
Information Security -
Web Security

Department of Information Management
National Taiwan University

Information Security

Fall 2014

Shun-Wen Hsiao
hsiaom@iis.sinica.edu.tw

Outline

• Introduction

• Web Basics

• Web Hacker – The Heist

• The OWASP Top 10 Web App Security Risks

• Botnet

• Session Hijacking and Cross Site Script

• Web Security Bulletin and Ethic

• OWASP WebGoat Project

2

Introduction

• If you were a …

– General Web User.

• using PC, tablet, smart phone, wearable device, ...

– web mail, social network, on-line shopping, on-line banking,
medical record, employment history, ...

– Web Application Programmer.

• program bug/flaw, misconfiguration, insecure process, ...

– MIS Administrator.

• How do you ensure the web apps are secure?

– Manager, CIO, CEO, ...

3

Introduction (cont’d)

• What will we learn from this class?

– The operation of Hypertext Transfer Protocol (HTTP)

– The operation of a Browser

– The techniques used by a Hacker

– The OWASP Top 10 Web Application Security Risks

– Session Hijacking and Cross-Site Script (XSS)

– Botnet

– OWASP WebGoat Project

4

References

• 20 THINGS I LEARNED ABOUT BROWSER AND THE WEB.
– It is a short guide for anyone who’s curious about the basics of browser and

the web.
– http://www.20thingsilearned.com/
– Updated: Nov. 2011.

• OWASP
– The Open Web Application Security Project

• It is a website dedicated to Web application security.
• https://www.owasp.org/

– OWASP Top Ten Project
• https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

– OWASP WebGoat Project
• https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

• Ajax Security

– Billy Hoffman and Bryan Sullivan, Addison-Wesley Professional, Dec. 2007

• Beautiful Security: Leading Security Experts Explain How They Think
– Andy Oram and John Viega, O'Reilly Media, April 2009

5

Browsers

6

HTTP (Hypertext Transfer Protocol)

7

Type the following URL in the browser
http://www.cnn.com/

DNS (Domain Name System) Server

DNS Query:
www.cnn.com IP?

DNS Answer:
A 157.166.240.11
A 157.166.240.13
A 157.166.240.10

CNN Web Server

GET / HTTP/1.1

Host: www.cnn.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.1; …

Accept: text/html, application/xhtml+xml, …

Accept-Encoding: gzip, defalte, sdch

Accept-Language: zh-tw, zh;q=0.8,en-US;q=0.6, …

Accept-Charset: Big5, utf-8;q=0.7, …

Cookie: SelectedEdition=edition; …

1

2

HTTP Request

HTTP Request with Parameters

8

GET /index.php?id=123&q=456 HTTP/1.1

Host: www.cnn.com

http://www.cnn.com/index.html
GET /index.html HTTP/1.1

Host: www.cnn.com

Without parameters

http://www.cnn.com/index.php?id=123&q=456
With parameters in URL (aka GET)

GET /index.php HTTP/1.1

Host: www.cnn.com

Cookie: id=123;q=456

http://www.cnn.com/index.php
With parameters in Cookie

POST /index.php HTTP/1.1

Host: www.cnn.com

Content-Length: 13

id=123&q=456

http://www.cnn.com/index.php
With parameters in the content (aka POST)

HTTP Reply Header

9

Type the following URL in the browser
http://www.cnn.com/

CNN Web Server

HTTP/1.1 200 OK

Host: www.cnn.com

Server: nginx

Date: Thu, 15 Nov 2012 07:28:32 GMT

Content-Type: text/html

Transfer-Encoding: chunked

Connection: keep-alive

Set-Cookie: CG=TW:03:Taipei; path=

Vary: Accept-Encoding

Cache-Control: max-age=60

content-Encoding: gzip

X-UA-profile: desktop

…

<HTML>…

HTTP Reply

HTML (HyperText Markup Language) Document

10

<!DOCTYPE HTML>

<html lang="en-US">

<head>

<title>CNN.com International - Breaking, World, Business, Sports, Entertainment and Video News</title>

<meta http-equiv=“content-type" content="text/html;charset=utf-8"/>

<meta http-equiv="refresh" content="1800">

…

<script>

var cnnIsHomePage=true;

…

</script>

</head>

<body id="cnnMainPage">

<div id="cnn_ipadappbanner"></div>

...

