

Classical Encryption Techniques

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 1 / 38

3

(日) (周) (三) (三)

Symmetric Encryption/Ciphers

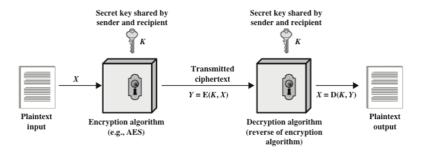
🖻 Also known as

- conventional,
- 🌻 single-key, or
- 🌻 secret-key

encryption

- Encryption and decryption performed with the same key
- Most widely used type of ciphers

Yih-Kuen Tsay (IM.NTU)


Classical Encryption Techniques

Information Security 2016 2 / 38

イロト 人間ト イヨト イヨト

Simplified Model of Symmetric Encryption

Figure 2.1 Simplified Model of Symmetric Encryption

Source: Figure 2.1, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 3 / 38

Symmetric Encryption in Essence

📀 Setting:

- 🌻 X: the plaintext
- 🔅 Y: the ciphertext
- E: the encryption algorithm
- D: the decryption algorithm
- 🏓 K: the secret key

$$\bigcirc Y = E(K,X)$$
 or $Y = E_{\mathcal{K}}(X)$

$$\bigcirc X = D(K,Y)$$
 or $X = D_{\mathcal{K}}(Y)$

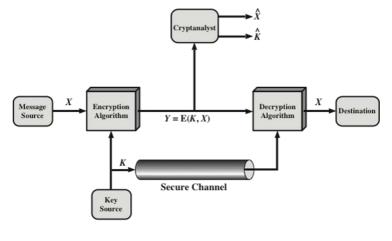
• E_{κ} and D_{κ} are the inverse function of each other!

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Security of Secret-Key Encryption

- Encryption algorithm must be strong enough: impossible to decrypt a message based on the ciphertext alone
- Depends on the secrecy of the key, not the secrecy of the algorithm
- Do not need to keep the algorithm secret; only need to keep the key secret
- 😚 Feasible for wide-spread use


Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model of Conventional Cryptosystem

$$Y = E(K, X); X = D(K, Y)$$

Source: Figure 2.2, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 6 / 38

- 34

(日) (同) (日) (日) (日)

Dimensions of Cryptographic Systems

The type of operations used for the security-related transformation:

- substitution and/or
- transposition (permutation)
- 📀 The number of keys used:
 - 🌻 one key (symmetric encryption) or
 - two keys (asymmetric encryption)
- The way in which the plaintext is processed:
 - 🟓 block cipher or
 - 🌻 stream cipher

< 回 ト < 三 ト < 三 ト

Cryptanalysis

Cryptanalysis is the process of attempting to discover plaintext or key or both.

- Giphertext only: all that is available is the ciphertext.
 - the brute-force approach
 - statistical approaches (must first have some general idea about the type of plaintext)
- Known plaintext: feasible if certain plaintext patterns are known to appear in a message.
- Chosen plaintext: feasible if the analyst is able to insert chosen messages into the system.
- 😚 Chosen ciphertext
- 😚 Chosen text

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

イロト 不得下 イヨト イヨト 二日

Attacks on Encrypted Messages

Type of Attack	Known to Cryptanalyst
Ciphertext Only	Encryption algorithm Ciphertext
Known Plaintext	 Encryption algorithm Ciphertext One or more plaintext-ciphertext pairs formed with the secret key
Chosen Plaintext	 Encryption algorithm Ciphertext Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key
Chosen Ciphertext	 Encryption algorithm Ciphertext Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key
Chosen Text	 Encryption algorithm Ciphertext Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key

Source: Table 2.1, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 9 / 38

3

Strength of Encryption Schemes

- Unconditionally secure: unbreakable no matter how much ciphertext is available
- Computationally secure:
 - The cost exceeds the value of the encrypted information
 - The time required exceeds the useful lifetime of the information

- 4 同 6 4 日 6 4 日 6

Exhaustive Key Search

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption/µs		Time Required at 10 ⁶ Decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31}\mu s$	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s$	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127}\mu\mathrm{s}$	$= 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167}\mu\mathrm{s}$	$= 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu$	$us = 6.4 \times 10^{12}$ years	6.4×10^6 years

Source: Table 2.2, Stallings 2010

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 11 / 38

3

A *substitution technique* is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.

