Homework Assignment \#1A

Note

This assignment is due 2:10PM Tuesday, October 7, 2014. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management Building 2. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

1. Solve the following exercise problems in Stallings' book (6th edition): 1.1 (10 points), 2.1 (10 points), 2.18 (10 points), 3.1(b) (5 points), 3.4 (10 points), 3.13 (10 points), 4.14 (5 points), $4.19(\mathrm{a})(\mathrm{b})$ (10 points), 4.26 (10 points), 4.27 (multiplicative inverse of $x^{3}+x ; 10$ points).
2. A permutation operation on $n(\geq 1)$ distinct objects (arranged in some order so that each object is uniquely identifiable by a number in $\{1,2, \cdots, n\}$) can be represented by a table listing a permutation of the numbers from $\{1,2, \cdots, n\}$ in the following sense: if the i-th entry of the table is p_{i}, then the new i-th object will be the original p_{i}-th object. For example, the following P is a permutation operation on 8 objects:

$$
P=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 7 & 3 & 4 & 6 & 1 & 5
\end{array}\right]
$$

Given the input $M=\left\langle M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}\right\rangle, P$ produces the output $P(M)=\left\langle M_{8}, M_{2}, M_{7}, M_{3}, M_{4}, M_{6}, M_{1}, M_{5}\right\rangle$.
(a) Give the inverse permutation of the above P using the same representation.
(5 points)
(b) Let $\left[r_{1} r_{2} \cdots r_{n-1} r_{n}\right]$ be the inverse of a given permutation $\left[p_{1} p_{2} \cdots p_{n-1} p_{n}\right]$. Describe in precise terms the relation between r_{i} 's and p_{i} 's.
(5 points)