</body>

</html>

Web Browser Engine

• A web browser engine, (sometimes called layout engine or rendering
engine), is a software component that takes marked up content (such as
HTML, XML, image files, etc.) and formatting information (such as CSS, XSL,
etc.), and displays the formatted content on the screen.

11

<html>
<head>
</head>
<body>
<div>
<form>

…
</div></body>
</html>

DOM HTML + CSS Display

window

history document location

link div anchor

form

img

DOM (Document Object Model)

• The Document Object Model (DOM) is a cross-platform and language-
independent convention for representing and interacting with objects in
HTML, XHTML and XML documents.

12 An example of DOM in Chrome web developer tool.

Client-Side Script Engine

13

<html>
<head>
<script>
 // JavaScript
</script>
<body>
</body>
</html>

HTML
with client-side script

Handel Window Event

Set/Trigger Timer

Send HTTP Request

…

Modify DOM

Client-
Side

Script
Engine

Client-side scripting refers to the class of
computer programs on the web that are
executed by the user's web browser. It
is enabling web pages to be scripted;
that is, to have different and changing
content depending on user input,
environmental conditions (such as the
time of day), or other variables.

Browser Extension

14

Basically, a browser does not know
how to handle this object, so it
relies on 3rd party plug-in to render
these objects.

How about a PDF file, Flash clip, or JAVA applet?

application/pdf
application/x-shockwave-flash
application/java

Accept:

application/xml,application/xhtml+xml,text/ht

ml;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

In HTTP request

Browser Extension (cont’d)

• A browser extension is a computer program that
extends the functionality of a web browser.
– Plug-ins add specific abilities into browsers using certain

APIs allowing third parties to create plug-ins that interact
with the browser.
• e.g., Flash, PDF reader, JAVA, Windows Media Player…

– Extensions can be used to modify the behavior of existing
browser features to the application or add entirely new
features.
• e.g., adblock, gestures, …

• But this world is not perfect.

– A smart or stupid browser?

15

16

Client-Side Attack: Drive-By Exploit

• The goal of the drive-by exploit is to take effective, temporary control of
the client web browser for the purpose of
– forcing it to fetch, store, and then execute a binary application
– without revealing to the human user that these actions have taken place.

1. Shellcode injection phase
– The first challenge in delivering the drive-by exploit is gaining control of the

browser.
• all drive-by exploits begin with a remote code injection
• such as buffer overflow exploit against component within the browser, e.g., ActiveX, PDF

plugin, Flash player.

2. Shellcode execution phase
– inject a small shellcode segment within the browser process to conduct covert

binary installation

3. Covert binary install phase
– fetching a remote malware application from some remote source on the

Internet, storing it within the file system and executing it on the victim’s host

17

Example of Drive-By Exploit

18 http://www.microsoft.com/security/sir/glossary/drive-by-download-sites.aspx

WEB HACKER - THE HEIST

19

Web Request/Response Model

• Request
– URL (get, post, …)

• Response
– HTML, CCS, JS, XML, …

• Static Web Page
• Dynamic Web Page

– Server-Side Scripting
– Client-Side Scripting

• HTML, JS, CSS, DOM

20

Asynchronous JavaScript and XML (Ajax)

21

Example: Google Search!
 Facebook Wall

The Heist

• Eve
– Pay cash to buy a cup of coffee

– Free Wi-Fi Internet access in the shop

– She makes sure all her Web traffic is being recorded
through an HTTP proxy on her local machine

• HighTechVacations.net
– Ticket booking, planning, …

– Web applications with Ajax
• the technology is new enough that people make basic mistakes

• no one seems to be providing good security practices

22

(Local, Software) HTTP Proxy

23

Fiddler is a free Web
Debugging Proxy which
logs all HTTP/HTTPS
traffic between your
computer and the
Internet.

http://www.telerik.com/fiddler

The Heist - observation

• Eve
– creates an account,
– uses the search feature,
– enters data in the form to submit feedback, and
– begins booking a flight from Atlanta to Las Vegas.

• The site switches to SSL!

– but the site is self-signed. (A big mistake.)
– a sign of sloppy administrators or
– an IT department in a cash crunch

24

Secure Sockets Layer (SSL) signed!

