Elliptic Curve Cryptography (ECC)

- For the same length of keys, faster than RSA
- For the same degree of security, shorter keys are required than RSA
- Standardized in IEEE P1363
- Confidence level not yet as high as that in RSA
- Much more difficult to explain than RSA

Elliptic Curve Cryptography (cont’d)

- Named so because they are described by cubic equations (used for calculating the circumference of an ellipse)
- Of the form $y^{2}+a x y+b y=x^{3}+c x^{2}+d x+e$ where all the coefficients are real numbers satisfying some simple conditions
- Single element denoted O and called the point at infinity or the zero point

Elliptic Curve Cryptography (cont’d)

- Define the rules of addition over an elliptic curve
$-O$ serves as the additive identity. Thus $O=-O$; for any point P on the elliptic curve, $P+O=P$.
$-P_{1}=(x, y), P_{2}=(x,-y)$. Then, $P_{1}+P_{2}+O=O$, and therefore $P_{1}=-P_{2}$.
- To add two points Q and R with different x coordinates, draw a straight line between them and find the third point of intersection P_{1}. If the line is tangent to the curve at either Q or R, then $P_{1}=Q$ or R. Finally, $Q+R+P_{1}=O$ and $Q+R=-P_{1}$.

Elliptic Curve Cryptography (cont’d)

- Define the rules of addition over an elliptic curve (cont’d)
- To double a point Q, draw the tangent line and find the other point of intersection S. Then $Q+Q=2 Q$ $=-S$.

Elliptic Curve Cryptography (cont’d)

Elliptic Curve Cryptography (cont’d)

- Elliptic curves over finite field
- Define ECC over a finite field
- The elliptic group $\bmod p$, where p is a prime number
- Choose 2 nonnegative integers a and b, less than p that satisfy

$$
\left[4 a^{3}+27 b^{2}\right](\bmod p) \neq 0
$$

$-\mathrm{E}_{p}(a, b)$ denotes the elliptic group mod p whose element (x, y) are pairs of non-negative integers less than p satisfying
$y^{2} \equiv x^{3}+a x+b(\bmod p)$, with O

Elliptic Curve Cryptography (cont’d)

- Elliptic curves over finite field (cont’d)
- Example: Let $p=23, a=b=1$. This satisfies the condition for an elliptic curve group mod 23.

Elliptic Curve Cryptography (cont’d)

- Generation of nonnegative integer points from $(0,0)$ to (p, p) in E_{p}

1. For each x such that $0 \leq x<p$, calculate $x^{3}+a x+b(\bmod p)$.
2. For each result from the previous step, determine if it has a square root $\bmod p$. If not, there are no points in $\mathrm{E}_{p}(a, b)$ with this value of x. If so, there will be two values of y that satisfy the square root operation (unless the value is the single y value of 0). These (x, y) values are points in $\mathrm{E}_{p}(a, b)$.

Elliptic Curve Cryptography (cont’d)

- Rules of addition over $\mathrm{E}_{p}(a, b)$

1. $P+O=P$.
2. If $P=(x, y)$, then $P+(x,-y)=O$. The point $(x,-y)$ is the negative of P, denoted as $-P$. Observe that $(x,-y)$ is a point on the elliptic curve, as seen graphically (Figure 6.18b) and in $\mathrm{E}_{p}(a, b)$. For example, in $\mathrm{E}_{23}(1,1)$, for $P=(13,7)$, we have $-P=(13,-7)$. But $-7 \bmod 23=16$. Therefore, $-P=$ $(13,16)$, which is also in $E_{23}(1,1)$.

Table 6.4 Points on the Elliptic Curve $\mathrm{E}_{23}(1,1)$

$(0,1)$	$(6,4)$	$(12,19)$
$(0,22)$	$(6,19)$	$(13,7)$
$(1,7)$	$(7,11)$	$(13,16)$
$(1,16)$	$(7,12)$	$(17,3)$
$(3,10)$	$(9,7)$	$(17,20)$
$(3,13)$	$(9,16)$	$(18,3)$
$(4,0)$	$(11,3)$	$(18,20)$
$(5,4)$	$(11,20)$	$(19,5)$
$(5,19)$	$(12,4)$	$(19,18)$

Elliptic Curve Cryptography (cont’d)

Figure 10.10 The Elliptic Curve $E_{23}(1,1)$

Elliptic Curve Cryptography (cont’d)

- Rules of addition over $\mathrm{E}_{p}(a, b)$ (cont'd)

3. If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ with $P \neq-Q$, then $P+Q=\left(x_{3}, y_{3}\right)$ is determined by the following rules:

$$
\begin{aligned}
& x_{3} \equiv \lambda^{2}-x_{1}-x_{2}(\bmod p) \\
& y_{3} \equiv \lambda\left(x_{1}-x_{3}\right)-y_{1}(\bmod p), \text { where }
\end{aligned}
$$

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P \neq Q \\ \frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { if } P=Q\end{cases}
$$

We look at two examples, taken from [JUR197]. Let $P=(3,10)$ and $Q=(9,7)$. Then

$$
\begin{aligned}
& \lambda=\frac{7-10}{9-3}=\frac{-3}{6}=\frac{-1}{2} \equiv 11 \bmod 23 \\
& x_{3}=11^{2}-3-9=109 \equiv 17 \bmod 23 \\
& y_{3}=11(3-(-6))-10=89 \equiv 20 \bmod 23
\end{aligned}
$$

So $P+Q=(17,20)$. To find $2 P$,

$$
\begin{aligned}
& \lambda=\frac{3\left(3^{2}\right)+1}{2 \times 10}=\frac{5}{20}=\frac{1}{4} \equiv 6 \bmod 23 \\
& x_{3}=6^{2}-3-3=30 \equiv 7 \bmod 23 \\
& y_{3}=6(3-7)-10=-34 \equiv 12 \bmod 23
\end{aligned}
$$

and $2 P=(7,12)$. Again, multiplication is defined as repeated addition; for example, $4 P=P+P+P+P$.

