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Divisibility and Division

We say a nonzero integer b divides another integer a, denoted as
b|a, if a = mb for some integer m.

When an integer a is divided by a positive integer n, we get a
unique integer quotient q and a unique integer remainder r such
that

a = qn + r 0 ≤ r < n, q = ba/nc.

The remainder r is also referred to as a residue.
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Quotient and Remainder

Source: Figure 4.1, Stallings 2014
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Essence of the Euclidean Algorithm

Given two integers a and b such that a ≥ b > 0.

Let a = qb + r , where 0 ≤ r < b.

There are two cases:

If r = 0, then we know immediately gcd(a, b) = b and stop.
If r 6= 0, repeat the steps above with b as a and r as b.

In both cases, the equality gcd(a, b) = gcd(b, r) holds.

We prove the equality by showing that gcd(b, r) ≤ gcd(a, b) and
gcd(a, b) ≤ gcd(b, r).
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Essence of the Euclidean Algorithm (cont.)

We first show that gcd(b, r) ≤ gcd(a, b).

Consider a = qb + r .
Since gcd(b, r)|b and gcd(b, r)|r , we have gcd(b, r)|a.
Both gcd(b, r)|a and gcd(b, r)|b; so, gcd(b, r) ≤ gcd(a, b).

We next show that gcd(a, b) ≤ gcd(b, r).

Consider r = a− qb.
Since gcd(a, b)|a, and gcd(a, b)|b, we have gcd(a, b)|r .
Both gcd(a, b)|b and gcd(a, b)|r ; so, gcd(a, b) ≤ gcd(b, r).
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Modular Arithmetic

The remainder r from dividing a by n (> 0) is usually denoted by
“a mod n”.

a = qn + (a mod n) q = ba/nc.

11 mod 7 = 4 (because 11 = 1× 7 + 4).

−11 mod 7 = 3 (because −11 = −2× 7 + 3).
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Congruence Modulo N

Two integers a and b are congruent modulo n (n > 0), denoted
as a ≡ b (mod n), if a mod n = b mod n.

The positive integer n is called the modulus of the congruence
relation.

If a ≡ 0 (mod n), then n|a; and vice versa.

If a ≡ b (mod n), then n|(a − b); and vice versa.
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Modular Arithmetic Operations

Properties:

((a mod n) + (b mod n)) mod n = (a + b) mod n
((a mod n)− (b mod n)) mod n = (a − b) mod n
((a mod n)× (b mod n)) mod n = (a × b) mod n

Applications:

117 (mod 13)
≡ (11× 112 × 114) (mod 13)
≡ (11 (mod 13))× (112 (mod 13))× (114 (mod 13))
≡ (11 (mod 13))× (4 (mod 13))× (3 (mod 13))
≡ (11× 4× 3) (mod 13)
≡ 2 (mod 13)
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Arithmetic Modulo 8

Source: Table 4.2, Stallings 2014
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Arithmetic Modulo 8 (cont.)

Source: Table 4.2, Stallings 2014
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Arithmetic Modulo 8 (cont.)

Source: Table 4.2, Stallings 2014
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Residue Classes

Let Zn denote the set of nonnegative integers less than n:

Zn = {0, 1, 2, · · · , (n − 1)}.

This is referred to as the set of residues, or residue classes, modulo n.

Each integer r in Zn represents a residue class [r ], where

[r ] = {a : a is an integer, a ≡ r (mod n)}.

For example, if the modulus is 4, then

[1] = {· · · ,−7,−3, 1, 5, 9, 13, · · · }.
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Principles of Modular Arithmetic

If (a + b) ≡ (a + c) (mod n), then b ≡ c (mod n).

If (a × b) ≡ (a × c) (mod n), then b ≡ c (mod n), only when a is
relatively prime to n.

Z8 0 1 2 3 4 5 6 7
Multiplied by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

(6× 3) ≡ (6× 7) (mod 8), but 3 6≡ 7 (mod 8).

Z8 0 1 2 3 4 5 6 7
Multiplied by 5 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3
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Modular Arithmetic in Zn

Source: Table 4.3, Stallings 2014
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Finding the Multiplicative Inverse

EXTENDED EUCLID(a, b) :
1. (X1,Y1,R1)← (1, 0, a); (X2,Y2,R2)← (0, 1, b)
2. if R2 = 0 then return R1 = gcd(a, b); no inverse
3. if R2 = 1 then return R2 = gcd(a, b);Y2 = b−1 (mod a)
4. Q = bR1/R2c
5. (X ,Y ,R)← (X1 − QX2,Y1 − QY2,R1 − QR2)
6. (X1,Y1,R1)← (X2,Y2,R2)
7. (X2,Y2,R2)← (X ,Y ,R)
8. goto 2

Invariants: aX1 + bY1 = R1 and aX2 + bY2 = R2.

