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Elliptic Curve Cryptography (ECC)

• For the same length of keys, faster than RSA
• For the same degree of security, shorter keys 

are required than RSA
• Standardized in IEEE P1363
• Confidence level not yet as high as that in RSA
• Much more difficult to explain than RSA
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Elliptic Curve Cryptography (cont’d)

• Named so because they are described by cubic 
equations (used for calculating the 
circumference of an ellipse)

• Of the form y2 + axy +by = x3 + cx2+ dx + e
where all the coefficients are real numbers 
satisfying some simple conditions

• Single element denoted O and called the point at 
infinity or the zero point
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Elliptic Curve Cryptography (cont’d)

• Define the rules of addition over an elliptic curve
– O serves as the additive identity. Thus O = -O; for 

any point P on the elliptic curve, P + O = P.
– P1= (x,y), P2= (x,-y). Then, P1 + P2 + O = O, and 

therefore P1 = -P2.
– To add two points Q and R with different x

coordinates, draw a straight line between them and 
find the third point of intersection P1. If the line is 
tangent to the curve at either Q or R, then P1 = Q or R.  
Finally, Q + R + P1 = O and Q + R = -P1.
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Elliptic Curve Cryptography (cont’d)

• Define the rules of addition over an elliptic 
curve (cont’d)
– To double a point Q, draw the tangent line and find 

the other point of intersection S. Then Q + Q = 2Q
= -S.
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Elliptic Curve Cryptography (cont’d)
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Elliptic Curve Cryptography (cont’d)

• Elliptic curves over finite field
– Define ECC over a finite field
– The elliptic group mod p, where p is a prime number
– Choose 2 nonnegative integers a and b, less than p

that satisfy
[4a3 + 27b2] (mod p)  0

– Ep(a,b) denotes the elliptic group mod p whose 
element (x,y) are pairs of non-negative integers less 
than p satisfying
y2  x3 + ax + b (mod p), with O
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Elliptic Curve Cryptography (cont’d)

• Elliptic curves over finite field (cont’d)
– Example: Let p = 23, a = b = 1. This satisfies the 

condition for an elliptic curve group mod 23. 
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Elliptic Curve Cryptography (cont’d)

• Generation of nonnegative integer points 
from (0,0) to (p,p) in Ep

1. For each x such that px 0 , calculate baxx 3 (mod p).
2. For each result from the previous step, determine if it has a

square root mod p. If not, there are no points in Ep(a, b) with
this value of x. If so, there will be two values of y that satisfy
the square root operation (unless the value is the single y value
of 0). These (x, y) values are points in Ep(a, b).
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Elliptic Curve Cryptography (cont’d)

• Rules of addition over Ep(a,b) 
1. P + O = P.
2. If P = (x, y), then P + (x, -y) = O. The point (x, -y) is the negative of P, denoted as -P. Observe

that (x, -y) is a point on the elliptic curve, as seen graphically (Figure 6.18b) and in Ep(a, b). For
example, in E23(1, 1), for P = (13,7), we have -P = (13, -7). But -7 mod 23 = 16. Therefore, -P =
(13, 16), which is also in E23(1, 1).

Table 6.4 Points on the Elliptic Curve E23(1, 1)

 (0,1) (6,4) (12,19)
(0,22) (6,19) (13,7)
(1,7) (7,11) (13,16)

(1,16) (7,12) (17,3)
(3,10) (9,7) (17,20)
(3,13) (9,16) (18,3)
(4,0) (11,3) (18,20)
(5,4) (11,20) (19,5)

(5,19) (12,4) (19,18)
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Elliptic Curve Cryptography (cont’d)
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Elliptic Curve Cryptography (cont’d)

• Rules of addition over Ep(a,b) (cont’d)
3. If P =(x1, y1) and Q = (x2, y2) with P≠-Q, then P + Q = (x3, y3) is determined by the following rules:

               
)(mod)(

)(mod

1313

21
2

3

pyxxy
pxxx







, where

              



