25

https://mail.google.com

26

Network Tap
• Usually, communication media is shared!

– Ethernet, WiFi (802.11 a/b/g/n/ac)

• Certain network protocols are not encrypted!
– HTTP, FTP, Telnet

27

HTTP
HTTPS

Wireshark, https://www.wireshark.org/

The Heist – hacking the coupon system

• Eve continues using the site and ends up in the
checkout phase when she notices something
interesting: a Coupon Code field on the form.
– Try FREE.

• Her browser immediately displays an error
message telling Eve that her coupon code is not
valid.
– Ajax?

– Self-checking code using JavaScript?

28

HTML Source Code

29

HTML/CCS/JS source codes are always
available from your browser.

Even if the “Right Click” feature is
disabled.

The Heist – hacking the coupon system

• Eve tries right-click to view the HTML source
code of the coupon code page.

• This JavaScript is obfuscated.

30

Eve knows that this a
JavaScript code, but it is
difficult for her to read
and analyze.

But…

31

JavaScript Reverser

This program takes
JavaScript and
parses it just like
the JavaScript
interpreter in the
browser would.

Eve now can
analyze the JS
code to hack the
coupon code field.

The Heist – hacking the coupon system

• Try FREE again with
tracking

• Track the event for
validate coupon code.
– addEvent(), checkCoupon(),

onblur

• She finds that a variable
named coupons is used in
coupon validation.

32

Are they ACSII trivial
encryption?

The Heist – attacking client-side data

• Eve makes another search for a flight from
Atlanta to Las Vegas.
– the search page does not refresh or move to

another URL. Is it an Ajax?

• She double-checks to make sure all of her
Web traffic is tunneled through an HTTP proxy.
– Eve saves a copy of all traffic that her HTTP proxy

has captured so far and restarts it.

33

The Heist – attacking client-side data

• New search: leaving
Hartsfield-Jackson
International Airport in
Atlanta to McCarran
International Airport in Las
Vegas on July 27.
– data representation layer of

Ajax: JSON (JavaScript Object
Notation)

– data structure

34

The Heist – attacking client-side data

• Manipulating the input?
– [“ATL”, “LAS”, 7, “2007-07-27”]

– [“ABC”, “LAS”, 7, “2007-07-27”]

– [“ATL”, “LAS”, 0, “2007-07-27”]

– [“ATL”, “LAS”, -7, “2007-07-27”]

– [“ATL”, “LAS”, 7, “2007”]

– [“ATL”, “LAS”, 7, “ABC”]

– [“ATL”, “LAS”, 7, “2010-02-29”]

– [“”, “”, 0, “”]

– [“ATL”, “LAS”, 7]

– [“ATL”, “LAS”, 7, “2007-07-27”, “ABC”]

– [“’ OR”,”’ OR”,7,”’ OR”]

35

PANIC?

Microsoft OLE DB Provider for
ODBC Drivers error ‘80040e14’

[Microsoft] [ODBC SQL Server
Driver] [SQL Server] Unclosed
quotation mark before the
character string ‘ OR’

The Heist – attacking client-side data

36

= [“ALT”,”LAS”,7,”2007-07-27”]
 + SELECT ‘STEAL’, * FROM sysobjects WHERE type = ‘u’

It is a classic SQL injection attack,
the manipulated input causes actually two SQL queries.

Question: Why “sysobjects”?

The Heist – attacking client-side data

• SQL injection

37

The Heist – then

• She has cracked all the promotional codes.
• She has a list of all the usernames and is currently

cracking their passwords.
• She has a copy of the credit card data for anyone who

has ever booked a flight with this web site.

• She has created a backdoor account with (slightly
unstable) administrator privileges.

• She has located the login for an administrative portal
that could possibly give her access to more sites
besides HighTechVacations.net.

38

The Heist – more

• Can Eve hack the booking procedure?
– The normal procedure might be: login, flight selection, seat

selection, credit card information exchange, flight itinerary,
email confirmation, done.

• Can Eve skip the payment procedure?
• Can Eve make seat reservation without payment?
• How does the web site deal with incomplete booking?

• Eve can sale the member or payment information to a

3rd-party organization.

