

Random Number Generation and Stream Ciphers

Yih-Kuen Tsay

Department of Information Management National Taiwan University

The Use of Random Numbers

- Random numbers are used by a number of security algorithms for:
 - Nonces (used in authentication protocols)
 - Session key generation (by the KDC or an end system)
 - Key generation for the RSA algorithm
- Two requirements: randomness and unpredictability.

Pseudorandom Numbers

- True random numbers are hard to come by.
- Cryptographic applications typically use algorithmic techniques for random number generation.
- These algorithms are deterministic and therefore produce sequence of numbers that are not statistically random.
- If the algorithm is good, the resulting sequences will pass reasonable tests for randomness.
- Such numbers are often referred to as pseudorandom numbers.

The Linear Congruential Method

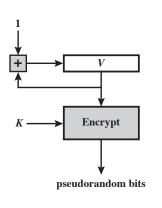
m	the modulus	m > 0
a	the multiplier	$0 \le a < m$
С	the increment	$0 \le c < m$
X_0	the starting value (seed)	$0 \le X_0 < m$

- ightharpoonup Iterative equation: $X_{n+1} = (aX_n + c) \mod m$
- igoplus Larger values of m imply higher potential for a long period.
- For example, $X_{n+1} = (7^5 X_n) \mod (2^{31} 1)$ has a period of $2^{31} 2$.
- What are the weakness and the remedy?

Cryptographical Generation

- Cyclic encryption: use an arbitrary block cipher. Full-period generating functions are easily obtained.
- DES Output Feedback Mode: the successive 64-bit outputs constitute a sequence of pseudorandom numbers.
- ANSI X9.17 Pseudorandom number generator (PRNG): make use of triple DES. Employed in financial security applications and PGP.

Pseudorandom Number Generation



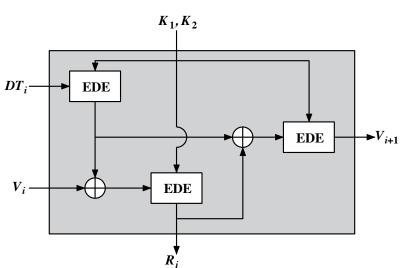
V $K \longrightarrow Encrypt$ pseudorandom bits

(a) CTR Mode

(b) OFB Mode

Source: Figure 7.3, Stallings 2010

ANSI X9.17 PRNG



The Blum Blum Shub (BBS) Generator

- Choose two large prime numbers p and q such that $p \equiv q \equiv 3 \pmod{4}$. Let $n = p \times q$.
- \bigcirc Choose a random number s relatively prime to n.
- Bit sequence generating algorithm:

$$X_0 = s^2 \mod n$$

for $i = 1$ to ∞
 $X_i = (X_{i-1})^2 \mod n$
 $B_i = X_i \mod 2$

The BBS generator passes the next-bit test.

Example Operation of BBS Generator

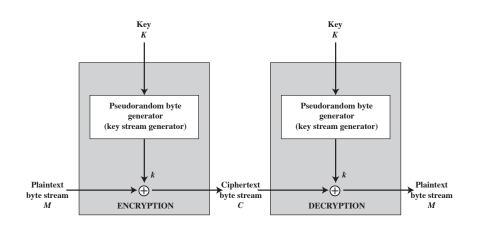
i	X_i	B_i
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

X_i	B_i
137922	0
123175	1
8630	0
114386	0
14863	1
133015	1
106065	1
45870	0
137171	1
48060	0
	137922 123175 8630 114386 14863 133015 106065 45870 137171

Stream Ciphers

- Sencrypt plaintext one byte at a time; other units are possible.
- Typically use a keystream from a pseudorandom byte generator (conditioned on the input key).
- Decryption requires the same pseudorandom sequence.
- Usually are faster and use far less code than block ciphers.
- Design considerations:
 - The encryption sequence should have a large period.
 - The keystream should approximate a truly random stream.
 - The input key needs to be sufficiently long.

Stream Cipher Diagram



Source: Figure 7.5, Stallings 2010

RC4

- Probably the most widely used stream cipher, e.g., in SSL/TLS and in WEP (part of IEEE 802.11)
- Developed in 1987 by Ron Rivest for RSA Security Inc.
- Variable key size with byte-oriented operations
- Based on the use of random permutation
- $lap{\cite{line}}$ The period of the cipher likely to be $> 10^{100}$
- Simple and fast
- 📀 Proprietary, though its algorithm has been disclosed

Comparisons of Symmetric Ciphers

Cipher	Key Length	Speed (Mbps)
DES	56	9
3DES	168	3
RC2	Variable	0.9
RC4	Variable	45

Source: Table 7.4, Stallings 2010

Stream Generation in RC4


```
 \begin{aligned} \textbf{i}, & j = 0; \\ \textbf{while} \text{ (true)} \\ & \textbf{i} = (\textbf{i} + 1) \text{ mod } 256; \\ & \textbf{j} = (\textbf{j} + S[\textbf{i}]) \text{ mod } 256; \\ & \textbf{Swap} \text{ (S[\textbf{i}],S[\textbf{j}]);} \\ & \textbf{t} = (S[\textbf{i}] + S[\textbf{j}]) \text{ mod } 256; \\ & \textbf{k} = S[\textbf{t}]; \end{aligned}
```

Initialization of S in RC4


```
\begin{aligned} & \textbf{for i} = 0 \ \textbf{to} \ 255 \ \textbf{do} \\ & S[i] = i; \\ & T[i] = K[i \ \text{mod keylen}]; \\ & j = 0; \\ & \textbf{for i} = 0 \ \textbf{to} \ 255 \ \textbf{do} \\ & j = (j + S[i] + T[i]) \ \text{mod} \ 256; \\ & \textbf{Swap} \ (S[i],S[j]); \end{aligned}
```

RC4 in Picture



Source: Figure 7.6, Stallings 2010 Yih-Kuen Tsay (IM.NTU) ◆ロ > ◆母 > ◆き > ◆き > き の Q (