Classic Encryption Techniques

Tsay, Yih-Kuen
Dept. of Information Management
National Taiwan University

Symmetric Encryption/Ciphers

Also known as
e conventional,
single-key, or
e secret-key
encryption

- Encryption and decryption performed with the same key
- Most widely used type of ciphers

Simplified Model of Symmetric Encryption

Source: Figure 2.1, Stallings 2006

Symmetric Encryption in Essence

- Setting:

数 X : the plaintext
e Y : the ciphertext
E: the encryption algorithm
el D : the decryption algorithm

- $Y=E(K, X)$ or $Y=E_{K}(X)$
- $X=D(K, Y)$ or $X=D_{K}(Y)$
E_{K} and D_{K} are the inverse function of each other!

Security of Secret-Key Encryption

- Encryption algorithm must be strong enough: impossible to decrypt a message based on the ciphertext alone
- Depends on the secrecy of the key, not the secrecy of the algorithm
Do not need to keep the algorithm secret; only need to keep the key secret
- Feasible for wide-spread use

Model of Conventional Cryptosystem

Source: Figure 2.2, Stallings 2006

Dimensions of Cryptographic Systems

- The type of operations used for the security-related transformation:
e substitution and/or
e transposition (permutation)
The number of keys used:
e one key (symmetric encryption) or
e two keys (asymmetric encryption)
- The way in which the plaintext is processed:
, block cipher or
e stream cipher

Cryptanalysis

Cryptanalysis is the process of attempting to discover plaintext or key or both.

Ciphertext only: all that is available is the ciphertext.
e the brute-force approach
e statistical approaches (must first have some general idea about the type of plaintext)

- Known plaintext: feasible if certain plaintext patterns are known to appear in a message.
- Chosen plaintext: feasible if the analyst is able to insert chosen messages into the system.
- Chosen ciphertext
- Chosen text

Attacks on Encrypted Messages

Type of Attack
Known to Cryptanalyst

Ciphertext only	\bullet Encryption algorithm \bullet Ciphertext
Known plaintext	\bullet Encryption algorithm \bullet Ciphertext \bullet One or more plaintext-ciphertext pairs formed with the secret key
Chosen plaintext	\bullet Encryption algorithm \bullet Ciphertext \bullet Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key
Chosen ciphertext	\bullet Encryption algorithm \bullet Ciphertext \bullet Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key
Chosen text	\bullet Encryption algorithm \bullet Ciphertext \bullet Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key
\bullet Purported ciphertext chosen by cryptanalyst, together with its	
corresponding decrypted plaintext generated with the secret	
key	

Source: Table 2.1, Stallings 2006
NTU

Strength of Encryption Schemes

- Unconditionally secure: unbreakable no matter how much ciphertext is available
- Computationally secure:

The cost exceeds the value of the encrypted information
The time required exceeds the useful lifetime of the information

Exhaustive Key Search

Key size (bits)	Number of alternative keys	Time required at $\mathbf{1}$ decryption/ $\boldsymbol{\mu} \mathbf{s}$	Time required at 10 $\mathbf{0}^{6}$ decryptions $/ \boldsymbol{\mu} \mathbf{s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

Source: Table 2.2, Stallings 2006

Substitution Techniques

A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.

- Caesar Cipher
- Monoalphabetic Ciphers
- Playfair Cipher
- Hill Cipher
- Polyalphabetic Ciphers

The Caesar Cipher

Each letter replaced with the letter standing three places further down the alphabet
plain: abcdefghijklmnopqrstuvwxyz cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

- The shift or key (which is 3) may be generalized to get General Caesar cipher:
$C=E_{k}(p)=(p+k) \bmod 26$, where $1 \leq k \leq 25$
Decryption: $p=D_{k}(C)=(C-k) \bmod 26$

