

## **Basic Number Theory and Finite Fields**

#### Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

3



2 / 41

- We say a nonzero integer b divides another integer a, denoted as b|a, if a = mb for some integer m.
- When an integer a is divided by a positive integer n, we get a unique integer quotient q and a unique integer remainder r such that

$$a = qn + r$$
  $0 \le r < n, q = \lfloor a/n \rfloor.$ 

The remainder r is also referred to as a residue.

Basic Number Theory and Finite Fields

#### **Quotient and Remainder**





#### Source: Figure 4.1, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 Information Security 2015

3 / 41

3

#### **Essence of the Euclidean Algorithm**



Given two integers a and b such that  $a \ge b > 0$ .

• Let 
$$a = qb + r$$
, where  $0 \le r < b$ .

- 🖻 There are two cases:
  - If r = 0, then we know immediately gcd(a, b) = b and stop.
  - $\circledast$  If  $r \neq 0$ , repeat the steps above with b as a and r as b.
- In both cases, the equality gcd(a, b) = gcd(b, r) holds.
- We prove the equality by showing that gcd(b, r) ≤ gcd(a, b) and gcd(a, b) ≤ gcd(b, r).

Essence of the Euclidean Algorithm (cont.)



We first show that  $gcd(b, r) \leq gcd(a, b)$ .

- Sonsider a = qb + r.
- Since gcd(b, r)|b and gcd(b, r)|r, we have gcd(b, r)|a.
- Both gcd(b, r)|a and gcd(b, r)|b; so,  $gcd(b, r) \leq gcd(a, b)$ .
- We next show that  $gcd(a, b) \leq gcd(b, r)$ .
  - Sonsider r = a qb.
  - Since gcd(a, b)|a, and gcd(a, b)|b, we have gcd(a, b)|r.
  - So Both gcd(a, b)|b and gcd(a, b)|r; so,  $gcd(a, b) \leq gcd(b, r)$ .

#### **Modular Arithmetic**



The remainder *r* from dividing *a* by n (> 0) is usually denoted by "*a* mod *n*".

$$a = qn + (a \mod n)$$
  $q = \lfloor a/n \rfloor$ .

11 mod 7 = 4 (because 
$$11 = 1 \times 7 + 4$$
).

 $-11 \mod 7 = 3$  (because  $-11 = -2 \times 7 + 3$ ).

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

#### **Congruence Modulo** *N*



- Two integers a and b are congruent modulo n (n > 0), denoted as  $a \equiv b \pmod{n}$ , if  $a \mod n = b \mod n$ .
- The positive integer n is called the modulus of the congruence relation.
- If  $a \equiv 0$  (mod n), then n|a; and vice versa.
- If  $a \equiv b \pmod{n}$ , then n|(a b); and vice versa.

### **Modular Arithmetic Operations**



Properties:

$$((a \mod n) + (b \mod n)) \mod n = (a+b) \mod n$$
$$((a \mod n) - (b \mod n)) \mod n = (a-b) \mod n$$
$$((a \mod n) \times (b \mod n)) \mod n = (a \times b) \mod n$$

Applications:

$$\begin{array}{rcl} 11^7 \pmod{13} \\ \equiv & (11 \times 11^2 \times 11^4) \pmod{13} \\ \equiv & (11 \pmod{13}) \times (11^2 \pmod{13}) \times (11^4 \pmod{13}) \\ \equiv & (11 \pmod{13}) \times (4 \pmod{13}) \times (3 \pmod{13}) \\ \equiv & (11 \times 4 \times 3) \pmod{13} \\ \equiv & 2 \pmod{13} \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

(日) (周) (三) (三)

- 34

Arithmetic Modulo 8



| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

Source: Table 4.2, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

<ロ> (日) (日) (日) (日) (日)

9 / 41

- 3

Arithmetic Modulo 8 (cont.)



| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

Source: Table 4.2, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Arithmetic Modulo 8 (cont.)



| W | -W | $w^{-1}$ |
|---|----|----------|
| 0 | 0  | _        |
| 1 | 7  | 1        |
| 2 | 6  |          |
| 3 | 5  | 3        |
| 4 | 4  |          |
| 5 | 3  | 5        |
| 6 | 2  | _        |
| 7 | 1  | 7        |