If gcd(a, b) = 1, then Y2 equals the multiplicative inverse of b
modulo a when the algorithm terminates.
aX2 + bY2 = R2 = 1→ bY2 = 1− aX2 → bY2 ≡ 1 mod a.
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Groups, Rings, and Fields

(A1) Closure under addition: If a and b belong to S, then a + b is also in S
(A2) Associativity of addition: a + (b + c) = (a + b) + c for all a, b, c in S
(A3) Additive identity: There is an element 0 in R such that
 a + 0 = 0 + a = a for all a in S
(A4) Additive inverse: For each a in S there is an element –a in S
 such that a + (–a) = (–a) + a = 0
(A5) Commutativity of addition: a + b = b + a for all a, b in S
(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in S
(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in S
 (a + b)c = ac + bc for all a, b, c in S
(M4) Commutativity of multiplication: ab = ba for all a, b in S
(M5) Multiplicative identity: There is an element 1 in S such that
 a1 = 1a = a for all a in S
(M6) No zero divisors: If a, b in S and ab = 0, then either
 a = 0 or b = 0
(M7) Multiplicative inverse: If a belongs to S and a ≠ 0, there is an
 element a–1 in S such that aa–1 = a–1a = 1
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Figure 4.2  Group, Ring, and Field

Source: Figure 4.2, Stallings 2010
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Groups, Rings, and Fields (cont.)

(A1) Closure under addition: If a and b belong to S, then a + b is also in S
(A2) Associativity of addition: a + (b + c) = (a + b) + c for all a, b, c in S
(A3) Additive identity: There is an element 0 in R such that
 a + 0 = 0 + a = a for all a in S
(A4) Additive inverse: For each a in S there is an element –a in S
 such that a + (–a) = (–a) + a = 0
(A5) Commutativity of addition: a + b = b + a for all a, b in S
(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in S
(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in S
 (a + b)c = ac + bc for all a, b, c in S
(M4) Commutativity of multiplication: ab = ba for all a, b in S
(M5) Multiplicative identity: There is an element 1 in S such that
 a1 = 1a = a for all a in S
(M6) No zero divisors: If a, b in S and ab = 0, then either
 a = 0 or b = 0
(M7) Multiplicative inverse: If a belongs to S and a ≠ 0, there is an
 element a–1 in S such that aa–1 = a–1a = 1
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Figure 4.2  Group, Ring, and Field

Source: Figure 4.2, Stallings 2010
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Zp

Consider Zp = {0, 1, 2, · · · , (p − 1)} where p is a prime.

For each w ∈ Zp, w 6= 0, there exists a z ∈ Zp such that
w × z ≡ 1 (mod p).

The element z is called the multiplicative inverse of w .

For any prime p, (Zp,+,×) is a finite field of order p, denoted
GF (p).
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Arithmetic in GF (7)

Source: Table 4.5, Stallings 2014
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Arithmetic in GF (7) (cont.)

Source: Table 4.5, Stallings 2014
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Arithmetic in GF (7) (cont.)

Source: Table 4.5, Stallings 2014
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Polynomial Arithmetic

Source: Figure 4.3, Stallings 2014
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Polynomial Arithmetic over GF (2)

Source: Figure 4.4, Stallings 2014
Yih-Kuen Tsay (IM.NTU) Basic Number Theory and Finite Fields Information Security 2016 23 / 41



Polynomial Arithmetic over GF (2) (cont.)

Source: Figure 4.4, Stallings 2014
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Arithmetic in GF (23)

Source: Table 4.6, Stallings 2014
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Arithmetic in GF (23) (cont.)

Source: Table 4.6, Stallings 2014
Yih-Kuen Tsay (IM.NTU) Basic Number Theory and Finite Fields Information Security 2016 26 / 41



Arithmetic in GF (23) (cont.)

Source: Table 4.6, Stallings 2014
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Modular Polynomial Arithmetic

Let S denote the set of all polynomials of degree n − 1 or less
over the field Zp with the form

f (x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x + a0

where each ai takes on a value in Zp. Arithmetic on the
coefficients is performed modulo p.

If multiplication results in a polynomial of degree greater than
n − 1, then the polynomial is reduced modulo some irreducible
polynomial of degree n.

Each such S is a finite field; every nonzero element a in S has a
multiplicative inverse a−1 such that a × a−1 = 1.

