
Information Security [Compiled on November 8, 2010] Fall 2010

Suggested Solutions to Homework Assignment #1B

1. Exercise problems from [Stallings 2011]:

5.1 We want to show that d(x) = a(x)× b(x) mod (x4 + 1) = 1. Substituting into Equation
(5.12) in Appendix 5A, we have:

d0

d1

d2

d3

 =


a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0




b0

b1

b2

b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




0E
09
0D
0B

 =


1
0
0
0


But this is the same set of equations discussed in the subsection on the MixColumn
transformation:

({0E} · {02})⊕ {0B} ⊕ {0D} ⊕ ({09} · {03}) = {01}
({09} · {02})⊕ {0E} ⊕ {0B} ⊕ ({0D} · {03}) = {00}
({0D} · {02})⊕ {09} ⊕ {0E} ⊕ ({0B} · {03}) = {00}
({0B} · {02})⊕ {0D} ⊕ {09} ⊕ ({0E} · {03}) = {00}

The first equation is verified in the text. For the second equation, we have {09} · {02} =
00010010; and {0D} · {03} = {0D} ⊕ ({0D} · {02}) = 00001101⊕ 00011010 = 00010111.
Then

{09} · {02} = 00010010
{0E} = 00001110
{0B} = 00001011
{0D} · {03} = 00010111

00000000

For the third equation, we have {0D} · {02} = 00011010; and {0B} · {03} = {0B} ⊕
({0B} · {02}) = 00001011⊕ 00010110 = 00011101. Then

{0D} · {02} = 00011010
{09} = 00001001
{0E} = 00001110
{0B} · {03} = 00011101

00000000

For the fourth equation, we have {0B} · {02} = 00010110; and {0E} · {03} = {0E} ⊕

1



({0E} · {02}) = 00001110⊕ 00011100 = 00010010. Then

{0B} · {02} = 00010110
{0D} = 00001101
{09} = 00001001
{0E} · {03} = 00010010

00000000

Thus, we found out d(x) = a(x) × b(x) mod (x4 + 1) = 1 by calculating these four
equations.

5.2 a. { CA }
b. We need to show that the transformation defined by Equation 5.2, when applied to
{53}−1, produces the correct entry in the S-box. After converting { CA } to binary
format (11001010), we get

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





0
1
0
1
0
0
1
1


⊕



1
1
0
0
0
1
1
0


=



0
1
1
1
0
0
0
1


⊕



1
1
0
0
0
1
1
0


=



1
0
1
1
0
1
1
1


The result is 1110 1101 ={ED}, which is the same as the value for {53} in the S-box
(Table 5.2a).

5.6 a. AddRoundKey

b. The MixColumn step, because this is where the different bytes interact with each
other.

c. The ByteSub step, because it contributes nonlinearity to AES.

d. The ShiftRow step, because it permutes the bytes.

e. There is no wholesale swapping of rows or columns. AES does not require this step
because: The MixColumn step causes every byte in a column to alter every other
byte in the column, so there is not need to swap rows; The ShiftRow step moves
bytes from one column to another, so there is no need to swap columns

6.4 a. The question assumes that there was an error in block C4 of the transmitted cipher-
text.
ECB mode: In this mode, ciphertext block Ci is used only as input for the direct
dencryption of plaintext block Pi. Therefore, a transmission error in block C4 will
only corrupt block P4 of the decrypted plaintext.

2



CBC mode: In this mode, ciphertext block Ci is used as input to the XOR func-
tion when obtaining plaintext blocks Pi and Pi+1. Therefore, a transmission error
in block C4 will corrupt blocks P4 and P5 of the decrypted plaintext, but will not
propagate to any of the other blocks.
CTR mode: In this mode, ciphertext block Ci, as well as the encrypted counter ti,
are used only as input for the direct decryption of plaintext block Pi. Therefore, a
transmission error in block C4 will only corrupt block P4 of the decrypted plaintext.