Source: Table 4.2, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015 1

イロト イポト イヨト イヨト

11 / 41

3

#### **Residue Classes**



12 / 41

Let  $Z_n$  denote the set of nonnegative integers less than n:

$$Z_n = \{0, 1, 2, \cdots, (n-1)\}.$$

This is referred to as the set of residues, or *residue classes*, modulo *n*. Each integer *r* in  $Z_n$  represents a residue class [r], where

$$[r] = \{a: a \text{ is an integer}, a \equiv r \pmod{n}\}.$$

For example, if the modulus is 4, then

$$[1] = \{\cdots, -7, -3, 1, 5, 9, 13, \cdots\}.$$

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < □ > < □ > < □ >
 Information Security 2015

#### **Principles of Modular Arithmetic**



If  $(a + b) \equiv (a + c) \pmod{n}$ , then  $b \equiv c \pmod{n}$ . If  $(a \times b) \equiv (a \times c) \pmod{n}$ , then  $b \equiv c \pmod{n}$ , only when a is relatively prime to n.

 $(6 \times 3) \equiv (6 \times 7) \pmod{8}$ , but  $3 \not\equiv 7 \pmod{8}$ .

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

#### Modular Arithmetic in $Z_n$



| Property              | Expression                                                                                  |
|-----------------------|---------------------------------------------------------------------------------------------|
| Commutative Laws      | $(w + x) \mod n = (x + w) \mod n$ $(w + x) \mod n = (x + w) \mod n$                         |
|                       | $(w \land x) \mod u = (x \land w) \mod u$                                                   |
| Associative Laws      | $\lfloor (w+x) + y \rfloor \mod n = \lfloor w + (x+y) \rfloor \mod n$                       |
| Associative Laws      | $\left[ (w \times x) \times y \right] \mod n = \left[ w \times (x \times y) \right] \mod n$ |
| Distributive Law      | $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$                          |
| Identities            | $(0+w) \bmod n = w \bmod n$                                                                 |
| Identifies            | $(1 \times w) \mod n = w \mod n$                                                            |
| Additive Inverse (–w) | For each $w \in \mathbb{Z}_n$ , there exists a <i>z</i> such that $w + z \equiv 0 \mod n$   |

Source: Table 4.3, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

14 / 41

- 3

#### Finding the Multiplicative Inverse



$$\begin{array}{ll} \textit{EXTENDED EUCLID}(a,b):\\ 1. & (X_1,Y_1,R_1) \leftarrow (1,0,a); (X_2,Y_2,R_2) \leftarrow (0,1,b)\\ 2. & \text{if } R_2 = 0 \text{ then return } R_1 = \gcd(a,b); \text{ no inverse}\\ 3. & \text{if } R_2 = 1 \text{ then return } R_2 = \gcd(a,b); Y_2 = b^{-1} \pmod{a}\\ 4. & Q = \lfloor R_1/R_2 \rfloor\\ 5. & (X,Y,R) \leftarrow (X_1 - QX_2,Y_1 - QY_2,R_1 - QR_2)\\ 6. & (X_1,Y_1,R_1) \leftarrow (X_2,Y_2,R_2)\\ 7. & (X_2,Y_2,R_2) \leftarrow (X,Y,R)\\ 8. & \gcd{2} \end{array}$$

• Invariants:  $aX_1 + bY_1 = R_1$  and  $aX_2 + bY_2 = R_2$ .