39

The Heist – forensics

• In current web environment, functionalities are
more important than security.

– Have you ever think about who wrote these web apps?

• How can we find Eve?

• Most of the web sites do not have auditing
mechanism.

– However, web server logs provide certain capability
for security forensics. They are not enough.

40

THE OWASP TOP 10 WEB APPLICATION
SECURITY RISKS FOR 2013

41
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

The OWASP Top 10 Web Application
Security Risks

42

A1: Injection

• Injection flaws occur when untrusted data is sent to an
interpreter as part of a command or query. The
attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing
unauthorized data.
– Interpreter: Take byte strings and interpret them as

commands.
• SQL Server, OS Shell, LDAP, XHTML, etc…

– SQL injection is still quite common
• Many applications still susceptible (really don’t know why)
• Even though it’s usually very simple to avoid

– Typical Impact
• Usually severe. Entire database can usually be read or modified
• May also allow full database schema, or account access, or even

OS level access
43

A1: Injection (cont’d)

• SQL Query

– SELECT * FROM table
WHERE id = ‘MyID’
and pw = ‘MyPW’;

• SQL Injection Query

– SELECT * FROM table
WHERE id = ‘AdminID’
and pw = ‘AnyPW’ or
‘A’=‘A’;

• Or

– http://example.com/app
/accountView?id=admin'
or '1'='1

44

Recommendations: Validate your input data
 at the server side!

A1: Injection (cont’d)

45 http://gizmodo.com/5498412/sql-injection-license-plate-hopes-to-foil-euro-traffic-cameras

A2: Broken Authentication and Session
Management

• Application functions related to authentication
and session management are often not
implemented correctly, allowing attackers to
compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume
other users’ identities.

• HTTP is a “stateless” protocol!

– Session and Cookie are often used.

46

(We’ll talk about them later.)

A2: Broken Authentication and Session
Management (cont’d)

47

MyID MyID

MyPW MyPW

ACC

PWD

Login

Go Go

After login, the server provides a
Session ID for the user.

But, is Session ID safe?
Can it be stolen?

Scenario #1
An authenticated user of the site wants to let his friends know about the web page. He e-
mails the link without knowing he is also giving away his session ID. When his friends use
the link they will use his session and credit card.
Scenario #2
Application’s timeouts aren’t set properly. User uses a public computer to access site.
Instead of selecting “logout” the user simply closes the browser tab and walks away.
Attacker uses the same browser an hour later, and that browser is still authenticated.

A3: Cross-Site Scripting (XSS)

• XSS flaws occur whenever an application takes
untrusted raw data and sends it to another web
browser without proper validation and escaping. XSS
allows attackers to execute scripts in the victim’s
browser.
– Raw data can be further …

• Stored in database
• Reflected from web input (form field, hidden field, URL, etc…)
• Sent directly into rich JavaScript client

– Virtually every web application has this problem
– Typical Impact

• Steal user’s session, steal sensitive data, rewrite web page,
redirect user to phishing or malware site

• Install XSS proxy which allows attacker to observe and direct user’s
behavior on vulnerable site and force user to other sites

48

A3: Cross-Site Scripting (cont’d)

49

Message Board

Name
Message

Name: John Doe
Msg: What a nice day!

Name: Att
Msg: Nice Day

…

<tr><td>Name: </td></tr>
<tr><td>Msg: Nice Day!</td></tr>
<script>
// Send document.cookie to
// malicious web site using
onMouseover
</script>
<iframe src=‘xxx.net’ height=“0”>
</td></tr>

1 Attacker sets the trap

2 Victim views page

3 Script silently sends Victim’s

Information to the Attacker

Recommendations: Validate all user supplied input at the server side!

A4: Insecure Direct Object References

• A direct object reference occurs when a
developer exposes a reference to an internal
object, such as a file, directory, or database
key. Without an access control check or other
protection, attackers can manipulate these
references to access unauthorized data.

– E.g., https://www.onlinebank.com/user?acct=606

• How about changing the acct number?

– E.g., https://www.file.com/download?fid=gerlse

50

Recommendations: Replace them with a temporary mapping value.
 Validate the direct object reference.

