

Random Number Generation and Stream Ciphers

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 1 / 18

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Use of Random Numbers

- Random numbers are used by a number of security algorithms for:
 - Nonces (used in authentication protocols)
 - Session key generation (by the KDC or an end system)
 - Key generation for the RSA algorithm
- Two requirements: randomness and unpredictability.

イロト 人間ト イヨト イヨト

Pseudorandom Numbers

- 😚 True random numbers are hard to come by.
- Cryptographic applications typically use algorithmic techniques for random number generation.
- These algorithms are deterministic and therefore produce sequence of numbers that are not statistically random.
- If the algorithm is good, the resulting sequences will pass reasonable tests for randomness.
- Such numbers are often referred to as pseudorandom numbers.

イロト 人間ト イヨト イヨト

The Linear Congruential Method

- m the modulus m > 0
- a the multiplier $0 \le a < m$
- c the increment $0 \le c < m$
- X_0 the starting value (seed) $0 \le X_0 < m$
- Iterative equation: $X_{n+1} = (aX_n + c) \mod m$
- Larger values of m imply higher potential for a long period.
- For example, $X_{n+1} = (7^5 X_n) \mod (2^{31} 1)$ has a period of $2^{31} 2$.
- What are the weakness and the remedy?

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

The Blum Blum Shub (BBS) Generator

- Choose two large prime numbers p and q such that p = q = 3 (mod 4). Let n = p × q.
- Choose a random number s relatively prime to n.
- Bit sequence generating algorithm:

$$egin{aligned} X_0 &= s^2 \mod n \ \mathbf{for} \ i &= 1 \ \mathbf{to} \ \infty \ X_i &= (X_{i-1})^2 \mod n \ B_i &= X_i \mod 2 \end{aligned}$$

The BBS generator passes the next-bit test.

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 5 / 18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example Operation of BBS Generator

i	X_i	Bi
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

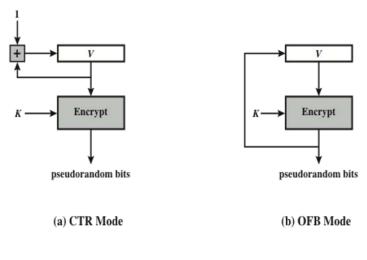
i	X_i	B_i
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

Source: Table 7.1, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Cryptographical Generation



- Cyclic encryption: use an arbitrary block cipher. Full-period generating functions are easily obtained.
- DES Output Feedback Mode: the successive 64-bit outputs constitute a sequence of pseudorandom numbers.
- ANSI X9.17 Pseudorandom number generator (PRNG): make use of triple DES. Employed in financial security applications and PGP.

イロト 不得下 イヨト イヨト 二日

Pseudorandom Number Generation

Source: Figure 7.4, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 8 / 18

- 31

Results from CTR Mode

Output Block	Fraction of One	Fraction of Bits that
	Bits	Match with
		Preceding Block
1786f4c7ff6e291dbdfdd90ec3453176	0.57	—
60809669a3e092a01b463472fdcae420	0.41	0.41
d4e6e170b46b0573eedf88ee39bff33d	0.59	0.45
5f8fcfc5deca18ea246785d7fadc76f8	0.59	0.52
90e63ed27bb07868c753545bdd57ee28	0.53	0.52
0125856fdf4a17f747c7833695c52235	0.50	0.47
f4be2d179b0f2548fd748c8fc7c81990	0.51	0.48
1151fc48f90eebac658a3911515c3c66	0.47	0.45