If gcd(a, b) = 1, then Y<sub>2</sub> equals the multiplicative inverse of b modulo a when the algorithm terminates.  $aX_2 + bY_2 = R_2 = 1 → bY_2 = 1 - aX_2 → bY_2 \equiv 1 \mod a.$ 

Yih-Kuen Tsay (IM.NTU)

Information Security 2015

イロト 不得下 イヨト イヨト 二日

#### Groups, Rings, and Fields





Source: Figure 4.2, Stallings 2010

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

► < □ ► < ≥ ► < ≥ ►</p>
Information Security 2015

### Groups, Rings, and Fields (cont.)



(A1) Closure under addition:(A2) Associativity of addition:(A3) Additive identity:

(A4) Additive inverse:

(A5) Commutativity of addition:(M1) Closure under multiplication:(M2) Associativity of multiplication:(M3) Distributive laws:

(M4) Commutativity of multiplication:(M5) Multiplicative identity:

(M6) No zero divisors:

(M7) Multiplicative inverse:

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in S There is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in S such that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in S If a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in S a(b+c) = ab + ac for all a, b, c in S (a+b)c = ac + bc for all a, b, c in S ab = ba for all a, b in S There is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and  $a \neq 0$ , there is an element  $a^{-1}$  in S such that  $aa^{-1} = a^{-1}a = 1$ 

Source: Figure 4.2, Stallings 2010

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

015 17 / 41



18 / 41

- Solution  $\mathcal{Z}_p = \{0, 1, 2, \cdots, (p-1)\}$  where p is a prime.
- For each w ∈ Z<sub>p</sub>, w ≠ 0, there exists a z ∈ Z<sub>p</sub> such that w × z ≡ 1 (mod p).
- The element z is called the multiplicative inverse of w.
- For any prime p,  $(Z_p, +, \times)$  is a finite field of order p, denoted GF(p).

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

Arithmetic in GF(7)



| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |

Source: Table 4.5, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

Arithmetic in GF(7) (cont.)



| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

Source: Table 4.5, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < ≡ > < ≡ > ≡
 Information Security 2015

### Arithmetic in GF(7) (cont.)



| W | -w | $W^{-1}$ |
|---|----|----------|
| 0 | 0  | _        |
| 1 | 6  | 1        |
| 2 | 5  | 4        |
| 3 | 4  | 5        |
| 4 | 3  | 2        |
| 5 | 2  | 3        |
| 6 | 1  | 6        |

4

Source: Table 4.5, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

#### **Polynomial Arithmetic**





(c) Multiplication

(d) Division

Source: Figure 4.3, Stallings 2014

Yih-Kuen Tsay (IM.NTU) Basic Number Theory and Finite Fields Information Security 2015 22 / 41

#### **Polynomial Arithmetic over** GF(2)



$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1 
 + (x^{3} + x + 1) 
 \overline{x^{7} + x^{5} + x^{4}}$$

#### (a) Addition

#### (b) Subtraction

Source: Figure 4.4, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

#### **Polynomial Arithmetic over** GF(2) (cont.)



(c) Multiplication

$$\begin{array}{r} x^{3} + x + 1 \\
x^{3} + x + 1 \\
x^{7} + x^{5} + x^{4} + x^{3} + x + 1 \\
\underline{x^{7} + x^{5} + x^{4}} \\
x^{3} + x + 1 \\
\underline{x^{3} + x + 1} \\
\end{array}$$

(d) Division

Source: Figure 4.4, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015 24 / 41

- 3

イロト イポト イヨト イヨト

## Arithmetic in $GF(2^3)$



|     |   | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|
|     | + | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| 000 | 0 | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| 001 | 1 | 1   | 0   | 3   | 2   | 5   | 4   | 7   | 6   |
| 010 | 2 | 2   | 3   | 0   | 1   | 6   | 7   | 4   | 5   |
| 011 | 3 | 3   | 2   | 1   | 0   | 7   | 6   | 5   | 4   |
| 100 | 4 | 4   | 5   | 6   | 7   | 0   | 1   | 2   | 3   |
| 101 | 5 | 5   | 4   | 7   | 6   | 1   | 0   | 3   | 2   |
| 110 | 6 | 6   | 7   | 4   | 5   | 2   | 3   | 0   | 1   |
| 111 | 7 | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |

Source: Table 4.6, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

## Arithmetic in $GF(2^3)$ (cont.)



|     |   | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|
|     | × | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| 000 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 001 | 1 | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| 010 | 2 | 0   | 2   | 4   | 6   | 3   | 1   | 7   | 5   |
| 011 | 3 | 0   | 3   | 6   | 5   | 7   | 4   | 1   | 2   |
| 100 | 4 | 0   | 4   | 3   | 7   | 6   | 2   | 5   | 1   |
| 101 | 5 | 0   | 5   | 1   | 4   | 2   | 7   | 3   | 6   |
| 110 | 6 | 0   | 6   | 7   | 1   | 5   | 3   | 2   | 4   |
| 111 | 7 | 0   | 7   | 5   | 2   | 1   | 6   | 4   | 3   |

