to the task of determining the existence of a path on a directed graph.
You should use an example graph to make your explanation more concrete.

. Design an algorithm (in pseudocode) to sort a stack of integers in increasing order
with the smallest element on the top. You may use additional stacks and integer
variables, but no other data structures (including arrays). You should try to use as
few additional stacks as possible.

. Compare array-based (probably with dynamic memory allocation) and link-based
implementations of the ADT list.

8. Below is the merge sort algorithm that we discussed in class.

void merge(ItemType theArray[], int first, int mid, int last)
{

ItemType tempArray[MAX_SIZE];

int firstl = first;

int lastl = mid;

int first2 = mid + 1;

int last2 = last;

int index = firstil,;
while ((firstl <= lastl) && (first2 <= last2))
if (theArray[firstl] <= theArray[first2])
tempArray[index++] = theArray[firsti++];
else
tempArray[index++] = theArray[first2++];

while (firstl <= lastl)
tempArray[index++] = theArray[firsti++];

while (first2 <= last2)
tempArray[index++] = theArray[first2++];

for (index = first; index <= last; index++)
theArray[index] = tempArray[index];

void mergeSort(ItemType theArray[], int first, int last)
{
if (first < last) {
int mid = first + (last - first) / 2;
mergeSort (theArray, first, mid);
mergeSort (theArray, mid + 1, last);
merge (theArray, first, mid, last);
}
}

Apply the algorithm to the following array. Show the contents of the array after
each merge operation.

1 2 3 4 5 6 7 8 9 10 11 12
19 |4 J1w0[6 [12 |7 [5 |1 |2 [11 |3 |8 |

9. A sorting algorithm is stable if it does not exchange the items that have the same
sort key. Among the four sorting algorithms: selection sort, bubble sort, merge sort,

and quick sort, which are stable and which are not? Please give a brief explanation
for each case. For those that are not stable, propose one single uniform adaptation
to turn them into stable ones.

10. Design an algorithm that, given an array of positive and negative numbers, rear-
ranges the array entries so that all negative numbers appear before the positive
numbers. Please present your algorithm in suitable pseudocode. Give a perfor-
mance analysis of your algorithm. The more efficient your algorithm is the more
points you will be credited for this problem.

Appendix

e Below is the algorithm discussed in class for converting an infix expression to a
postfix expression.

for (each character ch in the infix expression) {
switch (ch) {
case operand: // Append operand to the end of postfixExp
postfixExp = postfixExp + ch

break

case ’(’: // Save ’(’ on the stack aStack
aStack.push(ch)
break

case operator: // Process operators of higher precedence
while (!aStack.isEmpty() and
aStack.peek() is not a ’(’ and
precedence(ch) <= precedence(aStack.peek())) {
postfixExp = postfixExp + aStack.peek()
aStack.pop()
+
aStack.push(ch) // Save the operator
break
case ’)’: // Pop the stack until matching ’(’
while (aStack.peek() is not a ’(’) {
postfixExp = postfixEP + aStack.peek()
aStack.pop()
}
aStack.pop() // Remove the matching ’(’
break
}
}
// Append to postfixExp the operators remaining in the stack
while (!aStack.isEmpty()) {
postfixExp = postfixExp + aStack.peek()
aStack.pop()
}