Cryptanalysis of Caesar Cipher

```
PHHW PH DIWHU WKH WRJD SDUWB
oggv og chvgt vjg vqic rctva
nffu nf bgufs uif uphb qbsuz
meet me after the toga party
ldds ld zesdq sgd snfz ozqsx
kccr kc ydrcp rfc rmey nyprw
jbbq jb xcqbo qeb qldx mxoqv
iaap ia wbpan pda pkcw lwnpu
hzzo hz vaozm ocz ojbv kvmot
gyyn gy uznyl nby niau julns
fxxm fx tymxk max mhzt itkmr
ewwl ew sxlwj lzw lgys hsjlq
dvvk dv rwkvi kyv kfxr grikp
cuuj cu qvjuh jxu jewq fqhjo
btti bt puitg iwt idvp epgin
assh as othsf hvs hcuo dofhm
zrrg zr nsgre gur gbtn cnegl
yqqf yq mrfqd ftq fasm bmdfk
xppe xp lqepc esp ezrl alcej
wood wo kpdob dro dyqk zkbdi
vnnc vn jocna cqn cxpj yjach
ummb um inbmz bpm bwoi xizbg
tlla tl hmaly aol avnh whyaf
skkz sk glzkx znk zumg vgxze
rjjy rj fkyjw ymj ytlf ufwyd
qiix qi ejxiv xli xske tevxc
```

Source: Figure 2.3, Stallings 2006

Breaking General Caesar Ciphers

Three characteristics of general Caesar ciphers enable us to use a brute-force cryptanalysis:

Encryption and decryption algorithms known

- Only 25 keys to try
- Language of the plaintext known and easily recognizable

Mono-alphabetic Ciphers

- Substitution represented by an arbitrary permutation of the alphabet
- 26! possible permutations (or keys) for English
- If language of the plaintext is known, regularities of the language may be exploited

Relative Frequency of English Letters

Source: Figure 2.5, Stallings 2006
Information Security, Fall 2009: Classic Encryption Techniques - 17/39

Breaking a Mono-alphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEP HZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUP ZHMDJUDTMOHMQ

1. Examine the relative frequency.

P	13.33	H	5.83	F	3.33	B	1.67	C	0.00
Z	11.67	D	5.00	W	3.33	G	1.67	K	0.00
S	8.33	E	5.00	Q	2.50	Y	1.67	L	0.00
U	8.33	V	4.17	T	2.50	I	0.83	N	0.00
O	7.50	X	4.17	A	1.67	J	0.83	R	0.00
M	6.67								

Guess: $\mathrm{P} \rightarrow \mathrm{e}$ and $\mathrm{Z} \rightarrow \mathrm{t}$ (or the other way),
$\{S, U, O, M, H\} \rightarrow\{r, n, i, o, a, s\},\{A, B, G, Y, l, J\} \rightarrow\{w, v, b, k, x, q, j, z\}$.

Breaking a Mono-alphabetic Cipher (cont.)

2. Look for other regularities, particularly the frequency of two-letter combinations (digrams).
Guess: $\mathrm{ZW} \rightarrow \mathrm{th}, \mathrm{Z} \rightarrow \mathrm{t}, \mathrm{P} \rightarrow \mathrm{e}$.
3. $\mathrm{ZWSZ} \rightarrow$ th_t,

Guess: $\mathrm{S} \rightarrow \mathrm{a}$.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a e e te a that e e a a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
et ta tha e a e th t a
EPYEPOPDZSZUFPOMBZWPFUP ZHMD JUDTMOHMQ

$$
e \quad e \text { tat } e \text { the } t
$$

Improving Mono-alphabetic Ciphers

- Easy to break, because they reflect the frequency data of the original alphabet
- A countermeasure: provide multiple substitutes (homophones) for a single letter
- Still, multi-letter patterns survive in the ciphertext
- Two better approaches for improvement:

Encrypt multiple letters of plaintext: Playfair Cipher
Use multiple cipher alphabets: Hill Cipher

The Playfair Cipher

- Treats digrams in the plaintext as single units.
- Based on the use of a 5×5 matrix of letters constructed using a keyword.
- For example,

\mathbf{M}	\mathbf{O}	\mathbf{N}	\mathbf{A}	\mathbf{R}
\mathbf{C}	\mathbf{H}	\mathbf{Y}	B	D
E	F	G	I / J	K
L	P	Q	S	T
U	V	W	X	Z

The Playfair Cipher (cont.)