Source: Table 4.6, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 □ >
 < □ >
 < □ >
 < □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >

### Arithmetic in $GF(2^3)$ (cont.)



| W | -W | $w^{-1}$ |
|---|----|----------|
| 0 | 0  | _        |
| 1 | 1  | 1        |
| 2 | 2  | 5        |
| 3 | 3  | 6        |
| 4 | 4  | 7        |
| 5 | 5  | 2        |
| 6 | 6  | 3        |
| 7 | 7  | 4        |

Source: Table 4.6, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015 2

イロト 不得 トイヨト イヨト 二日

### **Modular Polynomial Arithmetic**



• Let S denote the set of all polynomials of degree n - 1 or less over the field  $Z_p$  with the form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$$

where each  $a_i$  takes on a value in  $Z_p$ . Arithmetic on the coefficients is performed modulo p.

- If multiplication results in a polynomial of degree greater than n-1, then the polynomial is reduced modulo some irreducible polynomial of degree n.
- Each such S is a finite field; every nonzero element a in S has a multiplicative inverse  $a^{-1}$  such that  $a \times a^{-1} = 1$ .
- Such an S is denoted as  $GF(2^n)$  when p = 2.

Yih-Kuen Tsay (IM.NTU)

#### **Irreducible Polynomials**



29 / 41

- A polynomial f(x) is *irreducible* if f(x) cannot be expressed as a product of two polynomials with degrees lower than that of f(x).
- Irreducible polynomials play a role analogous to that of primes.
- The AES algorithm uses the finite field GF(2<sup>8</sup>) with the following irreducible polynomial modulus

$$x^8 + x^4 + x^3 + x + 1$$
.

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### **Polynomial Arithmetic Modulo** $(x^3 + x + 1)$



|     |               | 000            | 001            | 010            | 011            | 100            | 101            | 110            | 111            |
|-----|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|     | +             | 0              | 1              | х              | x + 1          | $x^2$          | $x^2 + 1$      | $x^{2} + x$    | $x^2 + x + 1$  |
| 000 | 0             | 0              | 1              | x              | <i>x</i> + 1   | x <sup>2</sup> | $x^2 + 1$      | $x^2 + x$      | $x^2 + x + 1$  |
| 001 | 1             | 1              | 0              | x + 1          | х              | $x^2 + 1$      | x <sup>2</sup> | $x^2 + x + 1$  | $x^2 + x$      |
| 010 | х             | х              | x + 1          | 0              | 1              | $x^2 + x$      | $x^2 + x + 1$  | x <sup>2</sup> | $x^2 + 1$      |
| 011 | x + 1         | x + 1          | x              | 1              | 0              | $x^2 + x + 1$  | $x^2 + x$      | $x^2 + 1$      | x <sup>2</sup> |
| 100 | $x^2$         | x <sup>2</sup> | $x^2 + 1$      | $x^{2} + x$    | $x^2 + x + 1$  | 0              | 1              | x              | x + 1          |
| 101 | $x^2 + 1$     | $x^2 + 1$      | x <sup>2</sup> | $x^2 + x + 1$  | $x^2 + x$      | 1              | 0              | x + 1          | x              |
| 110 | $x^{2} + x$   | $x^2 + x$      | $x^2 + x + 1$  | x <sup>2</sup> | $x^2 + 1$      | x              | x + 1          | 0              | 1              |
| 111 | $x^2 + x + 1$ | $x^2 + x + 1$  | $x^2 + x$      | $x^2 + 1$      | x <sup>2</sup> | x + 1          | x              | 1              | 0              |

Source: Table 4.7, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 
 Information Security 2015