- 🚱 Caesar Cipher
- 😚 Monoalphabetic Ciphers
- 😚 Playfair Cipher
- 😚 Hill Cipher
- 😚 Polyalphabetic Ciphers

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 12 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Caesar Cipher

Each letter replaced with the letter standing three places further down the alphabet

- plain: abcdefghijklmnopqrstuvwxyz
- cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

plain: meet me after the toga party

cipher: PHHW PH DIWHU WKH WRJD SDUWB

The shift or key (which is 3) may be generalized to get General Caesar cipher:

$$C = E_k(p) = (p + k) \mod 26$$
, where $1 \le k \le 25$

Decryption: $p = D_k(C) = (C - k) \mod 26$

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Cryptanalysis of Caesar Cipher

KEY	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
1	oggv	og	chvgt	vjg	vgic	rctva
2	nffu	nf	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	gу	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	уq	mrfqd	ftq	fasm	bmdfk
18	xppe	хp	lqepc	esp	ezrl	alcej
19	wood	wo	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	cxpj	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	qiix	qi	ejxiv	xli	xske	tevxc

Source: Figure 2.3, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 14 / 38

イロト 不得 トイヨト イヨト 二日

Three characteristics of general Caesar ciphers enable us to use a brute-force cryptanalysis:

- Encryption and decryption algorithms known
- 📀 Only 25 keys to try
- Language of the plaintext known and easily recognizable

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mono-alphabetic Ciphers

- Substitution represented by an arbitrary permutation of the alphabet
- 26! possible permutations (or keys) for English
- If language of the plaintext is known, regularities of the language may be exploited

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 16 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relative Frequency of English Letters

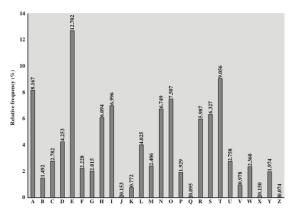


Figure 2.5 Relative Frequency of Letters in English Text

Source: Figure 2.5, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 17 / 38

・ 何 ト ・ ヨ ト ・ ヨ ト

Breaking a Mono-alphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

1. Examine the relative frequency.

P	13.33	Н	5.83	F	3.33	B	1.67	C	0.00
Z	11.67	D	5.00	W	3.33	G	1.67	K	0.00
S	8.33	E	5.00	Q	2.50	Y	1.67	L	0.00
U	8.33	V	4.17	Т	2.50	1	0.83	N	0.00
0	7.50	X	4.17	A	1.67	J	0.83	R	0.00
M	6.67								

 $\begin{array}{l} \mbox{Guess: } \mathsf{P} \rightarrow e \mbox{ and } \mathsf{Z} \rightarrow t \mbox{ (or the other way),} \\ \{\mathsf{S},\mathsf{U},\mathsf{O},\mathsf{M},\mathsf{H}\} \rightarrow \{\mathsf{r},\mathsf{n},\mathsf{i},\mathsf{o},\mathsf{a},\mathsf{s}\}, \ \{\mathsf{A},\mathsf{B},\mathsf{G},\mathsf{Y},\mathsf{I},\mathsf{J}\} \rightarrow \\ \{\mathsf{w},\mathsf{v},\mathsf{b},\mathsf{k},\mathsf{x},\mathsf{q},\mathsf{j},\mathsf{z}\}. \end{array}$

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 18 / 38

- 本間 と えき と えき とうき

Breaking a Mono-alphabetic Cipher (cont.)

2. Look for other regularities, particularly the frequency of two-letter combinations (digrams).

Guess: ZW \rightarrow th, Z \rightarrow t, P \rightarrow e.

3. ZWSZ \rightarrow th_t,

 $\mathsf{Guess:}\ \mathsf{S}\to\mathsf{a}.$

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ ta e e te a that e e a a VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX et ta t ha e ee a e th t a EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ e e e tat e the t

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

▲□ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ ト ▲ □ + ○ Q ○
Information Security 2016 19 / 38

Improving Mono-alphabetic Ciphers

- Easy to break, because they reflect the frequency data of the original alphabet
- A countermeasure: provide multiple substitutes (homophones) for a single letter
- Still, multi-letter patterns survive in the ciphertext
- Two better approaches for improvement:
 - Encrypt multiple letters of plaintext: Playfair Cipher
 - Use multiple cipher alphabets: Hill Cipher

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Playfair Cipher

- 😚 Treats digrams in the plaintext as single units.
- Based on the use of a 5×5 matrix of letters constructed using a keyword.
- For example,

Μ	0	N A		R
С	Н	Y	В	D
E	F	G	I/J	Κ
L	Р	Q	S	Т
U	V	W	Х	Ζ

Classical Encryption Techniques

Information Security 2016 21 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

The Playfair Cipher (cont.)