QPif

y
ax

QPif
xx
yy

1

2
1

12

12

2
3



We look at two examples, taken from [JUR197]. Let P = (3, 10) and Q = (9, 7). Then
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So P + Q = (17, 20). To find 2P,
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and 2P = (7,12). Again, multiplication is defined as repeated addition; for example, 4P = P + P +P + P.
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Elliptic Curve Cryptography (cont’d)

• Analogy of Diffie-Hellman key exchange
– Pick a prime number p in the range of 2180.
– Choose a and b.
– Define the elliptic group of points Ep(a,b).
– Pick a generator (base) point G = (x,y) in Ep(a,b) 

such that the smallest value of n for which nG = O
be a very large number (referred of the order of G).

– Ep(a,b) and G are known to the participants.
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Elliptic Curve Cryptography (cont’d)

• Analogy of Diffie-Hellman key exchange (cont’d)

1. A selects an integer nA less than n. This is A’s private key. A
then generates a public key PA = nA × G; the public key is a
point in Ep(a, b).

2. B similarly selects a private key nB and computes a public
key PB.

3. A generates the secret key K = nA ×PB. B generates the
secret key K = nB ×PA.
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Elliptic Curve Cryptography (cont’d)

• Analogy of Diffie-Hellman key exchange (cont’d)
– Example: p = 211; for Ep(0,-4), choose G = (2,2). 

Note that 241G = O. nA =121, and PA = 121(2,2) = 
(115,48). nB = 203 and PB = 203(2,2) = (130,203). 
The shared secret key is then 121(130,203) = 
203(115,48) = (161,169).

– For choosing a single number as the secret key, we 
could simply use the x coordinates or some simple 
function of the x coordinate.
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Elliptic Curve Cryptography (cont’d)

• Elliptic curve encryption/decryption
– Encode the plain text m to be sent as an x-y point Pm.
– There are relatively straightforward techniques to 

perform such mappings.
– Require a point G and an elliptic group Ep(a,b) as 

parameters.
– Each user A selects a private key nA and generates a 

public key PA = nA  G
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Elliptic Curve Cryptography (cont’d)

• Elliptic curve encryption/decryption (cont’d)
– To encrypt and send a message Pm from A to B

• A chooses a random positive integer k.
• A then produces the ciphertext Cm consisting of the pair of 

points:
Cm = {kG, Pm + k PB}.

– A has used B’s public key PB.
– Two instead of one piece of information are sent.
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Elliptic Curve Cryptography (cont’d)

• Elliptic curve encryption/decryption (cont’d)
– To decrypt Cm

Pm + k PB - nB(kG) = Pm + k (nBG) - nB(kG) = Pm.
– A has masked Pm by adding k PB to it.
– An attacker needs to compute k given G and kG, 

which is assumed hard.
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Elliptic Curve Cryptography (cont’d)

• Elliptic curve encryption/decryption (cont’d)
– Example: Take p = 751, Ep(-1,188) and G = (0,376). 

Assume that Pm = (562,201) is to be sent and that the 
sender chooses a random number k = 386. Assume 
that the receiver’s public key is PB = (201,5). We 
have 386(0,376) = (676,558), and (562,201) + 
386(201,5) = (385,328). Consequently, {(676,558), 
(385,328)} is sent as the ciphertext.
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Elliptic Curve Cryptography (cont’d)

• Computational effort for cryptanalysis of elliptic 
curve cryptography compared to RSA

Key Size MIPS-Years
150
205
234

3.8*10^10
7.1*10^18
1.6*10^28

(a)  Elliptic Curve Logarithms Using the Pollard rho Method

Key Size MIPS-Years
512
768
1024
1280
1536
2048

3*10^4
2*10^8
3*10^11
1*10^14
3*10^16
3*10^20

(b) Integer Factorization Using the General Number Field Sieve
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Elliptic Curve Cryptography (cont’d)