A5: Security Misconfiguration

• Good security requires having a secure
configuration defined and deployed for the
application, frameworks, application server, web
server, database server, and platform.

• All these settings should be defined,
implemented, and maintained as many are not
shipped with secure defaults.

• This includes keeping all software up to date,
including all code libraries used by the application.

51

A5: Security Misconfiguration (cont’d)

• Examples

– default accounts, initial accounts, installation
accounts

– default settings: directory traversal, source code
directory (java, php, c)

– error messages, panic information, exception
handling messages

– demonstration examples

52

A6: Sensitive Data Exposure

• Scenario #1
– An application encrypts credit card numbers in a database using

automatic database encryption. However, this means it also decrypts
this data automatically when retrieved, allowing an SQL injection flaw
to retrieve credit card numbers in clear text. The system should have
encrypted the credit card numbers using a public key, and only
allowed back-end applications to decrypt them with the private key.

• Scenario #2
– A site simply doesn’t use SSL for all authenticated pages. Attacker

simply monitors network traffic (like an open wireless network), and
steals the user’s session cookie. Attacker then replays this cookie and
hijacks the user’s session, accessing the user’s private data.

• Scenario #3
– The password database uses unsalted hashes to store everyone’s

passwords. A file upload flaw allows an attacker to retrieve the
password file. All of the unsalted hashes can be exposed.

53

A7: Missing Function Access Control

• A common mistake
– Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn’t
work.

– Attacker simply forges direct access to ‘unauthorized’
pages

• Typical Impact
– Attackers invoke functions and services they’re not

authorized for
– Access other user’s accounts and data
– Perform privileged actions

54

A7: Missing Function Access Control
(cont’d)

55

if authentication is passed, then redirect to …
http://stupid.com/user.php?id=MyID

What if…
http://stupid.com/admin.php?id=MyID

Or

http://stupid.com/user.php?id=Admin

Make sure authentication is required to access
private page.

MyID MyID

MyPW MyPW

ACC

PWD

Login

Go Go

A8: Cross-Site Request Forgery (CSRF)

• A CSRF attack forces a logged-on victim’s browser to
send a forged HTTP request, including the victim’s
session cookie and any other automatically included
authentication information, to a vulnerable web
application.
– This allows the attacker to force the victim’s browser to

generate requests the vulnerable application thinks are
legitimate requests from the victim.

• Imagine what if a hacker could steer your mouse and
get you to click on links in your online banking
application?

56

A8: Cross-Site Request Forgery (cont’d)

57

Received E-mail

What if…

Usually, we allow automatically login…

Recommendations: Add a secret, not automatically submitted, token to ALL sensitive requests.
 Properly encode all input on the way out.

A9: Using Components with Known
Vulnerabilities

• Virtually every application has these issues
because most development teams don’t focus
on ensuring their components/libraries are up
to date.

• In many cases, the developers don’t even
know all the components they are using,
never mind their versions.

• Component dependencies make things even
worse.

58

A10: Unvalidated Redirects and
Forwards

• Web applications frequently redirect and
forward users to other pages and websites,
and use untrusted data to determine the
destination pages.

• Without proper validation, attackers can
redirect victims to phishing or malware sites,
or use forwards to access unauthorized pages.

59

A10: Unvalidated Redirects and
Forwards (cont’d)

• Example #1
• The application has a page called “redirect.jsp” which takes a single

parameter named “url”. The attacker crafts a malicious URL that
redirects users to a malicious site that performs phishing and
installs malware.
– http://www.example.com/redirect.jsp?url=evil.com

• Example #2
• The application uses forward to route requests between different

parts of the site. To facilitate this, some pages use a parameter to
indicate where the user should be sent if a transaction is successful.
The attacker crafts a URL that will pass the application’s access
control check and then forward the attacker to an administrative
function that she would not normally be able to access.
– http://www.example.com/boring.jsp?fwd=admin.jsp

60

XSS vs. CSRF

61

You & your browser!

(Auto-) Log in
& Transaction

(Auto-) Log in
& Forged
Transaction

TrustedBank.com
Attacker

TrustedSocialNetwork.net

Malicious
Web 2.0
content

(Auto-) Log in &
Read/Exec content

A good URL
with malicious
parameters

Private Data

Hostile DB

XSS

CSRF

1

2

3

1

2

3

BOTNET

62

How a botnet works?