Encryption rules by example:

Μ	0	N A		R
С	Н	Y	В	D
E	F	G	I/J	Κ
L	Р	Q	S	Т
U	V	W	Х	Ζ

- 1. balloon (the plaintext) \rightarrow ba lx lo on (repeating letters in the same pair separated by filler x)
- 2. ON \rightarrow NA (ON on the same row)
- 3. BA \rightarrow IB (BA on the same column)
- 4. LX \rightarrow SU, LO \rightarrow PM

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Relative Frequency of Letter Occurrences

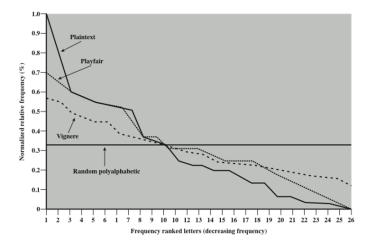


Figure 2.6 Relative Frequency of Occurrence of Letters

Source: Figure 2.6, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 23 / 38

3

- 4 週 1 - 4 三 1 - 4 三 1

The Hill Cipher

24 / 38

m (successive) plaintext letters $\longrightarrow m$ ciphertext letters
 Substitution determined by m linear equations, with
 $a = 0, b = 1, \ldots, z = 25$ $C_1 = (k_{11}p_1 + k_{12}p_2 + k_{13}p_3) \mod 26$ For m = 3, C₂ = (k₂₁p_1 + k₂₂p_2 + k₂₃p_3) \mod 26
 $C_3 = (k_{31}p_1 + k_{32}p_2 + k_{33}p_3) \mod 26$

$$\begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \pmod{26}$$

or

$$\begin{pmatrix} C_1 & C_2 & C_3 \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix} \begin{pmatrix} k_{11} & k_{21} & k_{31} \\ k_{12} & k_{22} & k_{32} \\ k_{13} & k_{23} & k_{33} \end{pmatrix} \pmod{26}$$

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

The Hill Cipher (cont.)

- P,C: row vectors of length m, representing the plaintext and ciphertext
- **K**: invertible $m \times m$ matrix, representing the encryption key

$$C = E_{K}(P) = PK$$

$$\mathbf{P} = D_{\mathbf{K}}(\mathbf{C}) = \mathbf{C}\mathbf{K}^{-1} = \mathbf{P}\mathbf{K}\mathbf{K}^{-1} = \mathbf{P}$$

Strong against a ciphertext-only attacks, but easily broken with a known plaintext attack

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

イロト 不得下 イヨト イヨト 二日

Breaking the Hill Cipher

Given:
$$\begin{pmatrix} 7 & 8 \end{pmatrix} \mathbf{K} = \begin{pmatrix} 7 & 2 \end{pmatrix}, \begin{pmatrix} 11 & 11 \end{pmatrix} \mathbf{K} = \begin{pmatrix} 17 & 25 \end{pmatrix}$$

Setting up the equation: $\begin{pmatrix} 7 & 2 \\ 17 & 25 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \mathbf{K}$
Calculating the needed inverse: $\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}^{-1} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix}$
Calculating the key: $\mathbf{K} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 17 & 25 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 8 & 5 \end{pmatrix}$

The result may be verified with other known plaintext-ciphertext pairs.

