Elliptic Curve Cryptography (ECC)

- For the same length of keys, faster than RSA
- For the same degree of security, shorter keys are required than RSA
- Standardized in IEEE P1363
- Confidence level not yet as high as that in RSA
- Much more difficult to explain than RSA

1

- Named so because they are described by cubic equations (used for calculating the circumference of an ellipse)
- Of the form $y^2 + axy + by = x^3 + cx^2 + dx + e$ where all the coefficients are real numbers satisfying some simple conditions
- Single element denoted *O* and called the *point at infinity* or the *zero point*

- Define the rules of addition over an elliptic curve
 - *O* serves as the additive identity. Thus O = -O; for any point *P* on the elliptic curve, P + O = P.
 - $-P_1 = (x,y), P_2 = (x,-y)$. Then, $P_1 + P_2 + O = O$, and therefore $P_1 = -P_2$.
 - To add two points Q and R with different xcoordinates, draw a straight line between them and find the third point of intersection P_1 . If the line is tangent to the curve at either Q or R, then $P_1 = Q$ or R. Finally, $Q + R + P_1 = O$ and $Q + R = -P_1$.

- Define the rules of addition over an elliptic curve (cont'd)
 - To double a point Q, draw the tangent line and find the other point of intersection S. Then Q + Q = 2Q= -S.

Figure 6.18 Example of Elliptic Curves

Information Security -- Public-Key Cryptography

- Elliptic curves over finite field
 - Define ECC over a finite field
 - The elliptic group mod p, where p is a prime number
 - Choose 2 nonnegative integers *a* and *b*, less than *p* that satisfy

 $[4a^3 + 27b^2] \pmod{p} \neq 0$

- $E_p(a,b)$ denotes the elliptic group mod p whose element (x,y) are pairs of non-negative integers less than p satisfying

 $y^2 \equiv x^3 + ax + b \pmod{p}$, with *O*

- Elliptic curves over finite field (cont'd)
 - Example: Let p = 23, a = b = 1. This satisfies the condition for an elliptic curve group mod 23.

 Generation of nonnegative integer points from (0,0) to (p,p) in E_p

1. For each *x* such that $0 \le x < p$, calculate $x^3 + ax + b \pmod{p}$.

2. For each result from the previous step, determine if it has a square root mod p. If not, there are no points in $E_p(a, b)$ with this value of x. If so, there will be two values of y that satisfy the square root operation (unless the value is the single y value of 0). These (x, y) values are points in $E_p(a, b)$.

- Rules of addition over $E_p(a,b)$
 - 1. P + O = P.
 - 2. If P = (x, y), then P + (x, -y) = O. The point (x, -y) is the negative of P, denoted as -P. Observe that (x, -y) is a point on the elliptic curve, as seen graphically (Figure 6.18b) and in $E_p(a, b)$. For example, in $E_{23}(1, 1)$, for P = (13, 7), we have -P = (13, -7). But $-7 \mod 23 = 16$. Therefore, -P = (13, 16), which is also in $E_{23}(1, 1)$.

Table 0.4 I office of the Linpue Curve $L_{23}(1, 1)$

(0,1)	(6,4)	(12,19)
(0,22)	(6,19)	(13,7)
(1,7)	(7,11)	(13,16)
(1,16)	(7,12)	(17,3)
(3,10)	(9,7)	(17,20)
(3,13)	(9,16)	(18,3)
(4,0)	(11,3)	(18,20)
(5,4)	(11,20)	(19,5)
(5,19)	(12,4)	(19,18)

Figure 10.10 The Elliptic Curve E₂₃(1,1)

Information Security -- Public-Key Cryptography

• Rules of addition over $E_p(a,b)$ (cont'd)

3. If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ with $P \neq -Q$, then $P + Q = (x_3, y_3)$ is determined by the following rules:

$$x_3 \equiv \lambda^2 - x_1 - x_2 \pmod{p}$$

$$y_3 \equiv \lambda (x_1 - x_3) - y_1 \pmod{p}, \text{ where }$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q \\ \frac{3x_1^2 + a}{2y_1} & \text{if } P = Q \end{cases}$$

We look at two examples, taken from [JUR197]. Let P = (3, 10) and Q = (9, 7). Then

$$\lambda = \frac{7 - 10}{9 - 3} = \frac{-3}{6} = \frac{-1}{2} \equiv 11 \mod 23$$
$$x_3 = 11^2 - 3 - 9 = 109 \equiv 17 \mod 23$$
$$y_3 = 11(3 - (-6)) - 10 = 89 \equiv 20 \mod 23$$