• The term botnet is used to define networks of infected
end-hosts, called bots, that are under the control of a
human operator commonly known as botmaster.

• While botnets recruit vulnerable machines using
methods also utilized by other classes of malware,
their defining characteristic is the use of command and
control (C&C) channels.
– IRC, Internet Relay Channel

• was originally designed to form large social chat rooms

– HTTP
– P2P
– Others…

63

Botnet Life Cycle

64

Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, Andreas Terzis,
“A Multifaceted Approach to Understanding the Botnet Phenomenon,” in IMC 2006.

Underground Economy

65
http://en.wikipedia.org/wiki/Botnet

Underground Economy (cont’d)

• Botnets pose the greatest power to execute
illegal activities on the internet
– Spam, DDoS, phishing, click fraud, stepping

stone, …

• Advertising
– goods (carder, confirmer, cashier)

– services (SSN, credit cards, etc...)

• Sensitive Data
– Bank account info or SSNs allow for verification

66

67

http://en.wikipedia.org/wiki/Botnet

68

Historical list of botnets

Botnet as a Service

69

Bot Example: Morto.A

70

Bot Remote Desktop
Service

Remote Desktop
Service

Target Host RDP
Port 3389

Drop Server
Cache.txt Cache.txt

sens32.dll sens32.dll ntshrui.dll ntshrui.dll

(4) Replace
benign files

(2) Create a
new process

(1)

(3) Request & download bot binary
HTTP
Port 80

(5) Modify registries to
load the DLLs as services

Malicious Process (temporary)

KLM\SYSTEM\CurrentControlSet\Services\Sens\Parameters
"ServiceDll" = “<system folder>\sens32.dll”

HKLM\SYSTEM\CurrentControlSet\Services\6to4\Parameters
"ServiceDll" = “<windows folder>\temp\ntshrui.dll”

(6) User’s reboot of the
host will start the malicious
services

(a) Initiate RDP connection
(b) Crack the password
(c) Take control of the target host
 (encrypted)

Network Activities Host Activities

Bot Example: Morto.A (cont’d)

71

Malicious Services (resident)

Reporter

RDP
Port 3389 Deliver attack commands

Compromised Host

Report the version of the current binary

Drop Server

Request & download new bot binary
HTTP
Port 80

Malicious Process Malicious Process

Create
a new process

C&C Server

Vulnerable
Host

RDP
Port 3389 Compromise a target victim

Perform DOS attack!!

Network Activities Host Activities

Cache.txt Cache.txt

Remote
Desktop Service

Remote
Desktop Service

After reboot

DNS and Fast-Flux

72

DNS server

Client

Web server
www.ntu.edu.tw
(140.112.8.116)

Hierarchical DNS

Client

Web server
www.ntu.edu.tw
(140.112.8.116)

(. root)

(. com, .org, .tw)

(.edu.tw)

DNS and Fast-Flux (cont’d)

• Motivation:
– The botnet itself also requires a reliable hosting infrastructure

for commands distribution or malicious binaries download
• Bots may not be alive all the time
• Botmasters want the links between the bots to be less obvious

• FFSNs show a similar behavior as RRDNS and CDNs
– A single service seems to be hosted by “many different IP

addresses”
– responds a few A records from a larger pool of compromised

machines (and responds a different subset after the TTL has
expired)

– if at least one of the IP addresses returned is reachable, the
whole “scam” is working!

73

DNS and Fast-Flux (cont’d)

74

V: Victim
Di: DNS-Flux agents
DV: Victim’s DNS resolver
Dcom: .com name server
M: Mothership

D1

D3

M D4 D2

4

3

6

V DV Dcom

1

2

5 7

8

;; ANSWER SECTION:
ns.example.com. 30 IN A D1’s IP
ns.example.com. 30 IN A D2’s IP
ns.example.com. 30 IN A D3’s IP
ns.example.com. 30 IN A D4’s IP

Query flux.example.com

Query flux.example.com

Referral ns.example.com

Query flux.example.com

Query flux.example.com

Query redirected

Answer W1~W5’s IPs

Answer W1~W5’s IPs

Response redirected

Answer W1~W5’s IPs

Internet

Malware Domains/URLs

75 http://www.malwaredomainlist.com/mdl.php

SESSION HIJACKING AND CROSS
SITE SCRIPT

76

HTTP Cookies & Sessions

• HTTP is a stateless protocol.
– The lack of association between any two HTTP

requests.
– It presents a unique challenge to developers who

need to create stateful web applications.