Encryption rules by example:

\mathbf{M}	\mathbf{O}	\mathbf{N}	\mathbf{A}	\mathbf{R}
\mathbf{C}	\mathbf{H}	\mathbf{Y}	B	D
E	F	G	I / J	K
L	P	Q	S	T
U	V	W	X	Z

1. balloon (the plaintext) \rightarrow ba Ix lo on (repeating letters in the same pair separated by filler x)
2. $\mathrm{ON} \rightarrow \mathrm{NA}$ (ON on the same row)
3. $\mathrm{BA} \rightarrow \mathrm{IB}$ (BA on the same column)
4. $\mathrm{LX} \rightarrow \mathrm{SU}, \mathrm{LO} \rightarrow \mathrm{PM}$

Relative Frequency of Letter Occurrences

Source: Figure 2.6, Stallings 2006

The Hill Cipher

m (successive) plaintext letters $\longrightarrow m$ ciphertext letters

- Substitution determined by m linear equations, with $a=0, b=1, \ldots z=25$

$$
C_{1}=\left(k_{11} p_{1}+k_{12} p_{2}+k_{13} p_{3}\right) \bmod 26
$$

- For $m=3, \quad C_{2}=\left(k_{21} p_{1}+k_{22} p_{2}+k_{23} p_{3}\right) \bmod 26$

$$
C_{3}=\left(k_{31} p_{1}+k_{32} p_{2}+k_{33} p_{3}\right) \bmod 26
$$

$$
\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right) \quad(\bmod 26)
$$

The Hill Cipher (cont.)

P,C: column vectors of length m, representing the plaintext and ciphertext
K: invertible $m \times m$ matrix, representing the encryption key

$$
\begin{aligned}
& \mathbf{C}=E_{\mathbf{K}}(\mathbf{P})=\mathbf{K} \mathbf{P} \\
& \mathbf{P}=D_{\mathbf{K}}(\mathbf{C})=\mathbf{K}^{-1} \mathbf{C}=\mathbf{K}^{-1} \mathbf{K} \mathbf{P}=\mathbf{P}
\end{aligned}
$$

- Strong against a ciphertext-only attacks, but easily broken with a known plaintext attack

Breaking the Hill Cipher

Given: $\mathbf{K}\binom{5}{17}=\binom{15}{16}, \mathbf{K}\binom{8}{3}=\binom{2}{5}$,
$\mathbf{K}\binom{0}{24}=\binom{10}{20}$
From the first two pairs: $\mathbf{K}\left(\begin{array}{ll}5 & 8 \\ 17 & 3\end{array}\right)=\left(\begin{array}{ll}15 & 2 \\ 16 & 5\end{array}\right)$
Calculating the needed inverse: $\left(\begin{array}{ll}5 & 8 \\ 17 & 3\end{array}\right)^{-1}=\left(\begin{array}{ll}9 & 2 \\ 1 & 15\end{array}\right)$

Breaking the Hill Cipher (cont.)

Calculating the key: $\mathbf{K}=\left(\begin{array}{ll}15 & 2 \\ 16 & 5\end{array}\right)\left(\begin{array}{ll}9 & 2 \\ 1 & 15\end{array}\right)=\left(\begin{array}{ll}7 & 8 \\ 19 & 3\end{array}\right)$
Checking the third pair: $\left(\begin{array}{ll}7 & 8 \\ 19 & 3\end{array}\right)\binom{0}{24}=\binom{10}{20}$

Calculating the Inverse of a Matrix

Let A be an invertible matrix (with a nonzero determinant). Its inverse A^{-1} can be computed as follows:

$$
\left[A^{-1}\right]_{i j}=(-1)^{i+j} \times D_{j i} \times \operatorname{det}^{-1}(A)
$$

where $D_{j i}$ is the subdeterminant obtained by deleting the j-th row and the i-th column of A.
$\operatorname{det}^{-1}\left(\begin{array}{ll}5 & 8 \\ 17 & 3\end{array}\right)=(-121)^{-1}=9^{-1}=3 \quad(\bmod 26)$
$\left(\begin{array}{ll}5 & 8 \\ 17 & 3\end{array}\right)^{-1}=\left(\begin{array}{ll}3 \times 3 & -8 \times 3 \\ -17 \times 3 & 5 \times 3\end{array}\right)=\left(\begin{array}{ll}9 & 2 \\ 1 & 15\end{array}\right)$