b. The question assumes that the ciphertext contains N blocks, and that there was a
bit error in the source version of P3.
ECB mode: In this mode, ciphertext block Ci is generated by direct encryption of
plaintext block Pi, independent of the other plaintext or ciphertext blocks. There-
fore, a bit error in block P3 will only affect ciphertext block C3 and will not propagate
further. Thus, only one ciphertext block will be corrupted.
CBC mode: In this mode, ciphertext block Ci is generated by XORing plaintext
block Pi with ciphertext block Ci−1. Therefore, a bit error in block P3 will affect
ciphertext block C3, which in turn will affect ciphertext block C4 and so forth, and
therefore the error will propagate through all remaining ciphertext blocks. Thus,
N − 2 ciphertext block will be corrupted.
CTR mode: In this mode, ciphertext block Ci is generated by applying the XOR
function to plaintext block Pi and the encrypted counter ti, independent of the other
plaintext or ciphertext blocks. Therefore, a bit error in block P3 will only affect ci-
phertext block P3 and will not propagate further. Thus, only one ciphertext block
will be corrupted.

6.7 For this padding method, the padding bits can be removed unambiguously, provided
the receiver can determine that the message is indeed padded. One way to ensure that
the receiver does not mistakenly remove bits from an unpadded message is to require
the sender to pad every message, including messages in which the final block is already
complete. For such messages, an entire block of padding is appended.

6.11

a. CTS is the same as CBC, except for the last two blocks. PN−1 is encrypted as usual
for CBC, but the result of this encryption is split into two parts: the prefix is used
as CN , while the remaining bits (X) are used in the encryption of PN into CN−1

but are not returned. Since the X bits are used in future encryption stages they
can be retrieved during decryption, but the ciphertext remains the same length as
the original plaintext (unlike with simple padding schemes). This is useful when we
wish the ciphertext to fit in the same buffer as the plaintext did.

b. Decrypting CN−1: Assume the message length is (block size*i - j). After passing

3



CN−1 through the encryption/decryption box using K, denote the result as Z. We
XOR the (block size-j) prefix bits of Z with CN , and that gives us PN .
Decrypting CN : After the above procedure, concatenate the j postfix bits of Z at
the end of CN , and pass these through the encryption/decryption box using K. The
result is XORed with CN−2 and PN−1 is the result.

c. The specific value of the padding of PN is not important, as long as the entity
decrypting the message knows what the padding is. Thus 1’s or a key prefix would
not obstruct decryption. Using 0’s is just the simplest option since it leaves the X
bits as they were.

14.1 a. With this scheme, the following steps occur:

1) A sends a connection request to B, with an event marker or nonce (Na) encrypted
with the key that A shares with the KDC.

2) If B is prepared to accept the connection, it sends a request to the KDC for a
session key, including A’s encrypted nonce plus a nonce generated by B (Nb)
and encrypted with the key that B shares with the KDC.

3) Since the KDC shares the unique secret key with each other, it can decrypt these
two blocks and knows A and B are authentic. After that, the KDC returns two
encrypted blocks to B. One block is intended for B and includes the session key,
A’s identifier, and B’s nonce. A similar block is prepared for A and passed from
the KDC to B and then to A.

4) B can decrypt the first block, so B can know that A is authentic. B then send
the second block to A.

5) A can decrypt this block, so A can know that B is authentic. A and B have now
securely obtained the session key and, because of the nonces, are assured that
the other is authentic.

b. The proposed scheme appears to provide the same degree of security as that of
Figure 14.3. One advantage of the proposed scheme is that, in the event that B
rejects a connection, the overhead of an interaction with the KDC is avoided.

14.2 The suspect Z might get all the documents with the following steps:

1) Z sends to the server the source name A, the destination name Z (his own), and
E(Ka, R), as if A wanted to send him the same message encrypted under the same
key R as A did it with B.

2) The server will respond by sending E(Kz, R) to A and Z will intercept that.

3) Because Z knows his key Kz, he can decrypt E(Kz, R), thus he can use R to decrypt
E(R,M) and obtain M .

4



2. In the CTR mode, the seed value (V) will be incremented by 1 after each encryption. Thanks
to the invertibility of the encryption algorithm, different values of V give rise to different
pseudorandom bits. Only when the value of V loops back to the initial value, the whole
stream will repeat. V has 2128 possible values, each producing 128 pseudorandom bits. So,
the period of the pseudorandom bit stream is 128× 2128 bits long.

3. To be completed.

5