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 26 / 38

イロト 不得下 イヨト イヨト 二日

Calculating the Inverse of a Matrix

Let A be an invertible matrix (with a nonzero determinant). Its inverse A^{-1} can be computed as follows:

$$[A^{-1}]_{ij}=(-1)^{i+j}\times D_{ji}\times \mathrm{det}^{-1}(A)$$

where D_{ji} is the subdeterminant obtained by deleting the *j*-th row and the *i*-th column of *A*.

$$\det^{-1} \begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} = (-11)^{-1} = 15^{-1} = 7 \pmod{26}$$
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}^{-1} = \begin{pmatrix} 11 \times 7 & -8 \times 7 \\ -11 \times 7 & 7 \times 7 \end{pmatrix} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix} \pmod{26}$$

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 27 / 38

Poly-alphabetic Ciphers

- To improve on simple monoalphabetic ciphers, juggle different monoalphabetic substitutions
- This is called *polyalphabetic* cipher
- 😚 Common features:
 - 🌻 A set of related monoalphabetic substitution rules
 - A key determines which particular rule is chosen

< 回 ト < 三 ト < 三 ト

The Vigenère Cipher

- 😚 Best-known polyalphabetic cipher
- Monoalphabetic substitution rules consist of the 26 general Caesar ciphers
- Each cipher is denoted by a key letter, which is the ciphertext letter that substitutes for letter 'a'

key: deceptivedeceptivedeceptive

plain: wearediscoveredsaveyourself

cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

(Note: d = 3, w = 22, and 3 + 22 = 25 = Z; so, w is mapped to Z under the key d.)

Hultiple ciphertext letters for each plaintext letter

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

The Vernam Cipher

The encryption scheme is expressed as

$$C_i = p_i \oplus k_i$$

where $p_i = i$ -th binary digit of plaintext, $k_i = i$ -th binary digit of key, and $C_i = i$ -th binary digit of cinhertext

- $C_i = i$ -th binary digit of ciphertext
- The one-time pad scheme uses a random key for the Vernam cipher; in principle, unbreakable
- 😚 Rarely used due to key management problems

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

The Vernam Cipher (cont.)

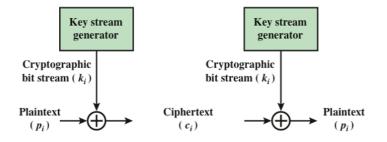


Figure 2.7 Vernam Cipher

Source: Figure 2.7, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 31 / 38

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-Time Pad Is Unbreakable

Assume a 27×27 Vigenère substitution cipher.

cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih plain: mr mustard with the candlestick in the hall

cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
plain: miss scarlet with the knife in the library

Cannot conclude one of the two keys is more likely than the other.

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

(4月) とうてい くちい

Transposition ciphers perform some sort of permutation on the plaintext letters.

- 😚 The rail fence technique
- 😚 Columnar transpositions
- Multiple-stage transpositions

- A E N A E N

Columnar Transpositions

- Write the message in a rectanlge, row by row, and read the message off, column by column, but permute the order of the columns
- 😚 For example,
 - key: 4 3 1 2 5 6 7
 plain: a t t a c k p
 o s t p o n e
 d u n t i l t
 w o a m x y z
 cipher: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Classical Encryption Techniques

A Three-Rotor Machine

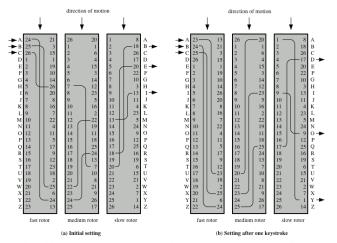


Figure 2.8 Three-Rotor Machine With Wiring Represented by Numbered Contacts

Source: Figure 2.8, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 35 / 38

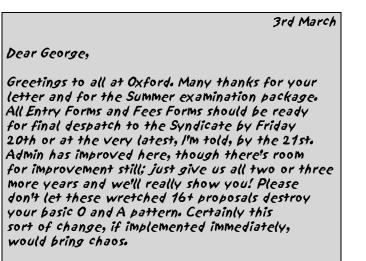
3

Rotor Machines

- A rotor machine consists of a set of cylinders that rotate like an odometer.
- A cylinder has 26 input pins, each connecting to a unique output pin.
- A rotating cylinder defines a poly-alphabetic substitution algorithm with a period of 26.
- A three-rotor machine has a period of 26 × 26 × 26 = 17, 576; four-rotor 456, 976; five-rotor 11, 881, 376.

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques



The methods of steganography conceal the existence of the message (whereas the methods of cryptography render the message unintelligible to outsiders).

- 😚 Character marking
- 📀 Invisible ink
- 😚 Pin punctures
- 😚 Typewriter correction ribbon

A Puzzle

Sincerely yours,

Source: Figure 2.9, Stallings 2014

Yih-Kuen Tsay (IM.NTU)

Classical Encryption Techniques

Information Security 2016 38 / 38