3

# **Polynomial Arithmetic Modulo** $(x^3 + x + 1)$ **(con**

|     |               | 000 | 001            | 010            | 011            | 100            | 101            | 110            | 111            |
|-----|---------------|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|     | ×             | 0   | 1              | x              | x + 1          | $x^2$          | $x^2 + 1$      | $x^{2} + x$    | $x^2 + x + 1$  |
| 000 | 0             | 0   | 0              | 0              | 0              | 0              | 0              | 0              | 0              |
| 001 | 1             | 0   | 1              | х              | <i>x</i> + 1   | x <sup>2</sup> | $x^2 + 1$      | $x^2 + x$      | $x^2 + x + 1$  |
| 010 | x             | 0   | x              | x <sup>2</sup> | $x^2 + x$      | x + 1          | 1              | $x^2 + x + 1$  | $x^2 + 1$      |
| 011 | <i>x</i> + 1  | 0   | <i>x</i> + 1   | $x^{2} + x$    | $x^2 + 1$      | $x^2 + x + 1$  | x <sup>2</sup> | 1              | x              |
| 100 | $x^2$         | 0   | x <sup>2</sup> | <i>x</i> + 1   | $x^2 + x + 1$  | $x^{2} + x$    | x              | $x^2 + 1$      | 1              |
| 101 | $x^2 + 1$     | 0   | $x^2 + 1$      | 1              | x <sup>2</sup> | x              | $x^2 + x + 1$  | x + 1          | $x^2 + x$      |
| 110 | $x^{2} + x$   | 0   | $x^2 + x$      | $x^2 + x + 1$  | 1              | $x^2 + 1$      | x + 1          | x              | x <sup>2</sup> |
| 111 | $x^2 + x + 1$ | 0   | $x^2 + x + 1$  | $x^2 + 1$      | х              | 1              | $x^2 + x$      | x <sup>2</sup> | x + 1          |

Source: Table 4.7, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

#### **Extended Euclid's Algorithm for GF(p^n)**



EXTENDED EUCLID(a(x), b(x)):  $[V_1(x), W_1(x), R_1(x)] \leftarrow [1, 0, a(x)]; [V_2(x), W_2(x), R_2(x)] \leftarrow [0, 1, b(x)]$ 1. if  $R_2(x) = 0$  then return  $R_1(x) = \gcd(a(x), b(x))$ ; no inverse 2. 3. if  $R_2(x) = 1$  then return  $R_2(x) = \gcd(a(x), b(x)); W_2(x) = b^{-1}(x) \pmod{a(x)}$ Q(x) = the quotient of  $R_1(x)/R_2(x)$ 4. 5 [V(x), W(x), R(x)] $\leftarrow [V_1(x) - Q(x)V_2(x), W_1(x) - Q(x)W_2(x), R_1(x) - Q(x)R_2(x)]$ 6.  $[V_1(x), W_1(x), R_1(x)] \leftarrow [V_2(x), W_2(x), R_2(x)]$ 7.  $[V_2(x), W_2(x), R_2(x)] \leftarrow [V(x), W(x), R(x)]$ goto 2 8.

- Invariants:  $a(x)V_1(x) + b(x)W_1(x) = R_1(x)$  and  $a(x)V_2(x) + b(x)W_2(x) = R_2(x)$ .
- If gcd(a(x), b(x)) = 1, then  $W_2(x)$  equals the multiplicative inverse of b(x) modulo a(x) when the algorithm terminates.

Yih-Kuen Tsay (IM.NTU)

Information Security 2015

### A Run of Extended Euclid



The following run finds the multiplicative inverse of  $x^7 + x + 1$  in GF(2<sup>8</sup>) with  $x^8 + x^4 + x^3 + x + 1$  as the irreducible polynomial modulus; the result is  $x^7$ .