Poly-alphabetic Ciphers

- To improve on simple monoalphabetic ciphers, juggle different monoalphabetic substitutions
- This is called polyalphabetic cipher
- Common features:

A set of related monoalphabetic substitution rules
A key determines which particular rule is chosen

The Vigenère Cipher

- Best-known polyalphabetic cipher
- Monoalphabetic substitution rules consist of the 26 general Caesar ciphers
- Each cipher is denoted by a key letter, which is the ciphertext letter that substitutes for letter ' a '
key: deceptivedeceptivedeceptive
plain: wearediscoveredsaveyourself
cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
- Multiple ciphertext letters for each plaintext letter

The Modern Vigenère Tableau

		Plaintext																									
		a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	S	t	u	v	W	X	y	Z
	a	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
	b	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
	c	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
	d	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
	e	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
	f	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
	g	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
	h	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
	i	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
	j	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
	k	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
	l	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
B	m	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
\checkmark	n	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
	o	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
	p	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
	q	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
	r	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
	s	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
	t	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
	u	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
	v	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U
	w	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
	x	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
	y	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
	z	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

Source: Table 2.3, Stallings 2006

The Vernam Cipher

- The encryption scheme is expressed as

$$
C_{i}=p_{i} \oplus k_{i}
$$

where $\quad p_{i}=i$-th binary digit of plaintext, $k_{i}=i$-th binary digit of key, and
$C_{i}=i$-th binary digit of ciphertext

- The one-time pad scheme uses a random key for the Vernam cipher; in principle, unbreakable
- Rarely used due to key management problems

One-Time Pad Is Unbreakable

Assume a 27×27 Vigenère substitution cipher.

cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih plain: mr mustard with the candlestick in the hall
cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt plain: miss scarlet with the knife in the library

Cannot conclude one of the two keys is more likely than the other.

Transposition Techniques

Transposition ciphers perform some sort of permutation on the plaintext letters.

- The rail fence technique
- Columnar transpositions
- Multiple-stage transpositions

Columnar Transpositions

Write the message in a rectanlge, row by row, and read the message off, column by column, but permute the order of the columns

- For example,

$$
\begin{array}{rlllllll}
\text { key: } & 4 & 3 & 1 & 2 & 5 & 6 & 7 \\
\text { plain: } & a & t & t & a & c & k & p \\
& \circ & s & t & p & o & n & e \\
& d & u & n & t & i & l & t \\
& w & o & a & m & x & y & z
\end{array}
$$

cipher: TTNAAPTMTSUOAODWCOIXKNLYPETZ

A Three-Rotor Machine

Rotor Machines

- A rotor machine consists of a set of cylinders that rotate like an odometer.
A cylinder has 26 input pins, each connecting to a unique output pin.
A rotating cylinder defines a poly-alphabetic substitution algorithm with a period of 26 .
- A three-rotor machine has a period of $26 \times 26 \times 26=17,576$; four-rotor 456, 976 ; five-rotor $11,881,376$.

Steganography

The methods of steganography conceal the existence of the message (whereas the methods of cryptography render the message unintelligible to outsiders).

- Character marking
- Invisible ink
- Pin punctures
- Typewriter correction ribbon

A Puzzle

3rd March
Dear George,
Greetings to all at Oxford. Many thanks for your letter and for the Summer examination package. All Entry Forms and Fees Forms should be ready for final despatch to the Syndicate by Friday 20 th or at the very latest, lim told, by the 21 st. Admin has improved here, though there's room for improvement still; just give us all two or three more years and well really show you! Please don't let these wretched 16 t proposals destroy your basic 0 and A pattern. Certainly this sort of change, if implemented immediately, would bring chaos.

Source: Figure 2.8, Stallings 2006