Such an S is denoted as GF(2n) when p = 2.
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Irreducible Polynomials

A polynomial f (x) is irreducible if f (x) cannot be expressed as a
product of two polynomials with degrees lower than that of f (x).

Irreducible polynomials play a role analogous to that of primes.

The AES algorithm uses the finite field GF(28) with the
following irreducible polynomial modulus

x8 + x4 + x3 + x + 1.
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Polynomial Arithmetic Modulo (x3 + x + 1)

Source: Table 4.7, Stallings 2014
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Polynomial Arithmetic Modulo (x3 + x + 1) (cont.)

Source: Table 4.7, Stallings 2014
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Extended Euclid’s Algorithm for GF(pn)

EXTENDED EUCLID(a(x), b(x)) :
1. [V1(x),W1(x),R1(x)]← [1, 0, a(x)]; [V2(x),W2(x),R2(x)]← [0, 1, b(x)]
2. if R2(x) = 0 then return R1(x) = gcd(a(x), b(x)); no inverse
3. if R2(x) = 1 then return R2(x) = gcd(a(x), b(x));W2(x) = b−1(x) (mod a(x))
4. Q(x) = the quotient of R1(x)/R2(x)
5. [V (x),W (x),R(x)]
← [V1(x)− Q(x)V2(x),W1(x)− Q(x)W2(x),R1(x)− Q(x)R2(x)]

6. [V1(x),W1(x),R1(x)]← [V2(x),W2(x),R2(x)]
7. [V2(x),W2(x),R2(x)]← [V (x),W (x),R(x)]
8. goto 2

Invariants: a(x)V1(x) + b(x)W1(x) = R1(x) and
a(x)V2(x) + b(x)W2(x) = R2(x).

If gcd(a(x), b(x)) = 1, then W2(x) equals the multiplicative
inverse of b(x) modulo a(x) when the algorithm terminates.
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A Run of Extended Euclid
The following run finds the multiplicative inverse of x7 + x + 1 in
GF(28) with x8 + x4 + x3 + x + 1 as the irreducible polynomial
modulus; the result is x7.

Source: Table 4.8, Stallings 2014
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Bytes and Polynomials in GF(28)

In the AES algorithm, the basic unit for processing is a byte.

A byte b7b6b5b4b3b2b1b0 is interpreted as an element of the
finite field GF(28) using the polynomial representation:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 =
7∑

i=0

bix
i .

For example, 01100011 identifies x6 + x5 + x + 1.
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Addition in GF(28)

The addition of two polynomials in the finite field GF(28) is
achieved by adding (modulo 2) the coefficients of the
corresponding powers.

polnomial representation:

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2

binary representation:

01010111⊕ 10000011 = 11010100

hexadecimal representation:

{57} ⊕ {83} = {D4}
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Multiplication in GF(28)

Let f (x) be b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0.

Multiply f (x) by x , we have

f (x)× x
= b7x

8 + b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x
modm(x)

Again, for the AES algorithm,

m(x) = x8 + x4 + x3 + x + 1.

When b7 = 0, the result is already in the reduced form.
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Multiplication in GF(28) (cont.)

When b7 = 1:

f (x)× x
= (x7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0)× x mod m(x)
= x8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x mod m(x)

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)+
(x4 + x3 + x + 1) mod m(x)

Note: x8 mod m(x) = m(x)− x8 = x4 + x3 + x + 1.

To summarize in binary representation,

f (x)× x =

{
(b6b5b4b3b2b1b00) if b7 = 0
(b6b5b4b3b2b1b00)⊕ (00011011) if b7 = 1

Repeat the above to get multiplications by x2, x3, etc.
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Cyclic Groups

Let an denote a · a · · · · · a with n (≥ 0) occurrences of a.
Formally,

an =

{
e if n = 0
a · an−1 if n > 0

A group G is cyclic if, for every b in G , b = an for a fixed a in G
and some integer n ≥ 0.

The fixed element a is said to generate G and is called the
generator of G .
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Generators for Finite Fields
A generator for GF(23) using f (x) = x3 + x + 1 (irreducible):

Source: Table 4.9, Stallings 2014

Note: f (g) = g 3 + g + 1 = 0, g 3 = −g − 1 = g + 1,
g 4 = g(g 3) = g(g + 1) = g 2 + g , etc.
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GF(23) Arithmetic Using a Generator

Source: Table 4.10, Stallings 2014
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GF(23) Arithmetic Using a Generator (cont.)

Source: Table 4.10, Stallings 2014
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