Source: Table 7.3, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 9 / 18

- 3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Results from OFB Mode

Output Block	Fraction of One Bits	Fraction of Bits that Match with
	Dits	Preceding Block
1786f4c7ff6e291dbdfdd90ec3453176	0.57	-
5e17b22b14677a4d66890f87565eae64	0.51	0.52
fd18284ac82251dfb3aa62c326cd46cc	0.47	0.54
c8e545198a758ef5dd86b41946389bd5	0.50	0.44
fe7bae0e23019542962e2c52d215a2e3	0.47	0.48
14fdf5ec99469598ae0379472803accd	0.49	0.52
6aeca972e5a3ef17bd1a1b775fc8b929	0.57	0.48
f7e97badf359d128f00d9b4ae323db64	0.55	0.45

Source: Table 7.2, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 10 / 18

3

ANSI X9.17 PRNG

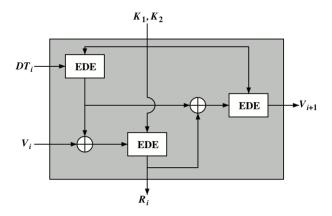


Figure 7.5 ANSI X9.17 Pseudorandom Number Generator

Source: Figure 7.5, Stallings 2014

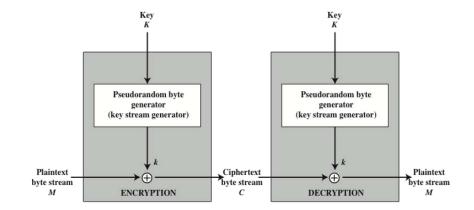
Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Stream Ciphers

- Encrypt plaintext one byte at a time; other units are possible.
- Typically use a keystream from a pseudorandom byte generator (conditioned on the input key).
- Decryption requires the same pseudorandom sequence.
- S Usually are faster and use far less code than block ciphers.
- Design considerations:
 - The encryption sequence should have a large period.
 - The keystream should approximate a truly random stream.
 - The input key needs to be sufficiently long.

Yih-Kuen Tsay (IM.NTU)


Random Number Generation

Information Security 2012 12 / 18

イロト 不得下 イヨト イヨト 二日

Stream Cipher Diagram

Source: Figure 7.7, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 13 / 18

- Probably the most widely used stream cipher, e.g., in SSL/TLS and in WEP (part of IEEE 802.11)
- 😚 Developed in 1987 by Ron Rivest for RSA Security Inc.
- Variable key size with byte-oriented operations
- Based on the use of random permutation
- $\ref{eq:starting}$ The period of the cipher likely to be $> 10^{100}$
- Simple and fast
- Proprietary, though its algorithm has been disclosed

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 14 / 18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparisons of Symmetric Ciphers

Cipher	Key Length	Speed (Mbps)
DES	56	9
3DES	168	3
RC2	Variable	0.9
RC4	Variable	45

Source: Table 7.4, Stallings 2010

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 15 / 18

3

Stream Generation in RC4

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 16 / 18

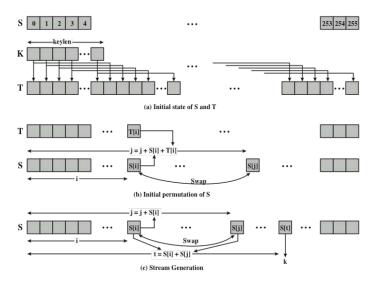
- 3

・ロト ・四ト ・ヨト ・ヨト

Initialization of S in RC4

 $\label{eq:spin} \begin{array}{l} \mbox{for } i = 0 \ \mbox{to } 255 \ \mbox{do} \\ S[i] = i; \\ T[i] = K[i \ \mbox{mod keylen}]; \\ \mbox{j = 0;} \\ \mbox{for } i = 0 \ \mbox{to } 255 \ \mbox{do} \\ j = (j + S[i] + T[i]) \ \mbox{mod } 256; \\ \mbox{Swap } (S[i],S[j]); \end{array}$

Yih-Kuen Tsay (IM.NTU)


Random Number Generation

Information Security 2012 17 / 18

< 回 ト < 三 ト < 三 ト

RC4 in Picture

Source: Figure 7.8, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Random Number Generation

Information Security 2012 18 / 18

3