
Data Structures [November 09, 2015] Fall 2015

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Explain the following terms:

(a) abstract data type (ADT)

(b) precondition and postcondition (of a function/method)

2. Consider the ADT polynomial for integer polynomials over a single variable x, which
includes the following operations:

• +degree(): int

Returns the degree of a polynomial

• +coefficient(n: int): int

Returns the coefficient of xn.

• +changeCoefficient(newCoeff: int, n: int): bool

Replaces the coefficient of xn with newCoeff, and returns true if the operation
is carried out successfully and false otherwise.

(a) Using these operations, write statements (in pseudocode) to compute the sum
of two polynomials.

(b) Can one find out the highest possible degree of a polynomial supported by a
particular implementation of the ADT? How?

3. The following is a recursive, but simplified, variant of Euclid’s algorithm for com-
puting the greatest common divisor of two positive integers.

int gcd(int a, int b)

{

if (a == 0)

return b;

if (b == 0)

return a;

if (a > b)

return gcd(a - b, b);

else

return gcd(a, b - a);

}

1



(a) What are the base cases? Why are they appropriate?

(b) Will the base cases always be reached? Why?

4. Consider the array-based implementation of the ADT bag, the C++ class ArrayBag.
We have implemented the function remove() with a static array as follows:

template<typename ItemType>

bool ArrayBag::remove(const typename& anEntry)

{

int locatedIndex = getIndexOf(anEntry);

bool canRemoveItem = (locatedIndex > -1);

if(canRemoveItem)

{

itemCount--;

items[locatedIndex] = items[itemCount];

}

return canRemoveItem;

}

Suppose that we now want to implement ArrayBag with dynamic memory alloca-
tion. The class definition has been changed to

template<typename ItemType>

class ArrayBag: public BagInterface

{

private:

static const int DEFAULT_CAPACITY = 6;

ItemType* items;

int itemCount;

int maxItems;

int getIndexOf(const ItemType& target) const;

public:

// public member functions are omitted

};

where items is a pointer pointing to the dynamic array. We now want to modify
remove() and add the following feature: When the number of items is no greater
than half of the current bag capacity, cut down the bag capacity to its half. Rewrite
remove() to add this feature.

Note. You may (1) assume that the bag capacity will always be an odd number,
and (2) use the function getIndexOf() to obtain the array index of a given item if
it exists or −1 otherwise.

5. Consider the link-based implementation of the ADT bag, the C++ class LinkedBag.
We have implemented the function add(), which adds an item at the beginning
position of our bag, as follows:

2



template<class ItemType>

bool LinkedBag<ItemType>::add(const ItemType& newEntry)

{

Node<ItemType>* newNodePtr = new Node<ItemType>();

newNodePtr->setItem(newEntry);

newNodePtr->setNext(headPtr);

headPtr = newNodePtr;

itemCount++;

return true;

}

Rewrite this function to add an item at the ending position of our bag.

6. When we implemented the classes LinkedBag, we used C++ templates to make our
classes capable of storing all types of items. With this in mind, please answer the
following questions.

(a) What will be the output of the following program?

#include <iostream>

using namespace std;

template<typename A, typename B>

void f(A a, B b)

{

cout << a + b << endl;

}

int main()

{

f<double, double>(1.23, 10.3);

f<double, int>(1.23, 10.3);

f<int, double>(1.23, 10.3);

f<char, char>(1.23, 10.3);

return 0;

}

(b) Suppose that we have two classes A and B, and want to use one bag to store
items of both classes. Propose a way to modify LinkedBag or A and B to
complete the task.

7. Convert the infix expression (a / (b / c)) + d - e * f to the postfix form.
Please follow the conversion algorithm discussed in class (see the appendix), and
show the status of the stack and the current postfix expression after each character
of the infix expression is processed.

8. Consider again the infix to postfix conversion algorithm. Suppose we want to allow
the exponent operator ^, which has higher precedence than * and / and is associated

3



to the right, i.e., a ^ b ^ c equals a ^ (b ^ c). Please modify the conversion
algorithm to allow the additional ^.

9. How are stacks and recursion related? Please explain the relationship by considering
solutions to the task of determining the existence of a path on a directed graph.

10. Design an algorithm (in pseudocode) to sort a stack of integers in increasing order
with the smallest element on the top. You may use additional stacks and integer
variables, but no other data structures (including arrays). You should try to use as
few additional stacks as possible.

Appendix

• Below is the algorithm discussed in class for converting an infix expression to a
postfix expression.

for (each character ch in the infix expression) {

switch (ch) {

case operand: // Append operand to the end of postfixExp

postfixExp = postfixExp + ch

break

case ’(’: // Save ’(’ on the stack aStack

aStack.push(ch)

break

case operator: // Process operators of higher precedence

while (!aStack.isEmpty() and

aStack.peek() is not a ’(’ and

precedence(ch) <= precedence(aStack.peek())) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

aStack.push(ch) // Save the operator

break

case ’)’: // Pop the stack until matching ’(’

while (aStack.peek() is not a ’(’) {

postfixExp = postfixEP + aStack.peek()

aStack.pop()

}

aStack.pop() // Remove the matching ’(’

break

}

}

// Append to postfixExp the operators remaining in the stack

while (!aStack.isEmpty()) {

postfixExp = postfixExp + aStack.peek()

aStack.pop()

}

4