So P + Q = (17, 20). To find 2P,

$$\lambda = \frac{3(3^2) + 1}{2 \times 10} = \frac{5}{20} = \frac{1}{4} \equiv 6 \mod 23$$
$$x_3 = 6^2 - 3 - 3 = 30 \equiv 7 \mod 23$$
$$y_3 = 6(3 - 7) - 10 = -34 \equiv 12 \mod 23$$

and 2P = (7,12). Again, multiplication is defined as repeated addition; for example, 4P = P + P + P + P.

Information Security -- Public-Key Cryptography

- Analogy of Diffie-Hellman key exchange
 - Pick a prime number p in the range of 2^{180} .
 - Choose *a* and *b*.
 - Define the elliptic group of points $E_p(a,b)$.
 - Pick a generator (base) point G = (x,y) in $E_p(a,b)$ such that the smallest value of *n* for which nG = Obe a very large number (referred of the order of *G*).
 - $-E_p(a,b)$ and G are known to the participants.

- Analogy of Diffie-Hellman key exchange (cont'd)
 - 1. A selects an integer n_A less than n. This is A's private key. A then generates a public key $P_A = n_A \times G$; the public key is a point in $E_p(a, b)$.
 - 2. B similarly selects a private key $n_{\rm B}$ and computes a public key $P_{\rm B}$.
 - 3. A generates the secret key $K = n_A \times P_B$. B generates the secret key $K = n_B \times P_A$.

- Analogy of Diffie-Hellman key exchange (cont'd)
 - Example: p = 211; for $E_p(0,-4)$, choose G = (2,2). Note that 241G = O. $n_A = 121$, and $P_A = 121(2,2) = (115,48)$. $n_B = 203$ and $P_B = 203(2,2) = (130,203)$. The shared secret key is then 121(130,203) = 203(115,48) = (161,169).
 - For choosing a single number as the secret key, we could simply use the *x* coordinates or some simple function of the *x* coordinate.

- Elliptic curve encryption/decryption
 - Encode the plain text m to be sent as an x-y point P_m .
 - There are relatively straightforward techniques to perform such mappings.
 - Require a point G and an elliptic group $E_p(a,b)$ as parameters.
 - Each user A selects a private key n_A and generates a public key $P_A = n_A \times G$

- Elliptic curve encryption/decryption (cont'd)
 - To encrypt and send a message P_m from A to B
 - A chooses a random positive integer *k*.
 - A then produces the ciphertext C_m consisting of the *pair* of points:

 $C_m = \{kG, P_m + kP_B\}.$

- A has used B's public key $P_{\rm B}$.
- Two instead of one piece of information are sent.

- Elliptic curve encryption/decryption (cont'd)
 - To decrypt C_m

 $P_m + k P_B - n_B(kG) = P_m + k (n_BG) - n_B(kG) = P_m$.

- A has masked P_m by adding $k P_B$ to it.
- An attacker needs to compute k given G and kG,
 which is assumed hard.

- Elliptic curve encryption/decryption (cont'd)
 - Example: Take p = 751, $E_p(-1,188)$ and G = (0,376). Assume that $P_m = (562,201)$ is to be sent and that the sender chooses a random number k = 386. Assume that the receiver's public key is $P_B = (201,5)$. We have 386(0,376) = (676,558), and (562,201) + 386(201,5) = (385,328). Consequently, {(676,558), (385,328)} is sent as the ciphertext.

• Computational effort for cryptanalysis of elliptic curve cryptography compared to RSA

Key Size	MIPS-Years
150	3.8*10^10
205	7.1*10^18
234	1.6*10^28

(a) Elliptic Curve Logarithms Using the Pollard rho Method

Key Size	MIPS-Years
512	3*10^4
768	2*10^8
1024	3*10^11
1280	1*10^14
1536	3*10^16
2048	3*10^20

(b) Integer Factorization Using the General Number Field Sieve

	1024-bits RSA	163-bits ECC
Security Level	= 163-bits ECC	= 1024-bits RSA
Certificate Size (key and signature)	Over 256-bytes	Over 62-bytes
Key Generation (ms)	285,630	397
Signature Generation (ms)	20,208	528
Signature Verification (ms)	900	1,142

Source: Motorola, 2001 (on a Palm Pilot)