Elliptic Curve Cryptography (cont’d)

- Analogy of Diffie-Hellman key exchange
- Pick a prime number p in the range of 2^{180}.
- Choose a and b.
- Define the elliptic group of points $\mathrm{E}_{p}(a, b)$.
- Pick a generator (base) point $G=(x, y)$ in $\mathrm{E}_{p}(a, b)$ such that the smallest value of n for which $n G=O$ be a very large number (referred of the order of G).
$-\mathrm{E}_{p}(a, b)$ and G are known to the participants.

Elliptic Curve Cryptography (cont’d)

- Analogy of Diffie-Hellman key exchange (cont'd)

1. A selects an integer n_{A} less than n. This is A's private key. A then generates a public key $P_{\mathrm{A}}=n_{\mathrm{A}} \times G$; the public key is a point in $\mathrm{E}_{p}(a, b)$.
2. B similarly selects a private key n_{B} and computes a public key P_{B}.
3. A generates the secret key $K=n_{A} \times P_{B}$. B generates the secret key $K=n_{B} \times P_{\mathrm{A}}$.

Elliptic Curve Cryptography (cont’d)

- Analogy of Diffie-Hellman key exchange (cont'd)
- Example: $p=211$; for $\mathrm{E}_{p}(0,-4)$, choose $G=(2,2)$. Note that $241 G=O . n_{\mathrm{A}}=121$, and $P_{\mathrm{A}}=121(2,2)=$ $(115,48) . n_{\mathrm{B}}=203$ and $P_{\mathrm{B}}=203(2,2)=(130,203)$. The shared secret key is then $121(130,203)=$ $203(115,48)=(161,169)$.
- For choosing a single number as the secret key, we could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Cryptography (cont’d)

- Elliptic curve encryption/decryption
- Encode the plain text m to be sent as an $x-y$ point P_{m}.
- There are relatively straightforward techniques to perform such mappings.
- Require a point G and an elliptic group $\mathrm{E}_{p}(a, b)$ as parameters.
- Each user A selects a private key n_{A} and generates a public key $P_{\mathrm{A}}=n_{\mathrm{A}} \times G$

Elliptic Curve Cryptography (cont’d)

- Elliptic curve encryption/decryption (cont'd)
- To encrypt and send a message P_{m} from A to B
- A chooses a random positive integer k.
- A then produces the ciphertext C_{m} consisting of the pair of points:

$$
C_{m}=\left\{k G, P_{m}+k P_{\mathrm{B}}\right\} .
$$

- A has used B's public key P_{B}.
- Two instead of one piece of information are sent.

Elliptic Curve Cryptography (cont’d)

- Elliptic curve encryption/decryption (cont'd)
- To decrypt C_{m}

$$
P_{m}+k P_{\mathrm{B}}-n_{\mathrm{B}}(k G)=P_{m}+k\left(n_{\mathrm{B}} G\right)-n_{\mathrm{B}}(k G)=P_{m} .
$$

- A has masked P_{m} by adding $k P_{\mathrm{B}}$ to it.
- An attacker needs to compute k given G and $k G$, which is assumed hard.

Elliptic Curve Cryptography (cont’d)

- Elliptic curve encryption/decryption (cont'd)
- Example: Take $p=751, \mathrm{E}_{p}(-1,188)$ and $G=(0,376)$. Assume that $P_{m}=(562,201)$ is to be sent and that the sender chooses a random number $k=386$. Assume that the receiver's public key is $P_{\mathrm{B}}=(201,5)$. We have $386(0,376)=(676,558)$, and $(562,201)+$ $386(201,5)=(385,328)$. Consequently, $\{(676,558)$, $(385,328)\}$ is sent as the ciphertext.

Elliptic Curve Cryptography (cont’d)

- Computational effort for cryptanalysis of elliptic curve cryptography compared to RSA

Key Size	MIPS-Years
150	$3.8^{*} 10^{\wedge} 10$
205	$7.1^{*} 10^{\wedge} 18$
234	$1.6^{*} 10^{\wedge} 28$

(a) Elliptic Curve Logarithms Using the Pollard rho Method

Key Size	MIPS-Years
512	$3^{*} 10^{\wedge} 4$
768	$2^{*} 10^{\wedge} 8$
1024	$3^{*} 10^{\wedge} 11$
1280	$1^{*} 10^{\wedge} 14$
1536	$3^{*} 10^{\wedge} 16$
2048	$3^{*} 10^{\wedge} 20$

(b) Integer Factorization Using the General Number Field Sieve

Elliptic Curve Cryptography (cont’d)

	1024-bits RSA	163-bits ECC
Security Level	= 163-bits ECC	= 1024-bits RSA
Certificate Size (key and signature)	Over 256-bytes	Over 62-bytes
Key Generation (ms)	285,630	397
Signature Generation (ms)	20,208	528
Signature Verification (ms)	900	1,142

Source: Motorola, 2001 (on a Palm Pilot)