| Initialization | $a(x) = x^{8} + x^{4} + x^{3} + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$      |
|----------------|---------------------------------------------------------------------------|
|                | $b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$                              |
| Iteration 1    | $q_1(x) = x; r_1(x) = x^4 + x^3 + x^2 + 1$                                |
|                | $v_1(x) = 1; w_1(x) = x$                                                  |
| Iteration 2    | $q_2(x) = x^3 + x^2 + 1; r_2(x) = x$                                      |
|                | $v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$                      |
| Iteration 3    | $q_3(x) = x^3 + x^2 + x; r_3(x) = 1$                                      |
|                | $v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$                                |
| Iteration 4    | $q_4(x) = x; r_4(x) = 0$                                                  |
|                | $v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$                  |
| Result         | $d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$                                    |
|                | $w(x) = w_3(x) = (x^7 + x + 1)^{-1} \mod (x^8 + x^4 + x^3 + x + 1) = x^7$ |

Source: Table 4.8, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

ヘロト 不得 とくき とくきとうき

#### Bytes and Polynomials in $GF(2^8)$



34 / 41

- 📀 In the AES algorithm, the basic unit for processing is a byte.
- A byte  $b_7b_6b_5b_4b_3b_2b_1b_0$  is interpreted as an element of the finite field  $GF(2^8)$  using the polynomial representation:

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0 = \sum_{i=0}^7 b_ix^i.$$

For example, 01100011 identifies  $x^6 + x^5 + x + 1$ .

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

・ロト ・ 一日 ト ・ 日 ト

### Addition in $GF(2^8)$



The addition of two polynomials in the finite field GF(2<sup>8</sup>) is achieved by adding (modulo 2) the coefficients of the corresponding powers.

polnomial representation:  $(x^{6} + x^{4} + x^{2} + x + 1) + (x^{7} + x + 1) = x^{7} + x^{6} + x^{4} + x^{2}$ binary representation: 01010111  $\oplus$  10000011 = 11010100 hexadecimal representation:  $\{57\} \oplus \{83\} = \{D4\}$ 

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Secur

### Multiplication in GF(2<sup>8</sup>)



36 / 41

• Let f(x) be  $b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$ . • Multiply f(x) by x, we have

$$f(x) \times x = b_7 x^8 + b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x \mod m(x)$$

Again, for the AES algorithm,

$$m(x) = x^8 + x^4 + x^3 + x + 1.$$

When  $b_7 = 0$ , the result is already in the reduced form.

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

## Multiplication in $GF(2^8)$ (cont.)



• When 
$$b_7 = 1$$
:

$$f(x) \times x$$

$$= (x^{7} + b_{6}x^{6} + b_{5}x^{5} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0}) \times x \mod m(x)$$

$$= x^{8} + b_{6}x^{7} + b_{5}x^{6} + b_{4}x^{5} + b_{3}x^{4} + b_{2}x^{3} + b_{1}x^{2} + b_{0}x \mod m(x)$$

$$= (b_{6}x^{7} + b_{5}x^{6} + b_{4}x^{5} + b_{3}x^{4} + b_{2}x^{3} + b_{1}x^{2} + b_{0}x) + (x^{4} + x^{3} + x + 1) \mod m(x)$$

Note: 
$$x^8 \mod m(x) = m(x) - x^8 = x^4 + x^3 + x + 1$$
.  
To summarize in binary representation,

$$f(x) \times x = \begin{cases} (b_6 b_5 b_4 b_3 b_2 b_1 b_0 0) & \text{if } b_7 = 0 \\ (b_6 b_5 b_4 b_3 b_2 b_1 b_0 0) \oplus (00011011) & \text{if } b_7 = 1 \end{cases}$$

Repeat the above to get multiplications by  $x^2$ ,  $x^3$ , etc.

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

#### **Cyclic Groups**



• Let  $a^n$  denote  $a \cdot a \cdot \cdots \cdot a$  with  $n \ (\geq 0)$  occurrences of a. Formally,

$$a^n = \left\{ egin{array}{cc} e & ext{if } n=0 \ a \cdot a^{n-1} & ext{if } n>0 \end{array} 
ight.$$

- A group G is cyclic if, for every b in G,  $b = a^n$  for a fixed a in G and some integer  $n \ge 0$ .
- The fixed element a is said to generate G and is called the generator of G.