• Cookie
– Netscape provides an elegant solution: cookie.
– It is a state management mechanism at the client-side.
– It is an extension of the HTTP protocol

• the HTTP Set-Cookie header and
• the Cookie request header.

77

Cookie
• When a client sends a request for a particular URL, the server can opt to

include a Set-Cookie header in the response.

• This is a request for the client to include a corresponding Cookie header
in its future requests.

78

Web Server
Client (Browser)

1 1

2 2

HTTP Request
GET /index.html HTTP/1.1

HOST: www.server.com

HTTP Response
HTTP/1.1 200 OK

Set-Cookie: id=123

Cookie Store

HTTP Request
GET /page.html HTTP/1.1

Host: www.server.com

Cookie: id=123

HTTP Response
HTTP/1.1 200 OK

Set-Cookie: id=123

Session

• At the server-side, the server can store certain information about the
client to specify the specific client.

• Every session possesses an unique ID initially assigned by the server, and
can be further provided by the client to retrieve the information stored in
the server.

79

Client
 Cookie

Server
 Session Store

HTTP Request

HTTP Response
 & Set-Cookie SESSID

HTTP Request
 & Cookie SESSID

HTTP Response with SESSID

1

2

Security Threats

• Cookie Theft
– If the session identifier is kept in a cookie, cookie

disclosure is a serious risk, because it can lead to session
hijacking.

• Session Theft
– Does your server well protect your customers’ session data

in the temporary session store?
• /tmp; C:\Windows\Temp

• Traffic Inspection
– HTTP? or HTTPS?
– Session Hijacking

• Session Prediction, Session Capture, Session Fixation

80

Session Fixation

81

Attacker Server

HTTP/1.1 200 OK

Set-Cookie: SessID=123

Send an e-mail having a link with sessID=123.

GET /login.php HTTP/1.1

Victim

<a href="http://server.com/

 login.php?SessID=123">Click

GET /login.php?SessID=123 HTTP/1.1

1 1

2 2
3 3

4 4 Click the link.

5 5 Response using sessID=123

Cross-Site Script – Social Network

82

I browse these content using my account.
Is the content published in my Wall harmful?
Is the ad listed in my page trust worthy?

Cross-Site Script – Mail

83

Mashups

84

yam.com

flash

flash

Mashups (cont’d)

85

facebook.com

google.com

yam.com

How to prevent Cookie/Session/XSS?

• We use our private account to view the content
provided by others.

– How could we assure what we are browsing is secure?

– If we are platform owner, how do we prevent from
information leaking?

– Who is trustworthy?

• Input validation is always the basic and easy-to-
forgotten work for web application developer.

86 * Additional reading material for MySpace: http://namb.la/popular/tech.html

WEB SECURITY BULLETIN AND
ETHIC

87

Information Security

• There has no security products that can
prevent 100% attacks.

• In a system, human beings is always the most
vulnerable component.

– Most of time, security education is more
important than buying security products.

• insider, password, usb storage, CD/DVD, email,
unencrypted WiFi AP, printed documents, social
engineering, phishing, …

88

Is PDF safe?

• 2009/11
Exploit.Win32.Pidief.cvd
– Once you open the

malicious PDF file, your PC
is under the control of
remote hacker.

– It is a 173KB PDF file, which
can be viewed by Adobe
Reader.

– The vulnerable Adobe
Reader will execute the
JavaScript code embedded
in the PDF file.

89

90

Phishing

Password

91 http://password.mx500.com/

I'm proud that I store my password in
plaintext.

• http://plainpass.com/

• There are several ways to store clients’
password
– plaintext

– pure hash

– salted hash

– encrypted password

– multi-salted hash

92

http://plainpass.com/

Google Hacking

93

There are lots of advance searching techniques that can dig private and sensitive information.
Google would craw all possible files and web pages on the Surface Web.

Google Hacking: Trolling For Email Addresses & Site

94

95