#### **Generators for Finite Fields**



A generator for  $GF(2^3)$  using  $f(x) = x^3 + x + 1$  (irreducible):

| Power<br>Representation | Polynomial<br>Representation | Binary<br>Representation | Decimal (Hex)<br>Representation |  |
|-------------------------|------------------------------|--------------------------|---------------------------------|--|
| 0                       | 0                            | 000                      | 0                               |  |
| $g^0 (= g^7)$           | 1                            | 001                      | 1                               |  |
| $g^1$                   | g                            | 010                      | 2                               |  |
| g <sup>2</sup>          | $g^2$                        | 100                      | 4                               |  |
| $g^3$                   | <i>g</i> + 1                 | 011                      | 3                               |  |
| $g^4$                   | $g^2 + g$                    | 110                      | 6                               |  |
| g <sup>5</sup>          | $g^2 + g + 1$                | 111                      | 7                               |  |
| $g^6$                   | $g^2 + 1$                    | 101                      | 5                               |  |

Source: Table 4.9, Stallings 2014

Note:  $f(g) = g^3 + g + 1 = 0$ ,  $g^3 = -g - 1 = g + 1$ ,  $g^4 = g(g^3) = g(g + 1) = g^2 + g$ , etc.

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

### **GF**(2<sup>3</sup>) Arithmetic Using a Generator



|     |       | 000           | 001           | 010           | 100           | 011           | 110           | 111           | 101           |
|-----|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|     | +     | 0             | 1             | G             | $g^2$         | $g^3$         | $g^4$         | $g^5$         | $g^6$         |
| 000 | 0     | 0             | 1             | G             | $g^2$         | g + 1         | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     |
| 001 | 1     | 1             | 0             | g + 1         | $g^2 + 1$     | g             | $g^2 + g + 1$ | $g^2 + g$     | $g^2$         |
| 010 | g     | g             | g + 1         | 0             | $g^2 + g$     | 1             | $g^2$         | $g^2 + 1$     | $g^2 + g + 1$ |
| 100 | $g^2$ | $g^2$         | $g^2 + 1$     | $g^2 + g$     | 0             | $g^2 + g + 1$ | g             | g + 1         | 1             |
| 011 | $g^3$ | g + 1         | g             | 1             | $g^2 + g + 1$ | 0             | $g^2 + 1$     | $g^2$         | $g^2 + g$     |
| 110 | $g^4$ | $g^2 + g$     | $g^2 + g + 1$ | $g^2$         | g             | $g^2 + 1$     | 0             | 1             | g + 1         |
| 111 | $g^5$ | $g^2 + g + 1$ | $g^2 + g$     | $g^2 + 1$     | g + 1         | $g^2$         | 1             | 0             | g             |
| 101 | $g^6$ | $g^2 + 1$     | $g^2$         | $g^2 + g + 1$ | 1             | $g^2 + g$     | g + 1         | g             | 0             |

Source: Table 4.10, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

Information Security 2015

40 / 41

3

### $GF(2^3)$ Arithmetic Using a Generator (cont.)



|     |       | 000 | 001           | 010           | 100           | 011           | 110           | 111           | 101           |
|-----|-------|-----|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|     | ×     | 0   | 1             | G             | $g^2$         | $g^3$         | $g^4$         | $g^5$         | $g^6$         |
| 000 | 0     | 0   | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| 001 | 1     | 0   | 1             | G             | $g^2$         | g + 1         | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     |
| 010 | g     | 0   | g             | $g^2$         | g + 1         | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     | 1             |
| 100 | $g^2$ | 0   | $g^2$         | g + 1         | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     | 1             | g             |
| 011 | $g^3$ | 0   | g + 1         | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     | 1             | g             | $g^2$         |
| 110 | $g^4$ | 0   | $g^2 + g$     | $g^2 + g + 1$ | $g^2 + 1$     | 1             | g             | $g^2$         | g + 1         |
| 111 | $g^5$ | 0   | $g^2 + g + 1$ | $g^2 + 1$     | 1             | g             | $g^2$         | g + 1         | $g^2 + g$     |
| 101 | $g^6$ | 0   | $g^2 + 1$     | 1             | g             | $g^2$         | g + 1         | $g^2 + g$     | $g^2 + g + 1$ |

Source: Table 4.10, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Basic Number Theory and Finite Fields

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 Information Security 2015